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Abstract

A positioning, navigation, and timing (PNT) signal can be used to estimate a user’s po-

sition at an identified time. A global navigation satellite system (GNSS) uses the PNT

signal to provide satellite-based navigation. Advanced receivers can track multiple GNSS

constellations simultaneously. In order to have a robust and accurate solution, a user needs

to detect any faulty measurements and data, and identify which satellite provided them so

that faulty satellite can be excluded from a GNSS solution. Differencing techniques, such

as time-differenced carrier phase (TDCP), provide for error reduction. The random sample

consensus (RANSAC) method allows for the smoothing of data, even when there are a lot of

gross errors present in the data set. The residuals from RANSAC and TDCP were studied

to determine if they can be used to detect and identify error sources. A downsampling and

thresholding method was able to identify first-order biases with slopes on the order of 10−6

within minutes, while biases with slopes on the order of 10−7 were identified on the order

of one hour. The residuals from RANSAC and TDCP were ultimately able to detect and

identify error sources.
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Chapter 1

Introduction

A positioning, navigation, and timing (PNT) radio signal can be used to estimate a user’s

navigation solution. A PNT receiver processes the transmitter’s signal to extract ranging

measurements and other parameters of interest, which are used to compute a user’s position

and/or clock solution.29

The general term for satellite-based navigation systems is global navigation satellite sys-

tem (GNSS). In the United States, our primary GNSS is Global Positioning System (GPS).

It was designed for PNT of aircraft and other types of vehicles. Additionally, GPS is critical

in less-obvious uses, such as banking, telecommunications, weather, seismology, power syn-

chronization, and atmospheric research.23 The need for accurate civilian GPS service was

addressed by President Clinton as early as 2000.10 The problems with GPS accuracy, avail-

ability, integrity, and reliability were identified at the Presidential level as early as 2004.7

The impacts of degraded GPS continue to affect all levels of national security, as identi-

fied in multiple national strategy documents that are applicable at the time this thesis was

authored.43,45,46 Other GNSS systems around the world include:24

� BeiDou Navigation Satellite System (BDS), owned by China

� Galileo, owned by the European Union



� Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), owned by the Rus-

sian Federation

The Indian Regional Navigation Satellite System (IRNSS)/Navigation with Indian Constella-

tion (NavIC) (owned by the Government of India) and Quasi-Zenith Satellite System (QZSS)

(owned by the Government of Japan) operate regionally over India and Japan, respectively,

but not globally.24

As of 2019, there were over 120 GNSS satellites worldwide.51 The United States’ GPS

transmits signals at two frequencies (L1 = 1575.42 MHz and L2 = 1227.6 MHz, or 154 and

120 times the internal clock frequency of 10.23 MHz, respectively).32,33,44,52 Each signal is

encoded by mod-2 addition (can also be considered to be a logical “exclusive or” or XOR)

of a pseudorandom noise (PRN) ranging code and navigation data.33 The L1 signal has two

codes in quadrature: a coarse/acquisition (CA) and a precision (P) code.32 The P -code also

has an anti-spoofing mode that is reserved for military use.32 The L2 signal provides a more

accurate timing signal using the L2 civil-moderate (CM) and L2 civil-long (CL) codes.32

The L5 signal is the newest signal that has a faster acquisition time and provides increased

accuracy by implementing a new ranging signal, synchronization, and civil navigation data.33

To acquire signals from the satellites, receivers use the predicted position calculated with

navigation data.29 Receivers use a locally-generated copy of the code to determine the time

of reception. Based on the fact that the signal travels at a known speed (the speed of light),

receivers are able to calculate the distance between the transmitter and receiver.29 Two

satellites (S1 and S2) can be used to calculate user position (U) in the two-dimensional case,

as illustrated in Figure 1.1.57

There are two possible points that result from the calculation with S1 and S2; the closer

of the two points is defaulted to being the correct point.29 A third satellite is needed to

calculate user position in the three-dimensional case.29 All of the calculations assume that

the clocks on the transmitter and receiver are perfectly synchronized; a fourth satellite is
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Figure 1.1: Finding two positions O in two-dimensional space using range from two
satellites

needed to resolve the difference in satellite and user timing in the three-dimensional case.29,57

At any given time, a user in the United States can expect to have six to eight GPS satellites

within line of sight.16

Advanced receivers can track multiple GNSS constellations simultaneously.66 All of these

signals can be integrated to increase the accuracy and reliability of PNT with a minimal

increase in size, weight, and power (SWaP); and cost.66 Since more GNSS constellations can

be observed, there is greater redundancy in satellite signals. Integrating and comparing data

from different GNSS allows for the identification of errors.11

In order to have a robust and accurate solution, a user needs to detect and identify any

faulty measurements and data, so that faulty satellite(s) can be excluded from a GNSS solu-

tion.66 For example, multipath is considered an error source for GNSS ranging measurement.

However, if a reflected signal is received instead of the direct line of sight signal, it is con-

sidered a faulty measurement. Another example is error in satellite clock and orbit models:

if the broadcast satellite model has an error that drifts beyond acceptable tolerance, the

satellite must be identified and detected. Satellite faults can be observed in measurement

residuals.11,60,66

Some error sources can be reduced via differencing. For example, time-differenced carrier

phase (TDCP) can reduce some of the biases in the solution calculations by differencing
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successive carrier phase measurements.66 Additionally, methods such as random sample con-

sensus (RANSAC) can be used with multi-GNSS receivers to detect and remove bias in

TDCP measurements.66 The two research questions for this thesis are:

1. Can residuals from RANSAC and TDCP be used to detect and identify

error sources?

2. If so, what types of errors can it detect?

Chapter 2 will review the literature and concepts used for this research. Chapter 3 will

summarize the analysis methodology. Chapter 4 will summarize the analysis results. Finally,

Chapter 5 will summarize the conclusions and recommendations.
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Chapter 2

Literature Review

2.1 The Measurement Equation

The general measurement equation of a GNSS navigation system is given by Equa-

tion 2.1.67 The terms in Equation 2.1 are defined in Table 2.1.67

z = Hx+ ϵ+ f (2.1)

Term Definition
z Observed position measurements
H Geometric matrix
x True state
ϵ Nominal errors
f Faults

Table 2.1: Definition of terms in Equation 2.1

The nominal errors ϵ are errors that can be modeled. The faults f include biases in z

and/or H, that are not captured by ϵ.



