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ABSTRACT 
 

Uncovering the diversity and function of fungi associated with the fungivorous 
millipede, Brachycybe lecontii 

 
Angie M. Macias 

 
Brachycybe (Wood) is a genus of fungivorous millipedes. To date, the fungal associates 
of these millipedes have never been characterized. In an attempt to resolve these 
relationships, culture-based approaches combined with DNA barcode sequencing were 
used. Sampling of 313 individuals collected from three of four B. lecontii clades and 20 
sites across seven states uncovered at least 183 genera in 40 orders from four fungal 
phyla. At least seven putative new species were recovered in this study, despite the use 
of more classical culture-based approaches. Three of these fungi were phylogenetically 
resolved using ITS + LSU and include two new species, aff. Fonsecaea sp., Mortierella 
aff. ambigua, and a new genus related to Apophysomyces. Overall, the results of this 
study highlight the vast amount of undescribed fungal biodiversity associated with 
millipedes. Twelve fungal genera from nine orders showed high connectivity across the 
entire B. lecontii-associated fungal network, indicating a central role for these fungi in 
their association with these millipedes. These twelve include the two putative new 
species described above. The ecology of these and other fungal associates were also 
explored, using fungal cohort pairings and entomopathogenicity trials. Over 40% of all 
fungal pairings resulted in competitive interactions, a majority of which involved 
inhibition or overgrowth by fungi in the Hypocreales and Polyporales, respectively. The 
abundance of these competitive interactions in these two orders indicate differing 
ecological strategies. Hypocreales used chemical warfare to competitively exclude other 
fungi, while Polyporales physically overgrew their competitors. Mucoromycotan fungi 
used a similar strategy to the Polyporales. Results of a series of entomopathogenicity 
trials indicated that B. lecontii was less susceptible to entomopathogenic Hypocreales 
than an insect model (Galleria mellonella), even though these fungi are known to attack 
several classes of arthropods. Furthermore, the absence of a negative interaction 
between B. lecontii and entomopathogenic Hypocreales may indicate a beneficial 
relationship. When challenged with Polyporales, B. lecontii exhibited high mortality, 
while G. mellonella was unaffected. This stands in sharp contrast to previous casual 
observations of the feeding behavior of B. lecontii. Recent discoveries of previously 
overlooked fungal diversity have been groundbreaking and hint at substantial cryptic 
fungal biodiversity across the globe. The 200-300 million-year-old association between 
fungi and the Colobognatha, which includes Brachycybe lecontii, provides an ideal 
system to uncover biodiversity and examine function of these fungi in a highly 
understudied and ancient association. 
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CHAPTER 1: REVIEW OF LITERATURE 
 
 

Millipede evolution, biology, and ecology 
 

Millipedes (Arthropoda: Myriapoda: Diplopoda) are non-insect arthropods with 

many body segments, and two pairs of legs per body segment. Other morphological 

characteristics include short elbowed antennae, a single fused maxilla, and large 

mandibles (Hopkin and Read 1992). The earliest fossil evidence of millipedes consists 

of trace fossils from the Ordovician, though the first body fossil, Pneumodesmus 

newmanii, dates to the Silurian (Wilson and Anderson 2004). This millipede fossil is also 

the earliest record of air-breathing in any animal. However, a recent molecular clock 

study of the evolution of air-breathing places the divergence of subphylum Myriapoda 

(containing millipedes and centipedes) at 554 MYA, in the mid- to late Cambrian 

(Lozano-Fernandez et al. 2016), although the reliability of molecular clock assumptions 

becomes questionable in deep phylogenetic time. 

Millipedes are a relatively diverse group of animals, with approximately 12,000 

millipede species described to date, in 16 orders and 140 families (Shear 2011). They 

are generally solitary animals, interacting with others only to reproduce. Millipede 

reproductive organs are located near the head, and males clasp the female with their 

legs while copulating. Some cases of geographic or complete parthenogenesis have 

been reported (Pinheiro et al. 2009). Females typically lay their eggs in an underground 

brooding chamber constructed of frass, soil, and decayed plant material (Hopkin and 

Read 1992). Eggs are abandoned after laying, except in a few rare cases of parental 

care (Kudo et al. 2009, 2011). 
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The smallest known millipede is 2 millimeters long, while the largest can reach 35 

centimeters (Hopkin and Read 1992). The majority are detritivores, feeding on dead and 

decaying plant material and animal waste on the forest floor, though observations or 

hypotheses of herbivory (Marek et al. 2012), fungivory (Brewer et al. 2012, Marek et al. 

2012), and predation (Srivastava and Srivastava 1967) exist. Detritivorous millipedes 

play a crucial role in nutrient cycling, particularly in nutrient-poor areas (Mattson 2012, 

Lawrence and Samways 2003, Bonkowski et al. 1998). Nearly all millipedes are 

burrowers that live underground or inside wet, rotting substrate, and as such, have poor 

to non-existent vision (Manton 1961). The exoskeleton of millipedes lacks a waxy 

cuticle, so they must stay in damp environments to maintain body moisture (Cloudsley-

Thompson 1950). 

The only defenses millipedes possess are curling into a spiral to protect head 

and legs, and chemical defense through a wide variety of compounds secreted from 

repugnatorial glands along the body. It is believed that all millipedes synthesize these 

compounds themselves, but it is possible that some may sequester compounds from 

fungi (Shear 2015). These compounds include cyanogenics, terpenes, alkaloids, and 

phenols (Shear 2015). Defensive compounds may also have antibacterial (Williams and 

Singh 1997) and antifungal (Roncadori et al. 1985) properties, in addition to warding off 

vertebrate and arthropod predators, but some parasites use millipede secretions to 

home in on suitable hosts (Hash et al. 2017). Capuchin monkeys and other primates 

seek out millipedes to rub onto their bodies to repel insect pests like mosquitos 

(Valderrama et al. 2000). 

Millipedes are regularly reported in association with fungi, likely due to their 
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detritivorous habit. Most records of fungal-millipede interactions are cases where the 

millipede occasionally grazes on fungi in the environment, or where a parasitic fungus is 

attacking the millipede (Lilleskov and Bruns 2005, Bultman and Mathews 1996, Hodge 

et al. 2017). Several species of specialist ectoparasitic fungi in the Laboulbeniales have 

been recorded from millipedes (Santamaria et al 2014, Enghoff and Santamaria 2015). 

In the millipede pet trade, fungal infection due to poor husbandry is a widespread issue, 

especially of Archispirostreptus gigas (McMonigle 2012). Opportunistic saprotrophs may 

take advantage of weakened millipedes, but true entomopathogenic fungal attack on 

healthy animals is uncommon in the literature (Brito 1994, Chitty 2006). At least two 

species of trichomycetes, obligate arthropod gut-associated fungi, have been reported 

from millipedes (Wright 1979). 

 
 

Introduction to Brachycybe 
 

Brachycybe (Wood) is a genus of millipedes in the family Andrognathidae 

(Diplopoda: Platydesmida) with eight described species and two awaiting description 

(Brewer et al. 2012). In the United States, there are two species in the Appalachian 

Mountains and three (plus two undescribed) in northern California. The remaining three 

species are in China, Taiwan, Japan, and South Korea (Brewer et al. 2012). 

Interestingly, the two species in the eastern US (B. petasata and B. lecontii) are most 

distantly related to each other, with their closest relatives living in California and Japan, 

respectively (Brewer et al. 2012). This phylogenetic evidence indicates that the genus 

likely originated in the California mountains, and expanded its range at least twice into 

eastern North America, and at least once into Asia (Brewer et al. 2012). 
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Brachycybe are small millipedes, with some individuals reaching ~40 mm in 

length (pers. obs.). They are one of the few groups of arthropods that exhibit paternal 

care of their offspring. Evidence from B. nodulosa (Kudo et al. 2011) indicates that 

females choose to mate with the male with the widest body, which would provide the 

most protection to the eggs and hatchlings. After mating, the female lays her eggs in a 

sticky mound, which the male then wraps his body around, forming a basket. Males 

groom the eggs with their legs and mouthparts until they hatch, though it is unclear 

exactly what role this behavior plays. However, if the males are removed, the eggs 

quickly become overgrown by fungus and may fail to hatch (Kudo et al. 2011, pers. obs. 

in B. lecontii). 

