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SUMMARY

How does a naive, young animal decide from which
adults to learn behavior? Obligate brood parasitic
birds, including brown-headed cowbirds (Molothrus
ater), face a particular challenge in learning species-
specific behaviors; they lay their eggs in the nest of
another species, and juveniles are raised without
exposure to adult conspecifics. Nevertheless, male
cowbirds need to learn a conspecific song to attract
appropriate mates, and female cowbirds need to
learn to identify conspecific males for mating. Tradi-
tionally, it was thought that parasitic bird species
rely purely on instinctual species recognition [1–4],
but an alternative is that a species-specific trait
serves as a ‘‘password’’ [5], a non-learned cue for
naive animals that guides decisions regarding from
whom to learn. Here, we tested the hypothesis that
the adult ‘‘chatter call’’ enhances the learning of spe-
cific songs in juvenile cowbirds. We exposed acous-
tically naive juvenile male and female cowbirds to
songs paired with chatter calls and found that the
chatter call enhanced song production learning in
malesand inducedaneurogenomicprofile of song fa-
miliarity in females, even for heterospecific songs.
Thus, a combination of experience-independent and
-dependent mechanisms converges to explain how
young cowbirds emerge from another species’ nest
yet learn behaviors from conspecifics. Identifying
whether such password-based mechanisms relate
to perceptual and behavioral learning in non-parasitic
taxa will contribute to our general understanding of
the development of social recognition systems.

RESULTS AND DISCUSSION

Young animals learn diverse behaviors and preferences from

adults of their own species, yet how naive juveniles determine
Current Bio
suitable referents for learning remains unclear [6]. Despite being

raised exclusively by other species, obligate brood parasitic

birds reliably recognize and reproduce with their own species.

Although juvenile brood parasites are known to learn behaviors

and social preferences from conspecifics [7–9], the mechanisms

that guide decisions when to learn and from whom to learn

remain unclear. The password hypothesis [5], which proposes

that a specific non-learned cue is used to guide the learning of

phenotypes associated with that cue, provides a plausible yet

untested explanation for how brood parasitic cowbirds learn

their species-specific behaviors, including their vocal repertoire

[5, 10].

For the brown-headed cowbird, the ‘‘chatter call’’ is proposed

as a password for song learning [5]. Adult female brown-headed

cowbirds produce the chatter call in a variety of social contexts,

including in response to conspecific intruders [5] and following

preferred male songs [11]. The chatter calls are produced

throughout the year and do not show geographic variation in

acoustic structure [12]. In courtship contexts, males modify their

own songs in response to female chatter calls [7] and females,

who do not sing, use other females’ chatter calls as a guide for

preferred male songs [11]. Nestling and juvenile cowbirds, which

lack prior exposure to adult cowbird vocalizations, display pho-

notactic behaviors consistent with the early preferences for

conspecific chatter calls [5]. In turn, young cowbirds exposed

to adult conspecifics (i.e., captured in cowbird flocks) exhibit

greater neural activity, as measured by expression for the imme-

diate-early gene EGR1, in response to the chatter call relative to

control heterospecific calls [13]. Thus, the chatter call appears a

plausible behavioral and neuro-developmental candidate to

serve as a password, yet the effects of the chatter call on song

learning in juveniles have not been tested in naive cowbirds.

Here, to test the hypothesis that the chatter call enhances the

learning of two key behaviors, song production inmales and song

recognition in males and females, we compared behavioral and

neural responses for songs paired with and without the chatter

call. We demonstrate that, relative to controls, hearing songs

coupled with chatter calls increased song acquisition in males

and recognition learning in both sexes, even when the song is

heterospecific and for juveniles that lack previous experience

with the chatter call.
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Figure 1. The Experimental Stimuli and

Design

(A) Naive juvenile male brown-headed cowbirds

(70–80 days post-hatching) received either chatter

treatment (canary song paired with cowbird chat-

ter call) or control treatment (canary song paired

with a dove coo); then, all males were tested with

the respective canary song only.