2.2 Sources of Error

Previous work has identified six nominal sources of GPS carrier phase error ϵ in calcu-
lating user position:50,56,67

1. Ionospheric delay

2. Tropospheric delay

3. Noise

4. Satellite orbit prediction

5. Inter-system bias

6. Signal multipath

Significant variations in electron density in the ionosphere result in a contribution to

ranging errors.61 Delays in ranging code and change of carrier phase lead to ranging er-

rors, which can aggregate as trends.29 The ionospheric delay is frequency-dependent, so a

dual-frequency receiver can be used to cancel out this error; however, the process magnifies

any other measurement errors present in the solution.29 If using a single-frequency measure-

ment, the ionospheric delay may contribute anywhere from 9.8 m to 19.6 m to the overall

error.44 Similarly, tropospheric delay can increase ranging errors up to 2.4 m if they are not

corrected with a model.29,38,58 Ionospheric models are able to correct about 50% to 70% of

the ionospheric error, while tropospheric models can correct over 90% of the tropospheric

error.29 Both types of atmospheric effects can be modeled as biases or first-order deviations

in TDCP.34

Different sources of noise caused by other gradients can further contribute to error.66

Thermal noise is the dominant source of noise, and is evaluated with the carrier-to-noise ratio

(C/N0).
29 The C/N0 is affected by the elevation angle between the satellite and the user, since

the signal interacts with more of the atmosphere at low elevation angles of 15◦ or lower.29

The low elevation angle can lead to error contributions on the order of 10 m.29 Physical
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environmental factors (e.g., thermal noise) can be modeled as a random walk process, while

non-stationary noise can be modeled as Gauss-Markov processes.62,68

Errors in satellite orbit prediction (caused by inconsistent data, spoofing, drifts, etc.) can

result in large biases in the user positioning solution, as illustrated in Figure 2.1. Between

2008 and 2014, the average nominal error in orbit prediction for GPS satellites was 52 cm.29

Faults in satellite cock or orbit can be significantly greater. For example, on April 1, 2014,

GLONASS satellites transmitted incorrect broadcast messages that resulted in errors on the

order of 200 km.3 The erroneous positioning data was likely caused by a “bad” software

update.3 A sudden change in the prediction model would appear as a bias or first-order

deviation in TDCP.34

Figure 2.1: Faulty orbital model leading to orbital error

Inter-system bias is caused by timing differences between different GNSS constellations.56

Differencing methods can be used to reduce this error, and are further described in Sec-

tion 2.3.

The broadcast signal from the GPS satellites can be reflected or diffracted just like any

other type of electromagnetic wave, leading to a GNSS ranging error source known as multi-

path.31 Multipath is illustrated in Figure 2.2.54 Since the reflected signal (red dashed line in

Figure 2.2) takes longer to reach the antenna, the range calculation produces an erroneous

value (blue dot at the end of the dotted line in Figure 2.2).31 Statistically, multipath errors

can be modeled as a Gauss-Markov stochastic process.30 Further, the multipath error model

used by an autonomous vehicle in a city will be different than that of a commercial airliner

flying over an ocean. Since multipath error is so highly dependent on the environment, there

7



are not unified models to mitigate it like there are for tropospheric delay.31

Figure 2.2: Antenna receiving a direct path signal and a reflected path signal, leading to
multipath error

2.3 Error Reduction and Time-Differenced Carrier Phase

Differencing techniques provide for error reduction. Single differencing the carrier phase

signal compares the received signal from one satellite to two antennas.20 Single differencing

cancels out the common effects shared by signals from a satellite taking different paths, such

as atmospheric effects like ionospheric delay and tropospheric delay.20 In double differencing,

two single-differenced signals are subtracted from each other.1,59 Double-differencing reduces

errors in satellite orbit prediction, clock drift, and receiver clock bias.20

Using the PRN code to determine user position is a single point positioning (SPP) so-

lution, which provides positioning accuracy on the order of a few meters.5,29 Incorporating

the carrier-phase observations can allow for a position accuracy on the order of centimeters

or less; however, the carrier-phase measurement is ambiguous because the number of inte-

ger multiples of a complete cycle is unknown.5 One of the ambiguity resolution techniques
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is real-time kinematic (RTK), which uses some type of base station from which the mea-

surements are differenced against those from the user.29 The RTK method does not require

hours for the correct solution to converge, but it does require precise estimates of the initial

carrier-phase ambiguity to work effectively.5

Alternatively, instead of differencing a signal received by two antennas, successive carrier

phase measurements are differenced in the time-differenced carrier phase (TDCP) method.59,66

With TDCP, range change can be measured by differencing accumulated Doppler range

(ADR) over time. Using pseudorange instead of ADR leads to a more noisy result by a

factor of about 10.64 With the TDCP method, inter-constellation timing bias and several

other error sources are canceled out, allowing one measurement equation to be used for all

satellites and constellations.66 With more available satellites, the solution would offer high

reliability in near real-time, but would have a higher computational cost.66

Using TDCP brings about two new problems. First, there are more data sources to filter

through to find faulty signals. Second, since several biases are differenced out, biases that

remain close to constant over time may be obfuscated.

2.4 Trajectory Correction

The accuracy of the SPP or TDCP solution is directly related to the accuracy of the

GNSS orbit and clock information used to calculate the solution.40 Models of a satellite’s

motion can be used to compute a reference trajectory which includes satellite ephemeris and

clock estimates.29 A least-squares-fit routine converts the predicted positions (based on the

reference trajectory and the position estimates) into positioning solutions.32

Each of the GPS satellites provides a unique clock, ephemeris, integrity (CEI) data that

is needed to provide a positioning solution.32,33 The CEI data includes information such as

satellite-specific clock correction polynomial parameters, ephemeris parameters, and health
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flags.32,33 These calculations are typically accurate from 5 m to 10 m.28

The International Global Navigation Satellite System Service (IGS) calculates high-

accuracy satellite orbit solutions and provides them to National Aeronautics and Space

Administration (NASA) Crustal Dynamics Data Information System (CDDIS) for archival

in a format called Standard Product #3 (SP3).40 The SP3 format provides satellite orbit

data that is either measured from the broadcast signal, based on an interpolation, or extrap-

olated (or predicted) from an orbit model.27 The IGS orbits are calculated using a weighted

linear combination of solutions from up to eight separate analysis centers.2,26 First, differ-

ences in reference frames are removed from each center’s solution.2 Then, a seven-parameter

Helmert transformation is estimated for each solution to further reduce errors caused by

reference frame misalignment.2

The IGS has three forms of the data: ultra-rapid, rapid, and final.40 The ultra-rapid

data are comprised of fits to observational data for the first half and predicted orbits for

the second half.26 The rapid data are daily solutions that are released approximately 17 hrs

after the end of each day.40 The final data are the most accurate solutions and are weekly

solutions released approximately 13 days after the end of each week.40

A user can use a simple GNSS receiver to collect pseudorange and carrier phase and

post-process the received measurements with corrected satellite position and clock data to

produce a more accurate solution.48 The SP3-corrected data has positional accuracies on the

order of 20 mm,26 which is 500 times more accurate than the accuracy of the CEI data alone.