Brachycybe millipedes are most frequently found living on rotten logs and 

branches with visible fungal growth. They are subsocial, forming a pinwheel-like colony 

around crust-forming fungi such as Irpex, Peniophora, and Ceriporia. Individuals of all 

age groups will live in the same colony, and individuals freely move from one colony to 

another (Paul Marek, pers. comm.). They are believed to be fungivorous, as evidenced 

by their diminutive mouthparts (Paul Marek, pers. comm.), their clustering around fungi, 

and the visual damage they leave behind on crust fungi after they move.  

This study will focus on the species Brachycybe lecontii, which ranges from 

eastern Oklahoma to Louisiana, and north to Missouri and mid-West Virginia. B. 

petasata overlaps in range with B. lecontii in the mountains on the border of North 

Carolina and Tennessee, and reaching into northern Georgia (Brewer et al. 2012). The 

mitochondrial genome of B. lecontii has been sequenced (Spruill 2010). This species 

has four distinct evolutionary clades, restricted by geography (Brewer et al. 2012). Their 
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defensive secretions have been identified as the chemical deoxybuzonamine (Shear 

2015), a heterocyclic nitrogen-containing compound related to buzonamine. 

Buzonamine has been determined to have antipredator effects, but has only been 

tested against one ant species (Wood et al. 2000). 

Historically, only one study reported the identity of a crust fungus fed upon by 

Brachycybe, and it was determined to be a species of Peniophora (Gardner 1975). 

More recently, five Polyporalean fungi have been reported directly from B. lecontii, and 

five others were isolated from B. lecontii-associated wood (Kasson et al. 2016). 

 

Animal-fungal symbioses 
 
 A wide variety of animals depend on fungi for food, shelter, and defense. The 

following is an exhaustive summary of known cases of animal-fungal symbioses. 

Eusocial termites and leaf-cutter ants, and subsocial ambrosia beetles are covered in 

the next section. 

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) have a nutritional 

symbiosis with various Ascomycotan fungi (one known exception, see next section). 

These fungi include Fusarium and Geosmithia (Hypocreales), Raffaelea and 

Afroraffaelea (Ophiostomatales), Ambrosiella, Meredithiella, and Phialophoropsis 

(Microascales) (Hulcr and Stelinski 2017). These beetles bore tunnels into dead or 

dying trees, or less commonly, pith, seeds, fruits, and petioles (Mueller et al. 2005). 

These tunnels serve as fertile ground for the beetles’ fungal symbiont, which is 

transported inside a specialized pouch called a mycangium. The beetle inoculates her 

tunnel and soon after fungal growth appears, lays her eggs. The offspring feed on the 
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fungus, and once mature, carry it away in their mycangia to start their own galleries 

(Hulcr and Stelinski 2017). Beetles obtain necessary vitamins, amino acids, and sterols 

from their fungus, in exchange for helping transport the fungus to new substrate 

(Mueller et al. 2005). 

 Sirex noctilio wood wasps (Hymenoptera: Siricidae) have a nutritional symbiosis 

with the fungus Amylostereum areolatum (Basidiomycota: Russulales) (Gaut 1969). 

These wasps oviposit their eggs up to 1.2 cm deep on their host plant, typically a 

member of the Pinaceae (Coutts and Dolezal 1969). These oviposition sites often have 

multiple tunnels, the last of which is injected with fungal arthrospores contained in sacs 

at the base of the female’s ovipositor (Coutts and Dolezal 1969). Amylostereum is able 

to kill off a healthy tree, thus making it suitable for larval development, and in fact, the 

larvae depend on the fungus to condition the wood for their use (Coutts 1969, Coutts 

and Dolezal 1969). Other members of the Siricidae also have mutualistic fungi that 

perform similar roles (Coutts and Dolezal 1969). 

 Ship-timber beetles (Coleoptera: Lymexylidae) have a suspected nutritional 

symbiosis with the fungus Endomyces (Ascomycota: Saccharomycetales) (De Fine 

Licht and Biedermann 2012). Females carry inoculum in a mycangium near the 

ovipositor, and eject the fungus when eggs are laid. The larvae then carry spores into 

the wood as they begin boring (Arnett et al 2002). Like ambrosia beetles, ship-timber 

beetles remove wood dust and frass from their galleries, allowing their symbiotic fungus 

to grow on the tunnel walls (Henry 1967). Gut dissections have indicated that the larvae 

are indeed consuming fungus, though wood fragments were present as well (Henry 

1967, Casari and Teixeira 2011). No studies on the nutritional content of the fungus, nor 
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the question of whether or not the larvae required the fungus to survive, have been 

performed. 

 The marsh periwinkle, Littoraria irrorata (Mollusca: Littorinidae), has a nutritional 

symbiosis with several fungi, most frequently Mycosphaerella (Ascomycota: 

Mycosphaerellales) and Phaeosphaeria (Ascomycota: Pleosporales) (Silliman and 

Newell 2003, Sieg et al. 2013). These snails live on Spartina (Poaceae) in salt marshes, 

where they scrape the grass blades with their radula to create open wounds for fungi to 

colonize. In addition, these snails defecate onto the wounds, providing extra nitrogen for 

fungi, and additionally inoculating the wound with fungal spores present in the feces 

(Silliman and Newell 2003). After the fungus develops on the plant wounds, the snails 

consume it. Young snails require fungi to survive, and will die if left on Spartina with no 

fungal inoculum (Silliman and Newell 2003). 

 The Brazilian stingless bee, Scaptotrigona depilis (Hymenoptera: Apidae), has a 

nutritional symbiosis with the fungus Monascus sp. (Ascomycota: Eurotiales) (Menezes 

et al. 2015). Worker bees provision nest cells with a liquid food mass prior to egg-laying, 

and seal the cell when laying is complete (Menezes et al. 2015). Monascus then grows 

out from the walls of the cell, coating the food mass before the egg hatches. The larva 

then eats the fungus and the remaining food mass (Menezes et al. 2015). Without 

fungus, larval survival was only 8% (Menezes et al. 2015). When building new nests, 

bees carry a piece of nest material with them, suggesting that the bees actively transmit 

a single cultivar of Monascus to new nests (Menezes et al. 2015). 

 Some gall midges (Diptera: Cecidomyiidae: Lasiopterini and Asphondyliini) have 

a nutritional symbiosis with the fungi Macrophoma (Ascomycota: Botryosphaeriales), 



	 8	

Ramichloridium (Ascomycota: Mycosphaerellales), and Aureobasidium (Ascomycota: 

Dothideales) (Rohfritsch 2008). These midges lay an egg on a plant tissue, and within a 

few hours of hatching, the host plant’s cells become activated and a gall begins to form 

(Rohfritsch 2008). In most gall midges, the gall is filled with nutritive plant tissue, but in 

galls caused by the Lasiopterini and Asphondyliini, the gall is lined with fungal tissue. 

The fungus is deposited by the female at the time of egg-laying (Rohfritsch 1997, 2008). 

Females pick up new inoculum by rubbing specialized pouches on old, mature galls 

(Rohfritsch 2008). 

 Carton-inhabiting ants (Hymenoptera: Formicidae) have a structural symbiosis 

with several fungi in the Chaetothyriales, Capnodiales, and Pleosporales (Ascomycota), 

most of which do not yet have names (Voglmayr et al. 2011, Schlick-Steiner et al. 

2008). Each ant species has its own community of structural fungi that help hold the 

nest wall together and allow the ants to climb the vertical wall surface (Voglmayr et al. 

2011). It is not yet understood how the fungi are transmitted from nest to nest. 