(B) Naive juvenile female cowbirds (40–50 days

post-hatching) were trained with both a canary

song paired with a cowbird chatter call and a

second canary song paired with a dove coo and

then tested with either the chatter-paired or con-

trol-paired song-only playback. Spectrograms are

displayed from one group of randomly selected

females. A second group heard different exem-

plars of canary songs, dove coos, and cowbird

chatters.
Chatter Call Biases the Acquisition of Song in Naive
Juvenile Male Cowbirds
To test whether hearing the female chatter call influences

acquisition of specific song structure in males, we exposed

song-naive juvenile males, hand-raised without contact with

adult birds, to playbacks of either a canary (Serinus canaria)

song immediately followed by a conspecific chatter call (chat-

ter treatment; n = 3) or the same canary song followed by a

mourning dove (Zenaida macroura) coo (control treatment;

n = 4; Figure 1A) for 60 min a day starting at age 70–80 days

post-hatching. We chose to pair the chatter call with a hetero-

specific song because separating the effects of hearing

cowbird songs paired with or without chatter calls may have

been more biologically and statistically challenging, given that

isolate-raised cowbird males’ songs already have some simi-

larity to the social (typical) conspecific songs [4]. Furthermore,

previous experiments demonstrated that vocally naive male

cowbirds can learn to produce canary-like songs (repeated

notes structurally similar to canary songs or calls) after 150–

300 days post-hatching [14, 15]. Juvenile cowbirds in the

wild generally do not join conspecific cowbirds flocks until at

least 40–60 days post-hatching [16] and, in some populations,

may not interact with adults and learn songs for up to 1 year

post-hatching [17]. Female cowbirds produce chatter calls in

response to male song in autumn conspecific flocks and influ-

ence the development of male songs [18], thereby supporting

the ecological validity of the age of juveniles used for this

experiment.

After 30 days of playback training, we recorded males singing

and analyzed 5 distinct song bouts per subject. Using a spectro-

gram-based acoustic similarity index [19], we determined that

chatter treatment males produced songs with significantly

greater similarities to the canary song than did control treatment

males (Figure 2B; F1,5 = 6.98; p = 0.04). Furthermore, when

examining representative bioacoustic features of subjects’

songs in the chatter versus the control treatment, frequency

range and duration features were not significantly different (p >

0.10; data not shown), but chatter subjects had songs with

consistently lower entropy (i.e., less disorder and greater tonality

[20]; mean = 1.97 ± 0.08 SE) relative to control subjects (mean =

2.46 ± 0.07; F1,5 = 23.68; p = 0.005). Although statistically

different, the songs of chatter treatment males remained only
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modestly correlated to canaries (Figure 2A). Genetically herita-

ble mechanisms and whether juveniles learned from song play-

backs versus live tutors can strongly limit the similarity to tutor

songs [21]. Therefore, the imperfect imitation of canary song

by cowbirds could be attributed to inherent limitations in pro-

ducing heterospecific songs imposed by the cowbird vocal

tract, the young age of the juvenile cowbirds, the short duration

of the experimental exposure (30 days), and/or the lack of a live

song tutor.

Chatter Call Induces Molecular Markers of Neural
Plasticity in Juvenile Male Cowbirds
Because hearing chatter calls significantly increased the degree

to whichmales copied playback songs, we then tested for a neu-

ral basis of that effect. We focused on the auditory forebrain as

it is critical to auditory memory and song learning in songbirds

[22–24] and song experience alters chromatin states that regu-

late transcriptional responses [22, 25] that mediate the sensory

component of song learning [26], including conspecific auditory

recognition in brood parasites [13, 27]. We predicted that, if the

chatter call served as a signal for what to learn, then birds that

had been exposed to the chatter call would display neuroge-

nomic responses indicative of greater learning in the auditory

forebrain compared to birds that had not been exposed to the

chatter call.

To test for transcriptomic signatures of chatter-induced neu-

roplasticity, we examined brain gene expression in males from

the previous song-acquisition experiment. We exposed each

male cowbird to the training canary song alone for 30 min

(without coupling to the chatters or dove calls) and immediately

extracted the auditory forebrain for subsequent RNA sequencing

[28]. We aligned RNA reads to a reference-guided genome as-

sembly we constructed for the brown-headed cowbird (see

STARMethods), quantified read abundances, and tested for dif-

ferential expression between chatter and control treatments

(Figure 1A). On average, 76%of the 26.5 million reads (after trim-

ming) aligned to the cowbird reference-guided genome assem-

bly. Of the 12,045 total genes with above-threshold levels of

RNA, 32 were considered significantly differentially expressed

(adjusted p < 0.10; Table S1).