Therefore, the SP3-corrected data can be used as truth data for comparative analyses.

2.5 Random Sampling Consensus

Traditional methods for fitting models to data (such as the method of least squares)

assume that there are enough “good” values to smooth out any large deviations.17 However,
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this is not always true for some applications, include GNSS. The RANSAC method allows

for finding an error-free subset, even when there are multiple gross errors present in the data

set.17 The general RANSAC method helps identify the inliers θ from a set of N observations

to solve for state vector x, even if there are multiple simultaneous outliers.67

The process was initially developed for image analysis and automated cartography, but

was then applied to generalized model fitting to estimate unknown parameters in data with

numerous outliers to improve fault detection.17,66 The application of RANSAC methods

has been demonstrated in single GNSS constellations,8,49 but due to the limited number of

satellites, there is minimal benefit from applying RANSAC.66 In a multi-GNSS problem,

the use of RANSAC would have a more significant impact.66 RANSAC can also be used to

identify faulty measurements in GNSS.

2.6 Time-Variant Stochastic Statistics

Each GNSS satellite suffers from errors such as multipath, receiver noise, interference,

troposphere error, and ionosphere gradients.14 While TDCP can minimize these errors, there

will be some residuals from each signal.56

The root-mean-square (RMS) residuals between each individual satellite’s TDCP and

calculated truth reference value can be analyzed to identify different types of trends.56,66

There are five main random processes commonly related to GNSS data: Quantization noise,

White noise, Flicker noise, Random walk, and Gauss-Markov process.15,41 Quantization noise

comes from analog to digital conversions.25 Random white noise will have very low autocor-

relation, and can often be modeled using Gaussian distributions with a long-term average of

zero.35,47,63 Flicker noise is a measure of the bias offset.35,47 The random walk errors are “a

random process of uncertain origin, possibly known as a very low-frequency noise term”47

possibly caused by tropospheric delays.35 Gauss-Markov processes are processes that are

11



Table 2.2: Expected log-log slopes of Allan variance for common noise types

Noise type Curve Slope
Quantization noise −1
White noise −1/2
Flicker noise 0
Random walk +1/2
Gauss-Markov process −1/2then+ 1/2

exponentially autocorrelated with time.47

A commonly accepted method for studying the residuals is by using Allan variance.41,47

The Allan variance method was initially used to study frequency stability in clocks and

electronics, but was later applied to navigation systems to identify processes in random drift

errors over time, to characterize inertial errors, and to identify stochastic processes.41,42,65

One advantage of the Allan variance is that it converges for most types of clock noise based

on the resulting slope, as summarized in Table 2.2.19,36,41,50 Additionally, it identifies the

impact of stochastic processes when using different time periods to average the data.19 Time

periods where the Allan variance is low identify averaging periods where the impacts of of

stochastic processes are minimized.19

Kalman filters are often applied to GNSS data to combine different data sources; however,

the Kalman filter requires the inputs to be white noise.41 Instead of assuming that the data

is white noise (or approximates white noise), the Allan variance analysis can be used to

verify the validity of the white noise assumption.41 If there are other stochastic processes

present besides white noise, the Allan variance analysis would be able to identify them and

allow the user to compensate the model accordingly.41

The work in this thesis attempts to identify zeroth- and first-order biases (points and

linear biases), not traditional GNSS anomalies and faults. There are several methods that

can be used to detect these biases. There are three general categories of detection meth-

ods: supervised, semi-supervised, and unsupervised.22 Supervised methods require a labeled
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set of training data of “good” and “bad” data.9 Semi-supervised methods have labels for

only “good” data.9 Unsupervised methods do not require training data, and are the most

applicable to this research.9.

A simple global bias detection method identifies the distance a point is from the k nearest

neighboring data points, and is appropriately named k-nearest-neighbor (k-NN) method.22

The value of k used directly affects the effectiveness of the k-NN method. If k is too low,

there are not enough data points to produce a reliable calculation; if k is too large, the

estimate may be too coarse.22 Typically, k is in the range 10 < k < 50.22 For GNSS bias

detection, the balance of low and high k values is a balance of effectiveness and timeliness.
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Chapter 3

Methodology

3.1 Corrected TDCP Measurements

As illustrated in Figure 3.1, the jth satellite in the kth constellation moves over a time

period from position S(t0) to S(t1). The ith ground antenna/receiver moves from position

U(t0) to U (t1). The unit vector eji identifies the direction from the ground receiver to the

satellite, while Rj
i gives the distance.

Figure 3.1: Overview of satellite and receiver motion

The corrected TDCP measurements from the ith antenna/receiver to the lth channel



on the jth satellite in the kth constellation is described in Equation 3.1.50,66 The terms in

Equation 3.1 are defined in Table 3.1.50,66

ADRj,k,l
i (t1)−ADRj,k,l

i (t0)− corrSV − corrgeo = −eji (t1)∆U+∆bi +∆f j,k,l
i + ϵj,k,li (t) (3.1)

Term Definition
ADR ADR
corrSV Satellite Doppler correction term
corrgeo Geometric correction term

eji Unit vector from the ith antenna/receiver U to the jth satellite S
∆U Displacement of the receiver from time t0 to t1
∆bi Receiver clock bias

∆f j,k,l
i Contribution of faults on the ADR measurement

ϵj,k,li Noise and all remaining residual errors after time differencing

Table 3.1: Definition of terms in Equation 3.1

The residual errors ϵj,k,li are comprised of time-variant sources such as troposphere resid-

uals ∆T j
i , ionosphere residuals ∆Ij,li , inter-system bias ∆βj,k,l, multipath errors ∆M j,k,l

i , and

noise ∆ε
′j,k,l
i .50 These individual components to the overall residual errors can be assumed

to be rapidly changing, but with a combined magnitude of error on the order of millimeters

per second with a one-second differencing.50

The measurement equation described in Equation 2.1 can be reused to account for the

TDCP methodology. Table 2.1 would be redefined to Table 3.2.