 Domatia-inhabiting ants (Hymenoptera: Formicidae) have an unknown type of 

symbiosis with Chaetothyrialean fungi (Ascomycota) (Voglmayr et al. 2011, Defossez et 

al. 2009). Domatia are structures provided by plants as nesting-places for mutualistic 

ants that defend the plant from herbivory (Voglmayr et al. 2011). The fungal 

communities in domatia are much less diverse than those in ant carton, only containing 

one or two species of fungi (Defossez et al. 2009). These fungi are present in a thick, 

uniform, cushiony patch inside the domatium, and are never present without the 

mutualistic ant (Defossez et al. 2009). Parasitic ants living in domatia never had a 

fungus patch (Defossez et al. 2009). In addition, the fungi from domatia never 
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sporulated, suggesting that they may be dependent on the ant for transportation 

(Defossez et al. 2009). Much more remains to be learned about this relationship 

between Chaetothyrialean fungi and their ant partners. 

The arboreal ant Allomerus decemarticulatus (Hymenoptera: Formicidae) uses 

the hyphae of an undescribed fungus to build a trap that captures large insect prey 

(Dejean et al. 2005). These ants require supplemental nitrogen in their diets, and obtain 

it from the trapped prey, while the fungus consumes food material that is bound up in 

the trap. 

 

Basidiomycete Fungi and Sociality in Insects 
 
 In at least three cases of insect-fungal symbioses, the fungal partner is a 

basidiomycete that converts otherwise indigestible plant material into a food source for 

the insect. Access to these recalcitrant materials has allowed these animals to 

specialize and develop communal social structures that otherwise could not be 

supported by their environment. 

Ambrosiophilus is an ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) 

that cultivates the fungus Flavodon ambrosius (Basidiomycota: Polyporales) (Kasson et 

al. 2016). Ambrosia beetles are well-known for their symbiotic association with fungi, but 

the fungal partner has always been reported as a member of the Ascomycota, with the 

exception of the sister genus to Ambrosiophilus, Ambrosiodmus (Li et al. 2015, 

Simmons et al. 2016), which also cultivates F. ambrosius. Compared to Ascomycotan 

ambrosial fungi like Fusarium and Raffaelea, Flavodon is much more aggressive at 

colonizing woody tissue (Kasson et al. 2016). Even when compared to known white-rot 
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fungi, isolates of Flavodon caused significantly more loss of mass and hardness in 

wood tester blocks (Kasson et al. 2016). In nature, this results in a large proportion of 

the recalcitrant nutrients in wood being “claimed” by the beetle and its fungus. As a 

result of these traits, Ambrosiophilus beetles can stay in the same log for more than one 

generation without running out of resources. This freedom to persist allowed 

Ambrosiophilus to develop large, long-lived, communal colonies with multiple 

generations dwelling together, a social habit contrary to nearly all other ambrosia 

beetles (Kasson et al. 2016). 

Another insect, the termite (Blattodea: Termitoidae: Macrotermitinae), has 

developed a symbiosis with fungi that allows it to utilize wood, in addition to other plant 

detritus. Well over 300 species of these widespread insects all cultivate the fungus 

Termitomyces sp. (Basidiomycota: Agaricales: Lyophyllaceae) (Mueller et al. 2005), 

though not all are obligately dependent on it. Termitomyces is able to convert wood and 

decaying plant material brought into the nest by the termites into a concentrated high-

nitrogen, high-carbohydrate form (Mueller et al. 2005). Termites can have colonies of up 

to one million individuals divided into two social castes with many-sub-castes, where 

each individual serves a particular role in the survival of the colony (Abe et al. 2000). 

Access to the nutrients locked away in wood and decaying plant material has allowed 

termites to inhabit a large suite of ecological niches around the world (Abe et al. 2000). 

Across their range, no other animal utilizes wood to the same extent as termites, with 

the aid of Termitomyces, and it is likely that the near-exclusive access termites enjoy 

has allowed them to develop the complex social behaviors seen in the obligately 

mutualistic species (Abe et al. 2000). 
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Leafcutter ants (Hymenoptera: Formicidae: Attini) have also developed a similar 

mutualism with basidiomycete fungi. Members of genera Atta and Acromyrmex are 

obligate mutualists with species-specific strains of Agaricaceae fungi (Mueller et al. 

2005). These ants have some of the most large and complex societies of any animal 

ever recorded, with counts ranging from over 100,000 individuals per colony to several 

million (Schultz and Brady 2008, Murakami et al. 2000, Hölldobler and Wilson 2008). 

Each colony can have up to four social castes, each with their own specialized roles in 

defense, resource-gathering, and offspring care (Mueller et al. 2005). While adult ants 

may supplement their fungus diet with plant sap, the larvae are entirely dependent on 

the fungus for nutrition (Mueller et al. 2005). Because of this mutualism, leaf-cutter ants 

are able to access the incredibly abundant rainforest resource of fresh leaves, and may 

utilize up to 17% of this resource in some ecosystems (Aylward et al. 2012). Access to 

this super-abundant but under-utilized resource likely helped fuel the sophistication and 

complexity seen in leaf-cutter ant societies today (Aylward et al. 2012).  
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CHAPTER 2: IDENTIFYING FUNGAL ASSOCIATES OF THE MILLIPEDE 

BRACHYCYBE LECONTII 

 

ABSTRACT 
 

Brachycybe (Wood) is a genus of millipedes known to be fungivorous, but, to date, their 

fungal associates have never been characterized. In an attempt to resolve these 

relationships, culture-based approaches combined with DNA sequencing were used. 

Sampling of 313 individuals collected from 3 of 4 Brachycybe lecontii clades and 20 

sites across 7 states revealed at least 183 genera in 40 orders from 4 fungal phyla. Of 

the genera found, 40% were recovered only once, and only 13% had 10 or more 

isolates recovered, many of which were found across numerous sampling locations. 

Twelve fungal genera from nine orders showed high connectivity across the whole 

fungal network, indicating a central role for these fungi in their association with B. 

lecontii. In the literature, only a single genus of fungus (Peniophora) has been reported 

in association with Brachycybe, but systematic examination of photos available on 

websites such as Flickr.com indicated that many more types of fungus associate with 

these millipedes. Results of this study do not support the limited previous observations 

of the feeding behavior of B. lecontii — instead, it appears that these millipedes feed on 

a wide variety of fungi, not just Polyporales. At least seven putative new species were 

recovered in the study despite the use of more classical culture-based approaches. 

Overall, the results of this study highlight the vast amount of undescribed fungal 

biodiversity associated with millipedes.   
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INTRODUCTION 
 

 
Millipedes (Arthropoda: Myriapoda: Diplopoda) are non-insect arthropods with 

many body segments, and two pairs of legs per body segment. The first millipede body 

fossil, Pneumodesmus newmanii, dates to the Silurian (420-440 million years ago), and 

presents the earliest evidence for air-breathing in any animal (Wilson and Anderson 

2004). 

Millipedes are a relatively diverse group of animals, with approximately 12,000 

millipede species described to date, in 16 orders and 140 families (Shear 2011). The 

majority are detritivores, feeding on dead and decaying plant material and animal waste 

on the forest floor, though anecdotal evidence supports herbivorous (Marek et al. 2012), 

fungivorous (Brewer et al. 2012, Marek et al. 2012), and carnivorous lifestyles 

(Srivastava and Srivastava 1967). Detritivorous millipedes play a crucial role in nutrient 

cycling, particularly in nutrient-poor areas (Mattson 2012, Lawrence and Samways 

2003, Bonkowski et al. 1998). Nearly all millipedes have a subterranean lifestyle, living 

in decomposing leaf litter, in the soil, or inside wet, rotting wood substrates. 

Millipedes are regularly reported in association with fungi, likely due to their 

detritivorous habit. Most records of fungal-millipede interactions are cases where 

millipedes occasionally graze on fungi in the environment, or where a parasitic fungus is 

attacking the millipede (Lilleskov and Bruns 2005, Bultman and Mathews 1996, Hodge 

et al. 2017). Several species of specialist ectoparasitic fungi in the Laboulbeniales have 

been recorded from millipedes (Santamaria et al. 2014, Enghoff and Santamaria 2015). 

In the millipede pet trade, fungal infection due to poor animal husbandry is a widespread 

issue, especially in the most notable pet species, the giant African millipede 
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(Archispirostreptus gigas) (McMonigle 2012). Opportunistic saprotrophs may take 

advantage of weakened millipedes, but confirmed entomopathogenicity of healthy 

animals is uncommon in the literature (Brito 1994, Chitty 2006). At least two species of 

trichomycetes, obligate arthropod gut-associated fungi, also have been reported from 

millipedes (Wright 1979). 