Several differentially expressed genes demonstrate support

for the prediction that exposure to the chatter call influences
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Figure 2. Males Exposed to Chatter Treatment Sing with Greater

Similarity to Canary Songs

(A) Representative spectrograms for songs from two individuals from each

treatment.

(B) Boxplots for song correlation for each male from control and chatter

treatments are presented (dot color represents each subject; 5 songs per

subject). Despite some overlap in song correlation between treatment groups,

male brown-headed cowbird songs are more similar to canary song in chatter

versus control treatment using a spectrogram-based acoustic similarity index

(F1,5 = 6.98, p = 0.04).
neuroplasticity. The top-ranked differentially expressed

gene, annotated as a probable glutamate receptor

(LOC102072152; Figure 3B), was significantly lower in the

chatter treatment subjects compared to the control

(rank = 1; Wald = 6.94; adjusted p < 0.0001; Table S1). This

gene is orthologous to KBP (kainite binding protein), which in

chickens (Gallus gallus) shows declining expression levels

throughout the brain with increased age [29]. Further, the

glutamate class of receptors has well-known effects on synap-

tic transmission, plasticity, and development [30]. We also

found that aromatase RNA was significantly less abundant in

male cowbirds exposed to the chatter treatment relative to

controls (rank = 2; Wald = 6.79; adjusted p < 0.0001; Figure 3A;
Table S1). Aromatase is a steroidogenic enzyme that converts

androgens into estrogens and is involved in auditory process-

ing and tutor song memorization during developmental song

learning in the zebra finch (Taeniopygia guttata) auditory

forebrain [31, 32]. Additionally, TENM1 (teneurin-1) and

CASP6 (caspase-6) were significantly differentially expressed

(rank = 3 and 4; Wald > 4.75; adjusted p < 0.006; Table S1).

TENM1 is developmentally regulated in brain areas involved

in sensory information processing in chicken [33], and

CASP6 induces neuronal degradation and age-dependent

memory function in the rodent hippocampus [34].

To determine which functional categories of differentially

expressed RNAs were overrepresented, we performed rank-

order-based Gene Ontology (GO) analysis [35]. Rank-based ap-

proaches do not require that individual genes are significantly

differentially expressed but rather test for functional cohesion

among genes with lower p values. We identified several signifi-

cant GO categories (adjusted p < 0.001) indicative of neural plas-

ticity, such as ‘‘regulation of nervous system development,’’

‘‘regulation of axonogenesis,’’ and ‘‘regulation of neuron differ-

entiation’’ (Figure 3C). Genes that contribute to these GO terms

had greater mRNA abundance in the chatter treatment, and

several have known associations with the development of audi-

tory learning in songbirds (Figure 3D). For example, hearing

conspecific songs activates mTOR (mechanistic target of rapa-

mycin) signaling in the auditory forebrains of male zebra finches

during the sensory song learning period, but not in younger

males [36]. Similarly, GPER1 (G protein-coupled estrogen recep-

tor 1) has increased relative expression here in male cowbirds

exposed to the chatter call and is known to mediate neuroestro-

gen signaling while increasing developmentally during the sen-

sory song learning period in male zebra finches [37].

Overall, juvenile cowbird males that experienced chatter calls

sang songs with greater resemblance to canary playback songs

and with more tonal structure (lower entropy) relative to controls.

These male cowbirds also exhibited greater functional neuroge-

nomic signatures of neuroplasticity upon re-exposure to the ca-

nary song alone. This is consistent with the password hypothesis

for conspecific song learning in parasitic cowbirds. We next

tested whether the chatter call enhances auditory learning for a

specific canary song when all subjects experienced both chat-

ter-paired canary songs and controls, as predicted by the pass-

word hypothesis.

Familiarity Increases for Specific Canary Songs that Had
Been Paired with the Chatter Call
Female cowbirds do not produce songs, but they prefer partic-

ular male songs previously paired with chatter calls [11]. We

therefore hypothesized that the chatter call served as a specific

cue for selective song recognition learning, even without prior

experience with chatter calls. To test this hypothesis, we exam-

ined whether canary songs that had been paired with the chatter

call resulted in neurogenomic responses that, based on a prior

literature of the molecular biology of learning and memory in

songbirds, would indicate enhanced learning when compared

to controls.