Term Definition
z ADR
H Geometric matrix
x TDCP measurements
ϵ Nominal errors
f Faults

Table 3.2: Definition of terms in Equation 2.1 to account for TDCP
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3.2 Correction Terms

The TDCP reflects changes in distances in line of sight. It needs to be corrected with

satellite motion and geometric change between the satellite and user motion directly. The

satellite correction term and the geometric correction term are given by Equation 3.2 and

Equation 3.3, respectively.59

corrSV = Sj(t1) · eji (t1)− Sj(t0) · eji (t0) (3.2)

corrgeo = Ui(t1) · eji (t1)−Ui(t0) · eji (t0) (3.3)

The generalized unit vector eji (t) is defined in Equation 3.4.59

eji (t) =
Sj(t)−Ui(t)∣∣Sj(t)−Ui(t)

∣∣ (3.4)

3.3 Impact of Satellite Clock and Orbit Errors

The distance between the satellite and the antenna/receiver is typically ranges from

6400 km to 67,000 km,32 so the impact of a small satellite position error on eji (t) will be

negligible. Therefore, Equation 3.2 can be rewritten as Equation 3.5. In Equation 3.5,

∆Sj
b(t) · e

j
i (t) represents the satellite position error projected onto the unit vector at the

identified time.

∆corrSV = ∆Sj
b(t1) · e

j
i (t1)−∆Sj

b(t0) · e
j
i (t0) (3.5)

If the satellite clock or orbit model are erroneous, there will also be an additional time-

differenced satellite clock error of ∆βj,k,l
b . This would yield the satellite fault model in

Equation 3.6.

∆f j,k,l
i,SV = ∆βj,k,l

b +
(
∆Sj

b(t1) · e
j
i (t1)−∆Sj

b(t0) · e
j
i (t0)

)
(3.6)
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The term ∆f j,k,l
i,SV is a component of ∆f j,k,l

i from Equation 3.1. The error calculated by

ϵj,k,li (t) is the error in satellite based on truth data. If real-time data is aggregated, there is

no direct estimate of truth ∆U . Using RANSAC, the instantaneous solutions of ∆Û and

∆b̂i can be used to calculate εj,k,li (t) in Equation 3.7.50 Because the instantaneous solutions

include error contributions from other satellites, the εj,k,li (t) error includes contributions from

other satellites too. The statistic characteristics of εj,k,li (t) can be used to determine how

well ∆f j,k,l
i,SV can be observed.

ADRj,k,l
i (t1)− ADRj,k,l

i (t0)− corrSV − corrgeo + eji (t1)∆Û−∆b̂i = ∆f j,k,l
i + εj,k,li (t) (3.7)

3.4 Using RANSAC with Instantaneous Measurements

An estimate of ∆U can be used to observe ∆f j,k,l
i,SV and εj,k,li (t) in this work. The term

∆U can be reliably estimated from RANSAC. RANSAC can be used to identify outliers

in the solution of ∆U . This allows for identification of data channels or satellites that are

providing the outlier data. These data sources can be excluded from the positioning solution

to improve accuracy. To do so, the following algorithm can be applied over κ iterations:67

1. For iteration κ, M measurements are randomly selected as an initial core set s∗κ. Since

there are four unknowns in the TDCP solution, M = 4 in this case. The initial core

set s∗κ is used to solve for the initial core solution x̃κ. If the solution is erroneous, skip

the iteration.

2. Compute the error function Err (zn,Hn, x̃κ). The measurements with an error function

smaller than some threshold γ would be considered inliers.

3. Record the size of the set of indices of all inliers in iteration κ as criterion Cκ.

4. If Cκ is greater than the current maximum Cmax, solve for x̂κ using all the inliers.
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Then, record the following parameters: κ̂ = κ; Cmax = Cκ; x̃κ̂ = x̂κ; x̂κ̂ = x̂κ; sκ̂ = sκ;

and s∗κ̂ = s∗κ.

The error function Err (zn,Hn, x̃κ) from step 2 will follow a 1-degree of freedom Chi

distribution.67 If the error function is less than the selected γ (γ = 2 by default), a fault-free

measurement has a 95% chance of falling into a domain Dκ that is based on x̃κ, assuming

that Dκ is unbiased.67 The measurements that are not included in Dκ are part of the inlier

set. If a large portion of the measurements are fault-free, they will agree with each other

when compared to an unbiased Dκ. With RANSAC, a majority of the measurements are

not required to be fault-free; it only needs at least one fault-free core solution through the

κ iterations to form a valid solution.67 The likelihood of RANSAC failure for different levels

of faulty measurements and the overall effectiveness of the algorithm is further explored in

Zhu et al. 66 .

3.5 Simulated Bias in Satellite Orbit

As described in Section 2.2, the different sources of error would manifest as biases of

different orders in TDCP. As previously mentioned, the atmospheric effects would manifest

as a zeroth-order bias in TDCP.29 The difference between the real-time residuals and the

SP3-corrected residuals may aggregate over time and appear as a first-order bias in TDCP.29

Under normal operations for GPS, the drift is expected be less than 0.006 m/s.44

For a more controlled test, first-order biases of different levels were added to the the

existing data for satellite 14 to simulate a greater drift in satellite orbit. The bias started

20% of the way into the whole data set and increased linearly with a defined slope. The

downsampling and thresholding analysis was re-accomplished on the residuals with added

simulated biased. The following slopes were used: 1 × 10−4, 5 × 10−5, 1 × 10−5, 5 × 10−6,

1× 10−6, 5× 10−7, and 1× 10−7. The smaller slopes represented nominal errors, while the
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larger slopes represented phenomena like faults, broadcast errors, spoofing, etc.

3.6 Downsampling and Thresholding

The SP3-corrected data was divided into “windows” containing the following number of

points in each window: 10, 25, 50, 60, 75, 100, 150, 250. Note that there is one point every

second, so the window size can also be considered temporally (i.e., 10 s, 25 s, 50 s, 60 s,

75 s, 100 s, 150 s, 250 s). The mean of each window was used to downsample the data.

The residuals were not assumed to be independent over time and identically distributed,

nor were they assumed to be Gaussian, so standard deviation would not serve as a valid

metric. One way to evaluate temporal correlation is autocorrelation. Autocorrelation evalu-

ates how closely points are statistically related.55 The autocorrelation of white noise (which

is analogous to an independent and identically distributed continuous functions) would be a

single spike.53 If there was a peak with a finite width in the resulting data, there was some

sort of statistical dependence between the points, thereby validating the assumption that the

residuals were not independent and identically distributed. The peak halfwidth identifies the

time lag in the autocorrelation.6 The time lag may be helpful in determining ideal window

sizes for analysis.