Brachycybe (Wood) is a genus of millipedes in the family Andrognathidae 

(Diplopoda: Platydesmida) with eight described species and at least two additional new 

species awaiting description (Brewer et al. 2012). In the United States, there are two 

species in the Appalachian Mountains and three (plus two undescribed) in northern 

California. All Brachycybe are small millipedes, with some individuals reaching 4 cm in 

length (pers. obs.). They are one of the few groups of arthropods that exhibit paternal 

care of their offspring (Kudo et al. 2011) (Figure 1). Brachycybe are most frequently 

found living on rotten logs and branches with visible fungal growth (Shelley et al. 2005). 

They exhibit various social behaviors including overlapping adult generations and 

reproductive division of labor. They also form pinwheel-like multigenerational colonies 

around resupinate fungi underneath downed woody substrates (Gardner 1975) (Figure 

1). All members of the millipede subterclass Colobognatha, which includes Brachycybe, 

are believed to be strict fungivores (Gardner 1975), as evidenced by their diminutive 

mouthparts (Paul Marek, pers. comm.) their clustering around fungi, and the visual 

damage (i.e. divots) they leave behind on fungi (Figure 1). 
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FIGURE 1: Brachycybe lecontii behaviors. A: B. lecontii forming a multigenerational 
partial pinwheel around a food source embedded in bark. B: Several adults forming a 
full pinwheel around a fungus on wood. C: Male caring for eggs. D: Male transporting 

eggs to underside of log, after log was flipped. E: Millipede feeding on fungus. F: 
Millipedes sharing a feeding site. Several feeding divots visible. 

 
 

The known geographic range of Brachycybe lecontii extends across 13 states 

from eastern Oklahoma to western South Carolina, south to Louisiana, and north to 

southern West Virginia (Shelley et al. 2005, Brewer et al. 2012). Their range 

encompasses five Level III and nine Level IV Ecoregions (as defined in 2013 report 

from U.S. EPA). The five Level III Ecoregions include: “Ouachita Mountains” (AR, OK), 

“Arkansas Valley” (AR), “Piedmont” (SC), “Blue Ridge” (GA, SC), “Ridge and Valley” 

(VA), and “Central Appalachians” (TN, VA, WV).  The nine Level IV Ecoregions were as 

follows: “Central Mountain Ranges”, “Central Hills, Ridges, and Valleys”, and “Fourche 

Mountains” (“Ouachita Mountains”); “Scattered High Ridges and Mountains” (“Arkansas 

Valley”); “Northern Inner Piedmont” (“Piedmont”); “Southern Crystalline Ridges and 

A C

FDB
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Mountains” (“Blue Ridge”); “Southern Sandstone Ridges” and “Southern Dissected 

Ridges and Knobs” (“Ridge and Valley”); and “Dissected Appalachian Plateau” (“Central 

Appalachians”). Within this known range, five subpopulations have been identified 

(Shelley et al. 2005), four of which were recently validated using sequence data (Brewer 

et al. 2012).  

Historically, only one study reported the identity of a resupinate fungus fed upon 

by Brachycybe, and it was determined to be a species of Peniophora (Russulales) 

(Gardner 1975). More recently, five Polyporalean fungi (Irpex lacteus, Phanerochaete 

sp., Trametopsis cervina, Junghuhnia nitida, and Gloeoporus pannocinctus) have been 

reported directly from B. lecontii, and five other Polyporales were isolated from B. 

lecontii associated wood (Kasson et al. 2016). However, the overwhelming number of 

casual observations in websites such as Arachnoboards.net (2 observations), 

Bugguide.net (6), Flickr.com (3), Instagram.com (6), and iNaturalist.org (3) of 

Brachycybe interacting with various fungi supports a much more diverse fungal 

community than has been formally identified. 

In an attempt to address this knowledge gap, this study aims to identify fungal 

associates of Brachycybe lecontii across its known geographic range using culture-

based approaches. The use of DNA sequencing will permit in-depth examination of 

culturable fungal communities including taxa with diagnostically informative morphology 

as well as morphologically cryptic taxa. 
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MATERIALS AND METHODS 
 
Collection sites and in-field methods 
 
 Millipede collection sites were primarily identified through Brewer et al. 2012 and 

Gardner 1975, and additional sites were also identified. Sampling was targeted to 

collect millipedes from all four B. lecontii clades. Based on previous work by Brewer and 

colleagues (2012), individual sites were expected to contain millipedes from a single 

clade, with no previously reported overlap. In total, 20 sites were examined, with 18 

yielding colonies and individuals, and 2 yielding individuals only. These sites were in 

Arkansas, Georgia, Oklahoma, South Carolina, Tennessee, Virginia, and West Virginia 

(Table 1).  

 

TABLE 1: Brachycybe lecontii collection sites and associated information for each. 

SITE 
NAME 

COLLECTION 
REFERENCES 

MILLIPEDE 
CLADE 

BRIEF DESCRIPTION LEVEL 3 & 4 
ECOREGION† 

AR1 Gardner 1975 4 Mount Magazine 37A 
AR2 None 4 Power Line Elm 36B 
AR3 None 4 Serendipity Trail 36C 
AR4 Brewer et al. 2012  4* Mount Nebo 37A 
AR5 None 4 Lake Ouachita 36B 
AR6 None 4 Charlton Campground 36B 
GA1 Gardner 1975 1 Moccasin Creek 66D 
OK1 Brewer et al. 2012 4 Hodgen 36D 
SC1 Brewer et al. 2012, 

Gardner 1975 
1 Cassidy Bridge 66D 

SC2 Gardner 1975 1 Stumphouse Tunnel 45E  
TN1 Gardner 1975 3 Caryville 69D 
VA1 Brewer et al. 2012, 

Gardner 1975 
3 Shortts Road 69D 

VA2 None 3 Pinnacle 67I 
VA3 Gardner 1975 3 Breaks 69D 
VA4 None 1 Pulaski 67H 
WV1 Brewer et al. 2012, 

Gardner 1975 
3 War 69D 

WV2 None 3 Berwind Lake 69D 
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WV3 None 3 Panther 69D 
WV4 None 3 Cabwaylingo 69D 
WV5 None 3 Chief Logan 69D 
 
*AR4 was expected to have Clade 2 (Brewer et al. 2012) but millipedes collected there 
were determined to be from Clade 4. 
†Ecoregions are defined in Supplemental Table 1. 
  

At each site, decaying logs on the forest floor were overturned until colonies of B. 

lecontii were located. Colonies are defined as groupings of two or more individuals, and 

were typically found on or near resupinate fungi covering the underside of the logs. 

When a suitable colony was found, individuals from single colonies were placed 

together inside 25 ml sterile collection vials, often with a piece of the fungus-colonized 

wood they were observed feeding on, and stored in a cooler until processing. In 

addition, cross-sections of wood from which colonies were collected were taken to 

permit their identification once back in the lab. 

 
In-lab millipede processing & isolate collection 
 
 All millipedes were maintained at 4°C until processed, which typically occurred 

within three days. After surface sterilization in 70% ethanol, individuals were sexed, 

sectioned with a sterilized scalpel, and tail portions preserved in 70% ethanol for 

millipede genotyping in the Marek Lab using custom markers previously described by 

Brewer and colleagues (2012). Gonopods were also preserved from males to permit 

anatomical study in the Marek Lab. The remainder of the millipede was macerated in 

500 μl of sterile distilled water, and 50 μl was spread on glucose yeast extract agar 

(GYEA) amended with streptomycin sulfate and tetracycline hydrochloride antibiotics to 

isolate fungi (Appendix A). Cultures were parafilmed and allowed to grow at room 
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temperature until growth was observed. Each colony-forming unit (CFU) was 

categorized by morphotype, counted, and recorded. One representative of each 

morphotype from each plate was retained and assigned an isolate number. Culture 

plates were retained for up to three weeks to ensure that slow-growing fungi were 

counted and sampled. Depending on how rapidly fungi grew in pure culture, isolates 

were either grown on potato dextrose broth (Appendix A) prior to DNA extraction, or 

mycelium was scraped directly from plates. DNA was extracted from all isolates using a 

modified Wizard kit (Promega, Madison, WI, USA) (Appendix B). For long-term storage, 

isolates were kept on potato dextrose agar slants (PDA, Appendix A) at 4°C.  