Juvenile females (40–50 days post-hatching) naive to adult

cowbird vocalizations were each trained on two pairs of stimuli

for 14 days: a canary song paired with a chatter call (e.g., canary
Current Biology 29, 4045–4051, December 2, 2019 4047
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Figure 3. Males Exposed to Chatter Treat-

ment Show Signatures of Neuroplasticity

(A and B) Boxplots for the two top-ranked differ-

entially expressed genes, (A) glutamate receptor

and (B) aromatase, both showing lower RNA levels

in the chatter treatment than the control condition.

All p values are relative to chatter vs. control

treatments.

(C) Results of significant Gene Ontology (GO) terms

(false discovery rate [FDR] p < 0.001). Colors in GO

term list indicate enrichment of GO categories with

either red (upregulated) or blue (downregulated)

genes. The numbers of significant genes (p < 0.05)

relative to the total numbers of genes belonging to

each GO category are listed. The hierarchical tree

indicates the level clustering of GO categories

based on the number of shared genes.

(D) The heatmap of genes from GO terms asso-

ciated with neural plasticity (denoted with * in C)

ranked high on the global list (raw p < 0.05), with

Z score normalized expression values in red for

upregulated genes in the chatter treatment.

See also Table S1.
A; Figure 1B) and a different canary song paired with a dove

coo (e.g., canary song B; Figure 1B). Distinct canary songs,

dove coos, and cowbird chatters were used between two groups

of randomly selected females (n = 4 in each group) such that one

group was exposed to canary A and B pairings and the other

group heard different canary songs (i.e., canary C and D) paired

with a different chatter and coo, respectively. After 2 weeks,

during which stimulus pairs were played daily (two sessions

of 30 min), we compared the females’ auditory forebrain

neurogenomic response to hearing 30 min of either chatter-

paired or control-paired canary-song-only playbacks using

RNA sequencing (RNA-seq). These females were still too young

for mating assays, such as copulation solicitation displays; thus,

we could not collect behavioral or song preference data on fe-

male subjects [4].

On average, 75%of the 31.9million RNA-seq reads (after trim-

ming) aligned to the cowbird reference-guided genome assem-

bly. Of the 12,100 total transcripts with above-threshold levels

of expression, 25 were significantly differentially expressed

(adjusted p < 0.10) between hearing chatter-paired or control-

paired playbacks (Table S2).

Across species and experimental paradigms, recognition of a

previously learned stimulus can be characterized by diminished

genomic, molecular, and electrophysiological responses when

compared to novel stimulus responses in the relevant brain areas
4048 Current Biology 29, 4045–4051, December 2, 2019
(reviewed in [38]). In songbirds, this

‘‘habituation’’ response is revealed upon

re-exposure to a recently experienced

song, with corresponding RNA and

behavioral responses indicative of

greater learned familiarity [39–42]. To

determine how known molecular markers

for song familiarity were regulated by

chatter call experience in female cow-

birds, we examined the relative RNA

levels of 6 candidate genes previously
identified as the top-ranked markers for song habituation in the

zebra finch auditory forebrain [38]. As would be predicted if chat-

ter-paired songs were more familiar, all 6 of these genes were

expressed at lower levels in response to the chatter-paired

canary song compared to controls; 4 were significantly different

at p < 0.05 (without adjusting for multiple testing because each

candidate gene was considered individually; Wald > 2.83;

p < 0.004; Figure 4). Critically, these same 4 genes, NR4A2,

NR4A3 (nuclear receptor subfamily group A), EGR1 (early growth

response 1), and FOSL2 (FOS-related antigen 2), are highly ex-

pressed after playbacks of novel song but are expressed at

lower levels after a song becomes familiar in zebra finch auditory

forebrain, a molecular signature of learning [40, 43]. All 4 of these

genes are involved in long-term memory formation across spe-

cies [44, 45], and of note, NR4A2 and NR4A3 were among the

top significantly differentially expressed genes here (rank = 2

and 3; Wald > 4.73; adjusted p < 0.001; Table S2).