Another method of analyzing time-variant data to identify stochastic processes is the

Allan variance described in Section 2.6. The Allan variance was calculated for satellite 14

and satellite 31 following the process described in Shah et al. 50 .

The initial windows were used to calculate thresholds that was the mean of those down-

sampled window means and three times their RMS.29The number of initial windows selected

were: 3, 5, 10, 15, 20, and 25. Any downsampled window that had an average value that

was more than three times the RMS away from the mean of the initialization period was

flagged as an outlier. Since each combination of initialization period and window size had
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a different number of points, comparing the number of outliers was not a valid comparison.

Instead, the percentage of points identified as outliers was used as the metric for analysis.
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Chapter 4

Results and Analysis

4.1 SP3 Corrections

Two satellites were chosen for initial analysis, since they were in view for the majority

of the flight. The original residuals for satellite 14 and 31 are illustrated in Figure 4.1

and Figure 4.2. Also illustrated on those figures are the residuals with the SP3 corrections

applied and the difference between the two measurements for each satellite. The summary

statistics for the difference between the original and SP3-corrected residuals are summarized

in Table 4.1



Figure 4.1: Comparison of original and SP3-corrected residuals for satellite 14

Figure 4.2: Comparison of original and SP3-corrected residuals for satellite 31
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Table 4.1: Summary statistics of differences between original and SP3-corrected residuals

Satellite Channel Mean Standard Deviation

14
1 2.44× 10−4 6.54× 10−4

2 2.40× 10−4 7.15× 10−4

31
1 −5.05× 10−4 4.08× 10−4

2 −5.03× 10−4 4.41× 10−4

The two channels (L1, L2) in each satellite had approximately equivalent performance,

as summarized in Table 4.1. This makes logical sense, since the signals were following almost

the exact same path from satellite to receiver and were thus subject to the same conditions

along the way. As seen in Figure 4.2, both channels in satellite 31 had a growing bias

between the original measurements and the SP3 corrections. The increasing bias in satellite

31 resulted in a mean value (−5.05 × 10−4 for channel 1 and −5.03 × 10−4 for channel 2)

that has a greater magnitude than that of satellite 14.

4.2 Autocorrelation

Figure 4.3 illustrates the autocorrelation for the residuals from satellite 14. There was a

Figure 4.3: Normalized autocorrelation for satellite 14

peak that did not resemble an impulse function (i.e., there was not a single spike), indicating
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that the residuals were not independent over time. The primary peak in Figure 4.3 is

highlighted in Figure 4.4.

Figure 4.4: Normalized autocorrelation for satellite 14 with primary peak highlighted

The base of the peak was approximately 1800 s indicated there was a statistical de-

pendence in points with a time constant on the scale of several hundred seconds . A time

constant on that scale suggested that the dependence could be related to motion, position,

or orientation (e.g., aircraft flying in a loop that had a 30-min orbit). We hypothesize that

a signal-related autocorrelation would have had a time constant the order of seconds or even

sub-second.

Figure 4.5 illustrates the autocorrelation for the residuals from satellite 31. The primary

and secondary peaks in Figure 4.5 are highlighted in Figure 4.6.
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Figure 4.5: Normalized autocorrelation for satellite 31

Figure 4.6: Normalized autocorrelation for satellite 31 with primary (red) and secondary
(blue) peaks highlighted
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The primary base of the peak of approximately 500 s indicated there was a statistical

dependence in points with a time constant on the scale of several hundred seconds. A time

constant on that scale suggested that the dependence could be related to motion, position,

or orientation (e.g., aircraft flying in a loop that had an 8-min orbit). We hypothesize that

a signal-related autocorrelation would have had a time constant on the order of seconds or

even sub-seconds. The secondary base of the peak was approximately 2000 s (or 33 min),

which is similar to the time constant from satellite 14 of 1800 s (or 30 min). It is likely that

both time constants were identifying the same phenomenon.

The overall shape of the autocorrelation of both satellites was approximately triangu-

lar, which suggested the distribution approximated a Gauss-Markov process. They may be

related to residual errors in the estimated solution or satellite geometry.

4.3 Allan Variance

The relationship between Allan variance (σAV ) and the cluster length (τ) for satellite

14 is illustrated in Figure 4.7. The slope of the best fit line describes the trend, based on

Table 2.2. The first segment had a slope of -0.207 and the second segment had a slope of

0.603. The first slope indicated the presence of a correlated noise process, while the second

slope suggested either white noise or a time-differenced random walk trend. However, based

on the autocorrelation results, there was not pure white noise present. Additionally, since

the initial residuals were time-differenced, the time-differenced random walk was more likely

to be process that was present.

The Allan variance had a minimum value around a time constant of τ = 200 s. There-

fore, to minimize the impact of stochastic processes, the residuals should be averaged at

approximately 200 s intervals.19

There was a distinct pattern in the Allan variance results around a time constant of
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Figure 4.7: Allan variance analysis for satellite 14

τ = 103 s = 1000 s, which was on the same order of magnitude as the 1800 s halfwidth of

the autocorrelation peak of satellite 14. Therefore, the Allan variance analysis was likely

identifying the same effects from the autocorrelation analysis illustrated in Figure 4.4.

The relationship between Allan variance (σAV ) and the cluster length (τ) for satellite 31

is illustrated in Figure 4.8.

The first segment had a slope of -0.218 and the second segment had a slope of 1.057.

The first slope indicates the presence of a correlated noise process, similar to the results

of satellite 14 in Figure 4.7. The second slope also suggests either white noise or a time-

differenced random walk trend.

The Allan variance had a minimum value around a time constant of τ = 400 s. To min-

imize the impact of stochastic processes, the residuals should be averaged at approximately

400 s intervals.19Overall, the Allan variance analysis for satellite 31 agreed with the results

of satellite 14.
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Figure 4.8: Allan variance analysis for satellite 31

4.4 Elevation Angle

The carrier-to-noise ratio C/N0 is affected by the elevation angle between the satellite

and the user, since the signal interacts with more of the atmosphere at low elevation angles of

15◦ or lower.29 The elevation angle for the duration of the flight for satellite 14 is illustrated

in Figure 4.9.

Figure 4.9: Elevation angle of satellite 14
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The elevation angle fell below 15◦ about 5000 s (83 min) into the flight. Since both

channels in satellite 14 had similar results, channel 1 aws used for further analysis of the effect

of elevation angle. The corrected residuals from channel 1 from Figure 4.1 are reproduced

in Figure 4.10 with the addition of a 250-point centered moving average. Figure 4.10 with

an approximation of the moving average line is illustrated in Figure 4.11.