 Wood samples were dried at room temperature for up to several weeks 

depending on the size of the sampled section and sanded for visual identification using 

an orbital sander equipped with 220-grit paper. Identifications were made by examining 

anatomical features in cross section with the aid of a dissecting microscope, based on 

descriptions by Panshin and de Zeeuw (1980). 

 
Isolate identification 
 
 All isolates were identified using the universal fungal barcoding gene, the 

ribosomal internal transcribed spacer region (ITS), which includes ITS1, 5.8S, and ITS2 

(Schoch et al. 2012). All primers used in this study were obtained from Integrated DNA 

Technologies (IDT, Coralville, IA, USA). PCR was conducted in 25.5 μL reactions with 

the following reagents: 12.5 μL Bioline PCR Master Mix (Bioline USA Inc, Taunton, MA), 

10 μL sterile distilled water, 1 μL reverse primer (ITS4, 5’-

TCCTCCGCTTATTGATATGC-3’), 1 μL forward primer (ITS5, 5’-
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GGAAGTAAAAGTCGTAACAAGG-3’), and 1 μL fungal DNA (White et al. 1990). 

Reactions were performed on an MJ Research PTC-200 Peltier Thermal Cycler (GMI, 

Ramsey, MN). PCR conditions were as follows: initial denaturation at 95°C for 2 

minutes, 35 cycles of denaturation at 95°C for 30 seconds, annealing at 56°C for 30 

seconds, and elongation at 72°C for 1 minute, and final elongation at 72°C for 7 

minutes.  

 Products were visualized via gel electrophoresis on a 1.5% w/v agarose 

(Amresco, Solon, OH, USA) gel with 0.5% Tris-Borate-EDTA buffer (Amresco, Solon, 

OH, USA). SYBR Gold (Invitrogen, Grand Island, NY, USA) was used as the nucleic 

acid stain, and bands were visualized on a UV transilluminator (Syngene, Frederick, 

MD, USA). PCR products were purified using ExoSap-IT (Affymetrix, Santa Clara, CA). 

Products were Sanger sequenced with the same primers used for PCR (Eurofins, 

Huntsville, AL, USA). Resulting sequences were searched in the NCBI GenBank 

BLASTn database, and identifications recorded for each isolate. 

 
New species identification 
 
 Isolates were considered to be a putative new species (PNS) if three or more 

identical sequences were recovered with identical low percentage (95% or less) 

BLASTn matches. When a PNS was identified, the large subunit of the ribosomal ITS 

region (LSU) was also sequenced using primers LR0R (5’-ACCCGCTGAACTTAGC-3’) 

and LR5 (5’-TCCTGAGGGAAACTTCG-3’) (Vilgalys and Hester 1990). PCR conditions 

were as follows: initial denaturation at 95°C for 2 minutes, 35 cycles of denaturation at 

95°C for 30 seconds, annealing at 51.1°C for 45 seconds, and elongation at 72°C for 90 
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seconds, and final elongation at 72°C for 5 minutes. PCR products were visualized, 

purified, and sequenced as above. The LSU gene was also sequenced for known 

relatives of the PNS (as identified by BLAST matches of the ITS sequence). 

 Putative new species were resolved phylogenetically by constructing an 

ITS+LSU concatenated maximum likelihood (ML) tree for the new species and its 

known relatives based on a combination of BLAST matches and previously published 

literature. MEGA7 (Kumar et al. 2016) was used to align (CLUSTAL-W, Larkin et al. 

2007), select a model for estimating evolutionary distance, and construct an ML tree for 

each PNS. Reference sequences used for each phylogeny are listed in Supplemental 

Tables 2, 3, and 4. 

 
Community and Diversity Analyses 
 
 Community and diversity analyses were used to answer two key questions: 1) 

Are B. lecontii fungal communities stable across millipede clade and/or wood host?; and 

2) What fungal genera are core/central in the Brachycybe fungal food web, regardless 

of clade and/or wood host? 

 Diversity indices were used to provide information about rarity and commonness 

of genera associated with the fungal community of B. lecontii by site. Three indices 

were used: alpha diversity, Shannon’s diversity index, and Shannon’s equitability 

(evenness) index. 

 The effects of B. lecontii clade and wood host on the community structure were 

analyzed by PerMANOVA using the vegan package in R (Oksanen et al. 2017). Tukey's 

HSD (honest significant difference) test was used as a post-hoc test to permit pairwise 
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comparisons of significant dependent variables (i.e., clade and wood host). 

 A co-occurrence network was constructed for fungal isolates obtained from B. 

lecontii based on fungal genus presence/absence data. Betweenness-centrality was 

used to measure relative contribution of each node (single fungal genus) to connectivity 

across the whole network. High betweenness-centrality values are typically associated 

with nodes located in the core of the network, which in this system are defined as fungal 

genera with multiple edges connecting Brachycybe clades and multiple wood hosts. 

Low betweenness-centrality values indicate fungal genera with a more peripheral 

location in the network, with fewer edges connecting clades and substrates (Greenblum 

et al. 2011).  

 To further investigate patterns in the network, network modularity was 

characterized. A module is a group of nodes (i.e. fungal genera) that are highly 

connected within the module with few connections outside the module (Shi et al. 2016). 

Modularity ranges from -1 to1. Positive values indicate the number of edges inside the 

group is greater than that expected by chance. In this study, modules were detected 

using the Louvain algorithm, which aims to determine the optimal number of partitions 

that maximize the modularity index (Blondel et al. 2008). 

 
 

RESULTS 
 
 In total, 313 individuals were collected from 3 of 4 B. lecontii clades, distributed 

among 60 colonies at 20 sites in 7 states. Some sites were not used in the analysis due 

to containing only singletons (VA1, WV3) or being collected under non-standard 

sampling methods (VA4). Colonies were obtained from 10 genera of wood hosts. From 
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these 313 individual millipedes, 5,154 CFUs were counted, and 1,310 isolates retained. 

Of these, 1,002 isolates were resolved to Kingdom Fungi, and 965 to at least genus. 

The remaining 308 isolates did not yield usable DNA templates, possibly due to slow 

growth, contamination, or both, and were excluded from this study. The isolates that 

were included represent a large amount of diversity, including at least 183 genera in 40 

fungal orders from 4 phyla.  

 
Millipede Behavior 
 
 In general, B. lecontii were found in forested areas under downed woody material 

of various sizes. Some individuals were found in leaf litter near logs, and these 

individuals were primarily adult males. Most colonies included 15 or fewer individuals, 

but numerous logs yielded several colonies. Colonies were multi-generational, 

containing a mix of hatchlings, juveniles, adults, and older adults that were several 

years old based on their number of segments. In a few cases, single-sex colonies were 

found, but most colonies contained a mixture of sexes. Our study recovered 102 males 

and 146 females.  

 Most millipedes were engaged in feeding behavior, with their heads buried in 

fungus growing on the log. Some millipedes were feeding alone, but most were in a 

partial or complete pinwheel formation (Figure 1A-B) Multigenerational colonies 

frequently had adults and hatchlings or juveniles sharing a single feeding site (Figure 

1A).  

 Males were observed caring for eggs in close proximity to the main colony, 

particularly if collecting was done in early summer (May-June) (Figure 1C). Males with 
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eggs were not immobile, however, and would transport the eggs to a safe location if the 

log was overturned (Figure 1D). 

 Three sites, WV4, SC1, and AR2, had millipedes that displayed atypical 

behaviors. In WV4, the site as a whole was very moist, and a group of millipedes was 

observed climbing a standing Carpinus caroliniana snag (Figure 2A). The tree was 

covered in moss and had evidence of fungal colonization. The snag was positioned on a 

steep west-facing slope. Millipedes were observed as high as fifteen feet off the ground. 