Several more differentially expressed genes in our datasets

provided additional support for greater familiarity of the chat-

ter-paired canary song in female cowbirds. For example, RELN

(reelin), which plays a critical role in synaptic plasticity, dendritic

morphogenesis, and associative learning in mice, was signifi-

cantly less abundant after hearing playback of the chatter-paired

canary song compared to controls (rank = 15; Wald = 3.99;

adjusted p = 0.05; Table S2) [46]. Additionally, KCND2
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Figure 4. mRNAs Diagnostic of Song Famil-

iarity Show Expected Relative Abundances

in Female Cowbirds

(A–F) Boxplots of RNA levels (normalized counts)

in female cowbirds for the 6 known song familiarity

genes [43], (A) NR4A2, (B) NR4A3, (C) EGR1, (D)

FOSL2, (E) MDGA2, and (F) ASMTL, annotated in

the cowbird genome assembly. All p values are

relative to chatter vs. control treatments.

See also Table S2.
(potassium voltage-gated channel subfamily d member 2) is

linked to dampened excitatory neuronal responses to novel

stimuli in mice and mRNA was less abundant in response to

the chatter-paired song (rank = 25; Wald = 3.71; adjusted p =

0.09; Table S2) [47].

The known neuroplasticity genes that showed lower relative

expression levels after birds heard chatter-paired canary song

compared to control-paired canary song are consistent with the

interpretation that the chatter call enhanced learning of the asso-

ciated songs.Similar responses in the auditory forebrainwouldbe

expected in female and male cowbirds, as found in zebra finches

[48, 49], although further tests are required to confirm this.

Overall, the experiments reported here support the hypothesis

that the cowbird chatter call serves as an acoustic password cue

to enhance the learning of a coupled song in this obligate brood
Current Biolog
parasite, even when the stimulus is a het-

erospecific song. Here, the password ap-

pears to not only affect neurogenomic

signatures for neuroplasticity but also

serves as a specific cue for learning

certain songs for juveniles that lack previ-

ous experience with the password. Given

the importance of songs in cowbirds’ so-

cial interactions, such asmate choice and

species recognition, password-based

learning is predicted to have long-term

implications on parasitic preferences

and behavior.

Instead of simply advocating for

‘‘innate’’ recognition as a feasible mecha-

nism for avian brood parasite’s behavioral

development [1–4], these experiments

expandourunderstandingofwhat triggers

the vocal, ontogenetic, and neural basis of

socially guided auditory learning in these

species. Furthermore, experience-inde-

pendent cues that initiate learning may

be characteristic of other systems where

‘‘innate’’ processes have been invoked:

for example, the recognition of specific

vocal signals early in development [50–

52] and password-like learning [53] are

also observed in non-parasitic songbird

lineages. Thus, password-based learning

potentially represents amore broadly rele-

vant pattern and feasible mechanism of

socially cued species recognition learning
in birds and other social taxa in general. If widespread across

taxa, identifying the underlyingmolecular and neuralmechanisms

that contribute to password-based learning will improve our

understanding of the evolution of social behavior.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Frozen tissue for DNA from Molothrus ater Museum of Southwestern Biology MSB:Bird:39518

Fresh tissues for RNaseq from Molothrus ater nature N/A

Deposited Data

Cowbird raw RNaseq reads NCBI SRA BioProject: PRJNA565489

Software and Algorithms

DEseq2 [54] V1.2

Trim Galore http://www.bioinformatics.babraham.ac.uk V0.3.7

HiSat2 [55] V2.1

HTSeq-count [56] V0.9.1

BWA [57] V0.7.1

Genome Analysis Toolkit [58] V3.8

R https://www.r-project.org V3.5.1

Audacity https://www.audacityteam.org V2.2.0

Raven Pro [20] V1.5

GO_MWU https://github.com/z0on/GO_MWU N/A

Other

formula for nestling songbirds [59] N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and recordings should be directed to, and will be fulfilled by, the Lead Contact,

Matthew Louder (mckimlouder@gmail.com). This study did not generate new unique reagents or software.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject rearing and housing
Cowbird nestlingswere collected from thewild at 3-5 days post-hatching in Champaign andPulaski Counties, Illinois, USA.We hand-

reared cowbirds in isolation from conspecific and heterospecific adults to ensure that they would not hear adult male songs or female

chatter calls prior to experimental treatments. Nestlings were raised with cowbird nestmates in a ‘simulated nest’, in which plastic

bowls were lined with paper towels to provide nest lining. Nestlings were kept within an incubator/brooder until chicks were fully

fledged and mobile (�10 days post hatching). Nestling cowbirds were fed the FoNS diet (formula for nestling songbirds) via syringe

every 30-60min from 600 until 1900 daily [59]. Once subjects could feed from a bird seed/dog-foodmixture independently, they were

moved to a large indoor aviary and housed together until experimental playback trials. Birds were provided water, cuttle bone, and

food mixture ad libitum with supplemental fresh spinach, carrots, blueberries, crickets, and hard-boiled eggs.