Figure 4.10: Corrected residuals from satellite 14, channel 1 with a 250-point centered
moving average

Figure 4.11: Corrected residuals from satellite 14, channel 1 with a 250-point centered
moving average and approximation of the moving average

There was a noticeable change in the slope around the 5300 s mark, resulting in a
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first-order bias with slope of approximately −2 × 10−6 m/s
s
. Prior to the 5300 s mark, the

moving average appeared to identify a zeroth-order bias (i.e., approximately constant value)

of −6.5 × 10−4, though there was some observable sinusoidal noise. The simultaneity of

the low elevation angle and change in slope of the residuals suggests there may have been

a causal relationship between the two. In an operational case, users would likely disregard

signals from satellites with elevation angles below 15◦.

The elevation angle for the duration of the flight for satellite 31 is illustrated in Fig-

ure 4.12. The elevation angle falls below 15◦ about 7500 s (125 min) into the flight. The

Figure 4.12: Elevation angle of satellite 31

7500 s point also marks the end of the flight, so the low elevation angle did not appear to

significantly affect the overall results for satellite 31.

Since both channels in satellite 31 had similar results, channel 1 was used for further anal-

ysis of the effect of elevation angle. The corrected residuals from channel 1 from Figure 4.2

were reproduced in Figure 4.13 with the addition of a 250-point centered moving average.

Figure 4.13 with an approximation of the moving average line is illustrated in Figure 4.14.
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Figure 4.13: Corrected residuals from satellite 31, channel 1 with a 250-point centered
moving average

Figure 4.14: Corrected residuals from satellite 31, channel 1 with a 250-point centered
moving average and approximation of the moving average
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For the first 2000 s, there is a noticeable drop dip the residuals. The decrease and increase

are both roughly first-order biases with a slope of approximately ∓−2.5×10−4, respectively.

After to the 2000 s mark, the moving average appears to identify a zeroth-order bias (i.e.,

approximately constant value) of −9.2 × 10−4, though there is some observable sinusoidal

noise. Unlike the case with satellite 14, there was sinusoidal noise even when the elevation

angle was above 15◦.

4.5 Autocorrelation of Truncated Data

For a more representative analysis, the residuals from satellite 14 were truncated to 5300 s

(i.e., data from the satellite when it was below an elevation angle of 15◦ were discarded). Fig-

ure 4.15 illustrates the recalculated autocorrelation for the truncated residuals from satellite

14. For comparison, both the original and truncated autocorrelation analyses are illustrated

Figure 4.15: Normalized autocorrelation for truncated satellite 14 residuals

in Figure 4.16.

As seen in Figure 4.16, there was not a distinct wide peak in the truncated autocorrelation

like there was in the original data. The overall triangle distribution of the autocorrelation
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Figure 4.16: Comparison of original residuals and truncated residuals for satellite 14

in Figure 4.15 suggested the truncated residuals better fits a Gaussian distribution, but it

still includes a correlation competent.

For the sake of thoroughness, the residuals for satellite 31 were truncated to 6250 s, which

was when the satellite fell below 20◦. Figure 4.17 illustrates the recalculated autocorrelation

for the truncated residuals from satellite 31. For comparison, both the original and truncated

Figure 4.17: Normalized autocorrelation for truncated satellite 31 residuals

autocorrelation analyses are illustrated in Figure 4.18.

As seen in Figure 4.18, there was not a significant difference between the overall shapes

of the autocorrelation analysis for the original data and truncated data. The similarities in
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Figure 4.18: Comparison of original residuals and truncated residuals for satellite 31

shape verifies that there were no significant impacts on the autocorrelation caused by low

elevation angle for satellite 31.

4.6 Allan Variance Analysis of Truncated Data

Similar to the autocorrelation analysis, the Allan variance analysis was re-accomplished

for satellite 14 truncated to 5300 s. The relationship between Allan variance (σAV ) and the

cluster length (τ) for the truncated residuals from satellite 14 is illustrated in Figure 4.19.

The first segment had a slope of -0.285 and the second segment had a slope of 1.896.

The first slope indicated the presence of a Gauss-Markov process. The second slope did not

identify any stochastic processes. The Allan variance had a minimum value around a time

constant of τ = 300 s. To minimize the impact of stochastic processes, the residuals should

be averaged at approximately 300 s intervals.19

Notably, the distinct pattern that was present in Figure 4.7 around τ = 103 s was missing

in Figure 4.19. Therefore, the low elevation angle caused the distinct pattern. Likewise, the

autocorrelation results in Figure 4.15 were also missing the identified spike from Figure 4.3,

validating the previous conclusion that the Allan variance analysis was identifying the same
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Figure 4.19: Allan variance analysis for truncated residuals from satellite 14

phenomenon as as the autocorrelation analysis.

The autocorrelation results in Figure 4.15 suggested the truncated residuals included ran-

dom Gaussian noise. The Allan variance analysis suggested the presence of a correlated noise

process. The truncated residuals may have a mix of Gaussian noise and a Gauss-Markov

process. However, since the time constant was large, the stochastic process could also be

modeled as a random walk process. Time differencing each successive data point would lead

to a Gaussian distribution. If the differencing occurred at a different interval, the result

would be a Gauss-Markov process. Either way, both distributions are Gaussian in nature,

so the assumption that the residuals were independent over time was valid.

Since the measurements had been time-differenced, we did not expect to see time-

correlated noise of measurements. Additionally, errors caused by tropospheric effects were

minimized in the truncated data set. It was more likely that the majority of the errors were

related to aircraft motion, position, orientation, and solution. Errors in ∆Û (from Equa-

tion 3.7) could be correlated over time, which could be responsible for the correlated noise
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components.

The relationship between Allan variance (σAV ) and the cluster length (τ) for the truncated

residuals from satellite 31 is illustrated in Figure 4.20. The first segment had a slope of -0.218

Figure 4.20: Allan variance analysis for truncated residuals from satellite 31

and the second segment had a slope of 0.559. The first slope matched the slope from the

Allan variance analysis for the original data and also suggested the presence of a correlated

noise process. The second slope suggested the presence of a time-differenced random walk

process, similar to the original analysis. The Allan variance had a minimum value around

a time constant of τ = 500 s, versus τ = 400 s for the original analysis. To minimize

the impact of stochastic processes, the residuals should be averaged at approximately 500 s

intervals.19

Overall, the analysis for the truncated data for satellite 31 matched the original analysis.