In SC1, a large fallen Liriodendron log was observed with several hundred millipedes 

gathered on the top of the log (Figure 2B). Conditions at this site were also wet, but the 

log was not flooded. Aside from the exposed location, these millipedes were forming 

typical pinwheel aggregations and feeding on fungal mycelium. In AR2, 10 millipedes 

were found at an extremely arid site, next to a power line clearing without cover or wood 

debris (Figure 2C). These millipedes were a foot off the ground, in a healthy Ulmus 

alatus tree. There were no signs of moisture or fungus on the tree. 

 

 

FIGURE 2: B. lecontii displaying atypical behaviors. A: Colony from site WV4, climbing 
a rotting snag. B: Exposed colony from site SC1, sitting on top of log. C: Colony from 

site AR2, climbing a living tree in an arid site. 
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Morphotype CFU counts 
 
 All colony-forming units on millipede macerate plates were quantified and sorted 

into one of six broad morphological classes: (non-Hypocreales) white filamentous fungi, 

entomopathogenic Hypocreales, dematiaceous yeasts, zygomycetes, miscellaneous 

yeasts, and “Other.” The “Other” class included more than a dozen recognizable 

morphotypes, including Penicillium sp., Acremonium sp., and Pestalotiopsis sp. Many of 

these genera were quantified separately to ensure that they were not overlooked 

beneficial fungi, but were later combined.  

 White filamentous fungi were characterized by white hyphae spread thinly in a 

loose colony with no other outwardly identifiable characteristics. Entomopathogenic 

Hypocreales formed a tight, dense colony of white to yellow hyphae, sometimes stained 

the media red or yellow, or in other cases, formed thin mats that produced crusts of dry 

conidia. Dematiaceous yeasts had slow-growing, heavily melanized colonies that 

frequently formed a raised mound in the center of the colony. Zygomycetes were 

identified by their characteristic sporangia, or by a Mortierella-like morphology (roseate 

growth appressed to the media, garlic odor, rare sporangia). All colonies that appeared 

creamy and non-hyphal were grouped into the miscellaneous yeast category. All other 

morphotypes were placed in the “Other” category. Similar to the ‘Other’ category, 

morphologically unique yeasts were tallied separately to ensure that these fungi were 

not inadvertently overlooked, and later combined. 

 Of the defined morphotypes, miscellaneous yeasts and entomopathogenic 

Hypocreales dominated across all Brachycybe lecontii colonies (18.8% and 17.4% of all 
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CFUs, respectively). Zygomycetes accounted for 7.6% of all CFUs, followed by white 

filamentous fungi (7.4%) and dematiaceous yeasts (6.7%). The “Other” category 

accounted for 41.9% of all CFUs. 

 At the colony level (Figure 3), entomopathogenic Hypocreales were present in 

75% of colonies (mean: 17.2 CFUs, median: 5). Likewise, dematiaceous yeasts were 

present in 75% of colonies (mean: 6.7 CFUs, median: 3). Miscellaneous yeasts were 

present in 66.7% of colonies (mean: 21 CFUs, median: 6.5), followed by 61.7% for 

zygomycetes (mean: 9.1 CFUs, median: 7), and 48.3% for white filamentous fungi 

(mean: 11.4 CFUs, median: 5). The “Other” morphotype was present in all colonies 

(mean: 31.6 CFUs, median: 13). 

 

 

FIGURE 3: Stacked bar chart showing the percentage of CFUs from each colony 
(=individual bar) from each fungal morphotype. Each cluster of bars represents a site, 

and larger boxes indicate which millipede clade the sites are from (Clade 1, 3, 4).  

  

 At the site level (Figure 4), dematiaceous yeasts and the “Other” morphotype 

were recovered from all sites, zygomycetes from 94.1% of sites, entomopathogenic 

Hypocreales from 94.1% of sites, miscellaneous yeasts from 88.2% of sites, and white 
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filamentous fungi from 58.8% of sites.  

 

 

FIGURE 4: Stacked bar chart showing what percentage of CFUs from each site were 
from each fungal morphotype. Each cluster of bars indicates millipede clade 1, 3 and 4.  

  

 Next, the data were partitioned by millipede clade, millipede sex, and wood host, 

at the colony level. Three millipede clades were sampled. Clade 1 contained 53 

individuals from 6 colonies in 3 sites, Clade 3 contained 156 individuals from 29 

colonies in 7 sites, and Clade 4 contained 104 individuals from 24 colonies in 7 sites. 

Incidence of fungal morphotypes varied by clade (Table 2): Entomopathogenic 

Hypocreales represented almost a third of all CFUs from Clade 4 yet were less than 

one-tenth of the total CFUs from Clade 3. Likewise, white filamentous fungi varied 

considerably across clades, representing 12.5% of total CFUs from Clade 3, but below 

3% for the other two clades. Miscellaneous yeasts represented one-third to one-fifth of 

total CFUs from Clade 1 and Clade 3, but less than one-tenth for Clade 4. The 

remaining fungal morphotypes have, in general, equal representation across clades.  
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TABLE 2: Table indicating what percentage of CFUs from each millipede clade were 
from each fungal morphotype. 

Morphotype Clade 1 Clade 3 Clade 4 
Wh. fila. Fungi 0.5% 12.5% 2.0% 
Entomo. Hypo. 17.7% 9.0% 31.6% 
Demat. Yeasts 4.9% 5.5% 9.7% 
Zygomycetes 13.4% 4.9% 9.5% 
Misc. Yeasts 39.1% 20.8% 6.5% 

Other 24.4% 47.3% 40.8% 
 

 Millipedes were separated into four life stages: male (gonopods visible), female 

(adult size, no gonopods), juvenile (not adult size, no gonopods visible), and hatchlings 

(white colored, extremely small). For analyses by millipede sex, juveniles and hatchlings 

were excluded because they could belong to either sex. The only dramatic difference 

between males and females was in the abundance of white filamentous fungi, where 

13.1% of CFUs from males were white filamentous fungi, compared to 5.8% of females 

(Table 3).  

TABLE 3: Table indicating what percentage of CFUs from each millipede sex were from 
each fungal morphotype 

Morphotype Male Female 
Wh. fila. fungi 13.1% 5.8% 

Entomo. Hypo. 21.7% 20.0% 
Demat. Yeasts 11.4% 6.4% 
Zygomycetes 6.5% 9.1% 
Misc. Yeasts 15.1% 20.2% 

Other 32.1% 38.5% 
 

Millipedes were collected from 10 different genera of wood hosts. The most common 

wood hosts were Liriodendron (23 colonies) and Quercus (17), followed by Acer (4), 

Carya (4), Fagus (3), Pinus (3), Betula (2), Ulmus (2), Fraxinus (1), and Carpinus (1). 
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There was only one notable difference between the two most common wood hosts. In 

Liriodendron, 21.8% of CFUs were from miscellaneous yeasts, compared to 6.0% in 

Quercus. The remaining morphotypes did not vary strongly between the two hosts 

(Figure 5). 

 

FIGURE 5: Stacked bar chart showing percentages of CFUs from each wood host 
represented by each fungal morphotype.  

 

 The number of colonies sampled across all the uncommon hosts (20) was similar 

to the number of colonies sampled from each of the common hosts (23 for Liriodendron, 

17 for Quercus), so the percentages of each morphotype across the three classes 

Liriodendron, Quercus, and ‘Other hosts’ were compared. There were no notable 

differences between the three classes for any morphotype (Table 4). Individually, the 
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uncommon hosts had widely varying percentages for all the morphotypes, as shown in 

Figure 5. 

TABLE 4: Table indicating what percentage of CFUs from Liriodendron, Quercus, or 
other substrates (combined) were from each fungal morphotype. 

Morphotype Liriodendron Quercus Other (combined) 
Wh. fila. fungi 11.1% 6.2% 7.8% 

Entomo. Hypo. 10.6% 16.8% 13.0% 
Demat. Yeasts 6.9% 11.1% 10.3% 
Zygomycetes 10.7% 16.0% 10.9% 
Misc. Yeasts 21.8% 6.0% 12.6% 

Other 38.6% 44.0% 45.4% 
 
 
Sequenced Isolates 
 
 Across all millipedes, 1,310 fungal isolates were collected and retained. Of these, 

1,002 isolates were sequenced and resolved to Kingdom Fungi, and 965 to at least 

genus. These isolates represent a large amount of diversity, including at least 183 

genera in 40 fungal orders from 4 phyla.  