During the period of experimental playback trials, subjects were individually housed in cages within sound attenuation chambers

(Med Associates) each installed with a fan and a light. On average, sound is attenuated 44 dB at 100 Hz between two chambers.

Furthermore, we lined the walls with acoustic foam to increase sound attenuation. We provided subjects the same food and water

as above ad libitum. To reduce potential adverse effects of social isolation, a female zebra finch was included in each sound atten-

uation chamber as a companion. Female zebra finches do not sing songs [60], and therefore are unlikely to influence song learning of

male or female cowbirds.

Ethical Note
This research was approved under University of Illinois animal care and use permit (IACUC #18052) and the U.S. Fish and Wildlife

Service (permit # MB08861A). The study was designed to minimize the number of subjects used terminally and potential effects

of prior stress.
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METHOD DETAILS

Experimental playback trials
Playback treatments were performed within sound attenuation chambers. Songs were broadcast at �65 dB at 0.5 m from the

speaker. We filtered playback stimuli above 10000 Hz and below 500 Hz and normalized for mean amplitude of all stimuli with Au-

dacity (v 2.2.0). For males at age 70-80 days post hatching, we broadcast a canary song (4 s) followed by a chatter call (2 s) (Chatter

treatment, n = 3) or the same canary song followed by a mourning dove coo (Control treatment, n = 4). Stimulus pairs were played 4

times aminute for 30minutes twice daily (at 800 and 1700); for a total of 60min each day. After 1month, males were recorded singing

within the sound attenuation chambers for �1 hr. Prior to tissue extraction at 1 month, males were exposed to the canary song only

for 30 min (4 songs per min).

For females at age 40-50 days post hatching (n = 8), for 14 days we broadcasted a canary song (e.g., Canary song A) immediately

followed by a chatter call (4 per m) followed by a different canary song (e.g., Canary song B) followed by a dove coo. The stimulus

pairs were played for 30min twice daily as above. Prior to tissue extraction at 14 days, females were exposed to 30m of experimental

playbacks of either Chatter-paired canary song only (4 songs per min) or Control-paired canary song only (4 songs per min). Further-

more, we used distinct canary songs, dove coos, and cowbird chatters for two groups such that one group was exposed to Canary A

and B pairings (n = 4 each for each group) and the other group heard different canary songs (i.e., Canary C and D) paired with a

different chatter and coo respectively.

Song analysis
To analyze the bioacoustic distances [e.g., 19] between the playback canary song and the juvenile male cowbird’s developing songs,

we recorded each subject in their home cage and sound proof chamber for �60 min. We obtained recordings for the analyses from

n = 3 Chatter-treatment males and n = 4 Control-treatment males. For each recording, we created a spectrogram of each male’s

vocalizations using Raven Pro, version 1.5 [20], by applying discrete Fourier transforms calculated using a Hann window of 235 sam-

ples with 50% overlap and 256 frequency bins. We then subsampled each recording to generate the spectrogram of n = 5 distinct

song-like bouts from eachmale to capture the diversity of their vocalizations. We also generated the spectrogram for the canary song

used in the playbacks.

Raven Pro [20] includes a sound correlation feature that contrasts two sounds simultaneously and computes a similarity score,

based on either their waveforms or their spectrograms. This technique finds the best correlation coefficient by sliding one spectro-

gram past another so that different time lags are tested. For each possible time lag the correlation coefficient is calculated, and the

highest coefficient is retained as the response metric. Here we calculated spectrogram correlation coefficients between each male’s

song bouts and its respective playback canary song, yielding n = 35 data points across n = 7 individuals. Finally, to assess the bio-

acoustic features in which Chatter versus Control juvenile male songs differed, we used Raven Pro to collect bandwidth, duration,

and average entropy data on each of the 5 songs per subjects.