Additionally, the identified processes in satellite 31 agreed with the results from satellite 14.
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4.7 Downsampling and Thresholding

Residual errors were downsampled to reduce teh impact of error correlation. The SP3-

corrected residuals for satellite 14 were downsampled at various rates (“window sizes”). The

mean and RMS deviation of the first “initialization period” windows were used to establish

thresholds to flag subsequent windows as potential outliers. Note that these outliers are not

necessarily erroneous; rather, they are outlier points that may merit further investigation.

Points were flagged as outliers if they were more than three times the RMS from the mean.

The different combinations of window size and number of initialization periods are illustrated

in Figure 4.21 and Figure 4.22, with the outliers flagged with red circles.
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Figure 4.21: Variation of initialization and window sizes for satellite 14, Part A
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Figure 4.22: Variation of initialization and window sizes for satellite 14, Part B
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Since each combinations of initialization period and window size had a unique number of

data points, counting just the number of flagged outliers was not a representative measure-

ment. Instead, the percentage of total points flagged as outliers was compared to measure

effectiveness, as illustrated in Figure 4.23 and Figure 4.24.

Figure 4.23: Percentage of points identified as outliers versus initialization period

Figure 4.24: Percentage of points identified as outliers versus window size

As seen in Figure 4.23, the percentage of identified outliers increased with a larger initial-

ization period. From the Allan variance analysis, one of the key window sizes identified was

250 s. There were no outliers identified with a window size of 250 s with an initialization
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period of 25 windows, since almost all of the points fell within the initialization period. As

seen in Figure 4.24, there was not significant variation over the different window sizes for

each of the different selected initialization periods. The combination of a window size of

25 s and an initialization period of 25 windows appeared to identify the most outliers. This

translated to a total of 625 s or 10.4 min of total initialization time.

The different combinations of window size and number of initialization periods for satellite

31 are illustrated in Figure 4.25 and Figure 4.26, with the outliers flagged with red circles.
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Figure 4.25: Variation of initialization and window sizes for satellite 31, Part A
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Figure 4.26: Variation of initialization and window sizes for satellite 31, Part B
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SThe percentage of total points flagged as outliers was compared to measure effectiveness,

as illustrated in Figure 4.27 and Figure 4.28.

Figure 4.27: Percentage of points identified as outliers versus initialization period

Figure 4.28: Percentage of points identified as outliers versus window size

As seen in Figure 4.27, the percentage of identified outliers increased with a larger ini-

tialization period. Like with satellite 14, there were no outliers identified when the case of

a window size of 250 s with an initialization period of 25 windows since almost all of the

points fell within the initialization period. As seen in Figure 4.28, there was not significant
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variation over the different window sizes for each of the different selected initialization peri-

ods. The combination of a window size of 25 s and an initialization period of 25 windows

appeared to identify the most outliers. This translated to a total of 625 s or 10.4 min of

total initialization time.

The results in Figure 4.27 and Figure 4.28 agree with the results for satellite 14 from

Figure 4.23 and Figure 4.24.

4.8 Simulated Bias in Satellite Orbit

The difference between the original and SP3-corrected residuals is illustrated in the bot-

tom two plots of both Figure 4.1 and Figure 4.2. There was a slight bias evident in Figure 4.2;

however, for a more controlled test, the simulated first-order biases of different levels were

added to the the existing data for satellite 14 to simulate drift. The following slopes were

used: 1× 10−4, 5× 10−5, 1× 10−5, 5× 10−6, 1× 10−6, 5× 10−7, and 1× 10−7.

A subset of the combinations of bias slope, window size, and initialization period are

illustrated in Figure 4.29 and Figure 4.30. Note that the size of the window is equal to the

time of each cycle (e.g., a window size of 10 means each averaging cycle lasts 10 s). The time

to identify each simulated bias for each combination of initialization period and window size

is summarized in Table 4.2 through Table 4.8.
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Figure 4.29: Variation of added bias, initialization period, and window size for residuals for
satellite 14, Part A
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Figure 4.30: Variation of added bias, initialization period, and window size for residuals for
satellite 14, Part B
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Table 4.2: Time (in s) to identify simulated bias of 1× 10−4

Initialization Window Size (s)
Period (s) 10 25 50 60 75 100 150 250

3 50 75 50 60 75 100 150 250
5 50 50 50 60 75 100 150 250
10 30 50 50 60 75 100 150 250
15 30 50 50 60 75 100 150 250
20 30 50 50 60 75 100 150 250
25 30 25 50 60 75 100 150 250

Table 4.3: Time (in s) to identify simulated bias of 5× 10−5

Initialization Window Size (s)
Period (s) 10 25 50 60 75 100 150 250

3 90 100 100 120 150 100 150 250
5 90 75 100 120 150 100 150 250
10 60 50 100 120 75 100 150 250
15 30 50 100 120 75 100 150 250
20 30 50 100 60 75 100 150 250
25 30 50 50 60 75 100 150 250

Table 4.4: Time (in s) to identify simulated bias of 1× 10−5

Initialization Window Size (s)
Period (s) 10 25 50 60 75 100 150 250

3 270 300 250 240 300 200 300 500
5 270 200 150 180 225 200 300 250
10 140 125 150 180 150 200 300 250
15 110 125 150 180 150 200 150 250
20 110 125 100 120 150 100 150 250
25 100 50 50 60 75 100 150 250
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Table 4.5: Time (in s) to identify simulated bias of 5× 10−6

Initialization Window Size (s)
Period (s) 10 25 50 60 75 100 150 250

3 480 650 300 300 300 300 450 500
5 480 325 250 240 300 300 300 500
10 480 250 250 180 300 300 300 250
15 290 200 250 180 225 200 150 250
20 230 125 100 180 150 100 150 250
25 200 50 50 60 75 100 150 250

Table 4.6: Time (in s) to identify simulated bias of 1× 10−6

Initialization Window Size (s)
Period (s) 10 25 50 60 75 100 150 250

3 1760 2925 1750 1440 1800 1700 1350 1500
5 1670 1200 1250 1260 1275 1200 1200 1500
10 1460 875 1150 1200 1200 1100 450 500
15 1460 875 1100 1140 225 200 450 250
20 1080 875 950 780 225 200 150 250
25 1070 850 750 600 150 200 150 250

Table 4.7: Time (in s) to identify simulated bias of 5× 10−7

Initialization Window Size (s)
Period (s) 10 25 50 60 75 100 150 250

3 4380 4650 3700 3660 3525 2400 4500 4000
5 4160 4050 2600 1440 1500 1400 1800 1500
10 4100 3525 1750 1380 1350 1400 1350 500
15 3900 3375 1350 1380 1350 1300 600 500
20 3860 3250 1250 1260 1200 800 300 500
25 3260 3200 300 1200 825 400 300 250

Table 4.8: Time (in s) to identify simulated bias of 1× 10−7

Initialization Window Size (s)
Period (s) 10 25 50 60 75 100 150 250

3 Not identified Not identified 4650 4200 4575 5400 5100 5250
5 Not identified 4700 4650 4020 4050 5000 4800 4500
10 4760 4600 4150 3960 3975 4500 4050 3250
15 4690 4125 4080 3960 3975 4000 3300 2000
20 4600 4125 3900 3900 3975 3200 2550 750
25 4550 4125 3900 3660 3600 2700 1800 250
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The thresholds were able to flag biased data points with varying levels of effectiveness.