 After sequencing, it became clear that the defined morphotypes (see previous 

section) were not always taxonomically restricted and often contained members from 

more than one order of fungi. “White filamentous fungi” often included members of the 

Polyporales, Xylariales, Pleosporales, and occasionally a (non-entomopathogenic) 

member of the Hypocreales. “Entomopathogenic Hypocreales” only contained fungi 

from the well-documented entomopathogenic families of the Hypocreales, 

Cordycipitaceae, Clavicipitaceae, and Ophiocordycipitaceae. “Dematiaceous yeasts” 

contained members from the Chaetothyriales, Chaetosphaeriales, Capnodiales, 

Mycosphaerellales, and Coniochaetales. Zygomycetes contained members of the 
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Mortierellales, Mucorales, and Umbelopsidales. “Misc. yeasts” contained Tremellales, 

Saccharomycetales, and Dothideales. The remaining 24 orders generally fell into the 

“Other” morphotype, with individual isolates occasionally falling into the other defined 

morphotypes. Since the morphotypes were taxonomically heterogeneous, analyses 

were conducted at the order or genus level. 

 The most common order was the Hypocreales, containing 25.9% of all isolates 

resolved to at least order. Of that 25.9%, 42.6% of isolates were from the three 

entomopathogenic families listed previously. The five next most common orders were 

the Polyporales (8.6%), Chaetothyriales (8.2%), Xylariales (6.2%), Capnodiales (5.8%), 

and Eurotiales (5.6%). All other orders contained fewer than 50 isolates (<5%). 

 The most common genus was Trichoderma (45 isolates), followed by Verticillium 

(44), Umbelopsis (35), Penicillium (34), and Mortierella (32). There were 74 genera with 

only a single isolate, and only 24 genera had 10 or more isolates. 

 
Community and diversity analyses 
 
 Alpha diversity was assessed by millipede clade, wood host, and site. Clade 1 

included 32 genera, Clade 3 included 148, and Clade 4 included 69. The number of 

fungal genera obtained from each wood host were as follows: Liriodendron (114 

genera), Quercus (74), Betula (54), Carya (45), Fagus (33), Ulmus (19), Acer (18), 

Pinus (11), Carpinus (10), and Fraxinus (10).  

 At the site level, alpha diversity varied from 3 genera at SC2 to 63 genera at 

WV1 with a mean of 23 per site (Table 5). In addition to alpha diversity, Shannon's 

diversity index and Shannon's equitability were also calculated for each site. Shannon's 
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diversity index ranged from 0.95 in SC2 to 3.79 in WV2. Shannon's equitability ranged 

from 0.977 in AR1 and VA2 to 0.848 in TN1 (Table 5). Sites with the five highest 

Shannon's diversity index values did not overlap with sites with the five highest site 

equitability values. Conversely, sites with the lowest diversity index values did overlap in 

at least two of five sites (Table 5).  

 

TABLE 5: Collection information and diversity indices for each site. 

Site 
No. of Millipedes 

sampled 
Alpha 

diversity 
Shannon's 

diversity index (H) 
Shannon's 

equitability (EH) 
AR1 6 11 2.342 0.977 
AR2 6 14 2.497 0.946 
AR3 13 17 2.590 0.914 
AR4 22 26 3.064 0.941 
AR5 14 19 2.801 0.951 
AR6 12 18 2.583 0.894 
GA1 9 13 2.378 0.927 
OK1 14 18 2.737 0.947 
SC1 22 14 2.262 0.857 
SC2 4 3 0.950 0.865 
TN1 42 42 3.170 0.848 
VA1 4 34 3.301 0.936 
VA2 8 11 2.342 0.977 
VA3 15 24 3.043 0.957 
VA4 5 7 1.787 0.918 
WV1 29 63 3.784 0.913 
WV2 24 57 3.790 0.938 
WV3 4 16 2.599 0.937 
WV4 12 24 3.033 0.954 
WV5 36 34 3.045 0.864 

 

 

 Next, PerMANOVAs were used to check for significant differences among fungal 

communities by clade and wood host. For clade, pairwise comparisons indicated 

significant differences in communities between Clade 1 and Clade 3 (p < 0.001) and 



	 41	

Clade 3 and 4 (p < 0.05), but not between Clade 1 and Clade 4 (p > 0.05). For wood 

host, pairwise comparisons indicated significant (p < 0.05) differences among 18 host 

combinations (Supplemental Table 5). Twenty additional pairwise comparisons were not 

significant (Supplemental Table 5). Two hosts, Ulmus sp., and U. alatus, accounted for 

15 of 18 significant differences, and both hosts were significantly different (p < .001) 

from Acer, Betula, Carya, Fagus, Liriodendron, Pinus, and Quercus. The remaining 

three significant (p < 0.05) interactions included pairings of Acer, Betula, Fagus, 

Liriodendron, and Quercus. 

 The network inferred from co-occurrence data revealed a complex topology with 

several co-dominant foci (Figure 6). As a whole, community structure was 

heterogeneous across millipede clades and wood hosts. However, some genera were 

consistently present in most clades and wood hosts as indicated by betweenness-

centrality results. Twelve fungal genera showed high connectivity across the whole 

network (betweenness-centrality values > 0.5) (Figure 7). These included Phialophora 

(1.55), Ramichloridium (1.44), Mortierella (1.28), Trichoderma (1.03), Mucor (1.02), 

Verticillium (0.90), Phanerochaete (0.89), Fonsecaea (0.84), Penicillium (0.75), 

Umbelopsis (0.73), Cosmospora (0.68), and Xylaria (0.63). All other fungal genera fell 

below the 0.5 threshold including 144 genera with a betweenness-centrality values of 

0.0 (Figure 7). 
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FIGURE 6: Fungal community connectivity network across B. lecontii clades and wood 
hosts. Unlabeled nodes represent unique fungal genera, color-coded by fungal order. 
White and black nodes represent clades and wood hosts. For these, the size of the 

circle represents the relative sample size for that group. 
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FIGURE 7: Histogram showing distribution of betweenness-centrality values for 183 
fungal genera. 

 

 Modularity was assessed for the entire network and yielded a score of 0.239. Six 

distinct modules were detected. 

 
Putative new species 
 
 At least seven putative new species were identified based on previously 

established criteria, but only three were investigated. The four not examined are “aff. 

Coniochaeta” (Coniochaetales), “aff. Leptodontidium” (Helotiales), “Pseudonectria aff. 

buxi” (Hypocreales), and “aff. Oidiodendron” (Onygenales). 

 “Aff. Fonsecaea” is represented by 11 isolates from six collection sites (AR3, 

AR4, OK1, SC2, VA4, and WV1). These isolates are 95% identical to strain “Fonsecaea 

sp. CBS 102252”.  The phylogenetic tree shown in Figure 8 was generated in MEGA7 

(Kumar et al. 2016) and inferred by using the maximum likelihood method based on the 

Kimura 2-parameter model (Kimura 1980). The alignment contained 1,391 positions, but 

only 591 were retained in the final dataset. Fewer than 5% alignment gaps, missing 
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data, and ambiguous bases were allowed at any position. Although there are 11 isolates 

of this PNS, only 9 were used in this phylogeny. 

FIGURE 8: Concatenated ITS+LSU maximum likelihood phylogenetic tree for “aff. 
Fonsecaea,” a putative new species. Bootstrap support is indicated near each node, 

and only values greater than 50% are shown. The grey box indicates the isolates 
belonging to aff. Fonsecaea sp. 

 

 “Mortierella aff. ambigua” is represented by 27 isolates from seven collection 
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sites (AR1, AR3, AR4, VA3, WV2, WV4, and WV5). These isolates are 92% identical to 

strain “Mortierella ambigua CBS 450.88”. All isolates of “Mortierella aff. ambigua” 

produced large, granular, firm, lipid-rich structures as the cultures aged past ~10 days. 