RNA-sequencing
After the experimental playback (30 min), subjects were immediately sacrificed via decapitation and the right hemisphere’s auditory

forebrain was extracted with a dental trowel (as in [28]). The tissues were placed in 250 mL of Tri-Reagent (Molecular Research Com-

pany) and then immediately homogenized, followed by RNA extraction following themanufacturer’s protocol. The total RNAwas then

DNase treated and purified (Promega), followed by cleanupwith QIAGENRNeasy (Valencia, CA, USA)mini kit.We assessed the qual-

ity of purified RNA on a Bioanalyzer (Agilent, Wilmington, DE, USA) (RIN > 7.0). All library preparations and sequencing were per-

formed at the University of Illinois at Urbana-Champaign Roy J. Carver Biotechnology Center. A library for each sample was prepared

with an Illumina TruSeq Stranded RNA sample prep kit. Libraries from each experiment (males and females) were pooled separately,

quantitated by qPCR, and the pools were sequenced on two lanes of an Illumina HiSeq 4000 (preparedwith aHiSeq 4000 sequencing

kit version 1), producing single-end 100 bp reads; resulting in �27 million reads per individual in males and �31 million reads for

females.

Reference-guided genome assembly
Lacking a reference genome for the brown-headed cowbird, we created a reference-guided genome assembly. Briefly, we ex-

tracted DNA from liver and muscle tissue of a female brown-headed cowbird (cataloged at the Museum of Southwestern Biology

MSB:Bird:39518) and performed paired-end (200 bp) whole-genome sequencing on one lane of HiSeq (2500) at the Duke Genome

Center. We then removed Illumina adapters from reads with Trim Galore! v0.3.7 (http://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/) which incorporates Cutadapt v1.7.1 [61]. Following the ‘‘pseudo-it’’ pipeline (https://github.com/

bricesarver/pseudo-it), we aligned whole-genome DNA reads to the closest phylogenetically related species whose reference

genome was publicly available at the time, the white-throated sparrow (Zonotrichia albicollis) [62] with BWA-mem [57]. We then

identified cowbird SNPs and inserted into the sparrow reference genome with the Genome Analysis Toolkit (UnifiedGenotyper)

[58]. This was followed by a second iteration of alignment and inserting SNPs, resulting in the annotated cowbird reference-guided

genome.
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Differential expression and GO analysis
We removed Illumina adapters from RNaseq reads with Trim Galore! v0.3.7 (as above). We aligned the reads to the reference-guided

assembly with HiSat2 [55] and quantified read counts with HTSeq-count [56]. After removing geneswith low expression (< 1 count per

million in at least 3 subjects), we normalized for read-depth and analyzed for differential expression with DEseq2 (Tables S1 and S2)

[54]. We then performed ranked-based Gene Ontology (GO) analysis with adaptive clustering [35], following the ‘‘GO_MWU’’ pipeline

(https://github.com/z0on/GO_MWU). We ranked our gene list by negative decimal logarithms of the raw (uncorrected) p value for

each gene from the differential expression analyses. We multiplied by �1 if the gene was downregulated to indicate directionality.

We used the gene ontology of the chicken and used the default for cutTreeHeight (0.25) for merging GO term clusters.

QUANTIFICATION AND STATISTICAL ANALYSIS

We analyzed the correlation of juvenile male songs to canary and bioacoustic features using a linear mixed model in R (lme4), with

treatment (Chatter versus Control) as the predictor and male subject identity as the random effect.

For differential expression tests we used DEseq2, which employs the Wald test to calculate p values between pairwise compar-

isons [54]. DEseq2 is generally conservative in classifying differentially expressed genes [63], therefore, we considered genes differ-

entially expressed if the adjusted p value (Benjamini & Hochberg false discovery rate) was < 0.10 [54].

To test for enriched GO terms, we determined whether genes were significantly located near the top of the ranked gene list, versus

spread evenly throughout with the Mann-Whitney U test. We presented significantly enriched GO term clusters that were adjusted

p value < 0.001.

DATA AND CODE AVAILABILITY

The raw RNA-seq data reported in this paper are available at NCBI SRA BioProject: PRJNA565489.
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