For the larger bias slopes (1×10−4, 5×10−5, and 1×10−5), the biases were identified quickly

(less than 500 s, or 8.3 min). For the larger bias slopes, the shorter initialization periods

and smaller window sizes identified the bias faster than the larger initialization periods and

larger window sizes. Typically, the larger initialization periods and window sizes were able to

identify the bias in one or two cycles; however, each of those cycles was longer than the few

cycles needed for the shorter initialization periods and smaller window sizes. Conversely, for

the smaller bias slopes (1×10−6, 5×10−7, 1×10−7), the combination of longer initialization

periods and larger window sizes was faster at identifying the bias. For the bias slope of

5× 10−6 all combinations of initialization period and window size were similarly effective at

identifying the simulated bias.

The moving average of the residuals from Figure 4.11 identified a first-order bias with

a slope of −2 × 10−6 m/s
s
. In most of the cases illustrated in Figure 4.21 and Figure 4.22,

the deviation was identified. For a bias with a slope of −2 × 10−6 m/s
s
, most combinations

of initialization period and window size would effectively identify the bias. The longer ini-

tialization periods and larger window sizes may slightly outperform the shorter initialization

periods and smaller window sizes.

A subset of the combinations of bias slope, window size, and initialization period for

satellite 31 are illustrated in Figure 4.31 and Figure 4.32. The downsampling and threshold-

ing results for satellite 31 match those of satellite 14. Like with satellite 14, the larger bias

slopes were more quickly identified by the shorter initialization periods and smaller window

sizes. The smaller bias slopes were more quickly identified by the longer initialization periods

and larger window sizes.
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Figure 4.31: Variation of added bias, initialization period, and window size for residuals for
satellite 31, Part A
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Figure 4.32: Variation of added bias, initialization period, and window size for residuals for
satellite 31, Part B
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Chapter 5

Conclusion

5.1 Detect and Identify Error Sources

The results and analysis for satellite 14 and satellite 31 were presented in Section 4.

The results and analysis for satellite 31 matched those from satellite 14, demonstrating

repeatability of the methodology. The residuals from RANSAC and TDCP were able to

detect and identify a variety of error sources. The downsampling and thresholding method

was able to identify zeroth-order deviations. Clusters of deviations were able to identify

first-order deviations with slopes on the orders of magnitude of 10−4 down to 10−7 after

seconds (for larger bias slopes) or hours (for smaller bias slopes). The autocorrelation and

Allan variance analysis were not good indicators of initialization period and window size.

Instead, a user should select combinations of initialization periods and window sizes based

on the magnitude of deviations they are looking to discover. Additionally, detection should

not be limited to just one solution methodology; instead, this method should be used in

conjunction with other detection methods.

The multipath errors manifested as random noise. The correlated noise likely resulted

from a combination of the ionospheric delays, tropospheric delays, and errors in the esti-



mation of the velocity solution. Additionally, inter-system timing biases could have lead to

further deviations. The zeroth-order and larger deviations could have been caused by errors

in satellite orbit prediction and multipath. The first-order deviations and smaller deviations

could have been caused by ionospheric and tropospheric delays.

Autocorrelation analysis and Allan variance analysis identified other underlying proper-

ties of the data, such as an autocorrelated feature with a time constant around 1000 s to

1800 s. However, after residuals from low satellite angles were removed, the autocorrelation

suggested the residuals were randomly distributed. The Allan variance analysis of the trun-

cated data suggested the presence of a correlated noise process. Therefore, the assumption

that the residuals were independent with time was valid.

5.2 Recommendations for Future Work

Once multi-GNSS navigation is feasible, the next step would be to compare it to other

sources of PNT data. Different uses of PNT information have different requirements for

precision, so PNT information does not necessarily have to come from a high-accuracy timing

signal. Instead of a GPS signal, waves from other parts of the spectrum (e.g., acoustic,

ultrasonic, visible light, radio signals, magnetic waves, cell phone signals) can be used to

determine location using time of arrival (TOA), angle of arrival (AOA), time difference

of arrival (TDOA), or time of flight (TOF) calculations.4,12,13 Pedestrian dead reckoning

uses an inertial navigation unit (INU) to keep track of changes in position from a known

starting point.4,13 The signals from from multiple known Wi-Fi routers can use relative signal

strength (RSS) to determine location.4,13,39

If the area is well mapped, then these signals of opportunity can be correlated to the

map to further increase PNT confidence anywhere from 45% to 75%.37 All of these indicators

can be used individually or in parallel to increase the confidence in all-source navigation.18
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Instead of comparing different GNSS constellations to each other, different PNT technologies

can be compared to each other. See Tariq, et al.4 for a more detailed breakdown of each of

these technologies.

The operational effectiveness of implementing the multi-GNSS navigation corrections

should be studied in realistic settings. While ground and flight tests in operationally rel-

evant environments would be preferred, the use of modeling and simulation tools may be

a sufficient alternative. The Air Force Research Lab’s Sensors Directorate (AFRL/RY),

Aerospace Systems Directorate (AFRL/RQ), or Space Vehicles Directorate (AFRL/RV) may

be well-positioned to undertake such an analysis.

Lastly, the methods described here can be applied to other areas for error detection. Most

time-series signals can be monitored for consistency. Other approaches rely on machine-

learning algorithms to identify errors in data sets.21

55



References

[1] BA Kumar Babu. Method and system for resolving double difference GPS carrier phase
integer ambiguity utilizing decentralized Kalman filters, Sep 1995. US Patent 5,451,964.

[2] Gerhard Beutler, Jan Kouba, and Tim Springer. Combining the orbits of the IGS
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