These structures grew up to at most half a centimeter across, and were present on the 

surface and embedded in the media. When crushed, these structures appeared to be 

filled with large thin-walled cells, each filled with lipids and vacuoles (Figure 9). The 

function of these structures is unknown, and their presence has not been previously 

reported in the literature.  

 

 FIGURE 9: Colony morphology of PNS “Mortierella aff. ambigua”, isolate 1150 
after six weeks of growth on GYEA. A: Overall colony morphology, with surface and 
submerged structures. B: Magnification 40x, squash mount. C: Magnification 5x. 

 

 The phylogenetic tree shown in Figure 10 was generated in MEGA7 (Kumar et 

al. 2016) and inferred by using the maximum likelihood method based on the general 

time-reversible model (Nei and Kumar 2000). The alignment contained 1,234 positions, 

but only 918 were retained in the final dataset. Fewer than 5% alignment gaps, missing 
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data, and ambiguous bases were allowed at any position. Although there are 27 isolates 

of this PNS, only 16 were used in this phylogeny. 

 

FIGURE 10: Concatenated ITS+LSU maximum likelihood phylogenetic tree for 
“Mortierella aff. ambigua,” a putative new species. Bootstrap support is indicated near 
each node, and only values greater than 50% are shown. The grey box indicates the 

isolates belonging to Mortierella aff. ambigua. 

 Last, “aff. Apophysomyces sp.” is represented by five isolates from one site 
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(OK1). These isolates are 84% identical to strain “Apophysomyces ossiformis strain 

UTHSC 04-838”. Sporangial morphology of these isolates aligns with described features 

for this genus (Alvarez et al. 2010). The phylogenetic tree shown in Figure 11 was 

generated in MEGA7 (Kumar et al. 2016) and inferred by using the maximum likelihood 

method based on the Tamura 3-parameter model (Tamura 1992). The alignment 

contained 1,389 positions, but only 814 were retained in the final dataset. Fewer than 

5% alignment gaps, missing data, and ambiguous bases were allowed at any position. 

Although there are 5 isolates of this PNS, only 3 were used in this phylogeny. 

 

FIGURE 11: Concatenated ITS+LSU maximum likelihood phylogenetic tree for “aff. 
Apophysomyces,” a putative new species. Bootstrap support is indicated near each 

node, and only values greater than 50% are shown. The grey box indicates the isolates 
belonging to aff. Apophysomyces. 
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DISCUSSION 

 
 
Who’s who in the fungal community? 
  
 Brachycybe-associated fungi were sorted into five morphotypes, three of which 

were not taxonomically restricted. “White filamentous fungi” included members of four 

fungal orders, “Dematiaceous yeasts” had five orders and “Miscellaneous yeasts” had 

three orders spanning two fungal phyla. Quantification of CFUs provides a simplified 

coarse-scale approach to characterizing fungal communities. However, this method has 

several limitations, including morphological crypsis among distantly related taxa (Ko et 

al. 2011).  

 Based on sequencing results, Brachycybe lecontii associates with a large, 

diverse community of fungi, including at least 183 genera in 40 fungal orders from 4 

phyla. Of all the genera of fungi found in this study, 40% were represented by a single 

isolate, and only 13% had 10 or more isolates. These genera are not evenly distributed 

among different sites, wood hosts, and millipede clades. But, across large groups of 

millipedes, certain genera appear more frequently than expected by chance.   

 Betweenness-centrality scores from the network analysis reveal that a small 

group of fungal genera make up the core of the fungal network. This core included two 

members of the Chaetothyriales, one Mycosphaerellales, one Mortierellales, three 

Hypocreales, one Mucorales, one Polyporales, one Eurotiales, one Umbelopsidales, 

and one Xylariales. The network analysis revealed that these fungi are consumed by 

many individuals across different lineages of B. lecontii and across many wood hosts, 

indicating that they may be the preferred fungal food source for these millipedes. 
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The role of white filamentous fungi 
 
 Casual observations of naturally-occurring Brachycybe colonies led to the 

hypothesis that white filamentous fungi, mostly in the order Polyporales, are the primary 

food source for B. lecontii. However, both morphotype CFU counts and isolate 

sequencing data do not support this hypothesis. This morphotype was in extremely low 

incidence, compared to the other dominant morphotypes, and was recovered from only 

48% of colonies. Since the Polyporales are only a subset of fungi in this morphotype, 

the true incidence of Polyporales is even lower. When investigated with culture-

independent sequencing, the proportion of Polyporales remained low at ca. 2% (Michael 

Brewer, pers. comm.).  

 Although it is clear that B. lecontii are not consuming much of the white 

filamentous morphotype, that does not discount the possibility that these fungi may play 

a different but vital role during part of or throughout in the millipede life cycle. This study 

is designed to capture the fungi on or in B. lecontii, so fungi used in other ways, and not 

present on or in the millipede, would not be detected.  

 Unlike most fungi recovered during this study, Polyporales are perennial and can 

persist across many years, surviving through harsh conditions (Halme et al. 2009). In 

the field and in the laboratory colonies, B. lecontii displayed a marked preference for 

moister logs, and it is possible that in times of reduced moisture, the millipedes rely on 

moisture from Polyporales. Other arthropods use Polyporalean fruiting bodies for 

protection from changes in moisture (Mitgaard et al. 1998, Jonsell et al. 2001) Another 

possibility is that B. lecontii may only consume a liquid filtered extract of Polyporales. 

Ongoing studies by Wong et al. (in prep) support this hypothesis in that Brachycybe 
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have a brush-like labrum, which would likely prevent ingestion of fungal hyphal 

fragments, but not spores. If no viable fungal propagules are present in the millipede, no 

fungi will be detected using the methods of this study. In addition, little is known of 

where the millipedes go or what they do in the winter (Gardner 1975, Shelley et al. 

2005), and it is also possible that Polyporales and other white filamentous fungi may 

play some role during this period of time.  

 
Millipede Behavior 
 
 Pinwheel formations were abundant at all sites in the field and in laboratory 

colonies. While documented in the literature for a half-century (referred to as star-

clusters, pinwheels or stellate arrangements) their function remains unknown (Gardner 

1975, Manton 1961). These self-assembled formations may be a result of merely 

gathering around a common feeding site, or they may have another role, such as aiding 

in physical defense through aggregation (Dury et al. 2014, Curley et al. 2015) and/or 

concentrating millipede defensive compounds (Wood et al. 2000; Shear 2015). Another 

possibility is adults facilitate cooperative feeding that may benefit juveniles and 

hatchlings, who have smaller mouthparts. These hypotheses remain to be explored.  

 Observations made at three sites indicated atypical “summit-like” behavior 

(Hodge et al. 2017) in B. lecontii, with individuals exposing themselves to the elements 

and various predators. At two of those three sites, it was found that entomopathogenic 

Hypocreales dominated the fungal community. In site SC1, 29.3% of all CFUs were 

entomopathogenic Hypocreales, and the site had an abundance of one genotype of 

Lecanicillium. Eighty-one percent of millipedes at SC1 harbored Lecanicillium, some of 
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which were confirmed to be infected with the entomopathogenic nematode, 

Heterohabditis sp. (data not shown).  In AR2, 80.2% of all CFUs were 

entomopathogenic Hypocreales, including Verticillium, Metarhizium, Pochonia, and 

Purpureocillium. Whether or not these fungi are the cause of the atypical behavior 

observed at these sites is unclear, but studies of entomopathogenic Hypocreales in 

insects indicate behavioral modification of the host is a possibility. For example, an 

arboreal carpenter ant (Camponotus leonardi) is occasionally parasitized by the 

Hypocrealean fungus Ophiocordyceps unilateralis. This fungus manipulates its host to 

travel to an optimum microclimate and clamp its mandibles onto a plant before death, 

improving the ability of the fungus to grow and reproduce (Andersen et al. 2009). Sexual 

behavior may also be manipulated by entomopathogens: male Ceratitis fruit flies 

infected with Metarhizium anisopliae delayed mating to groom, an activity that spreads 

spores all over the body (Dimbi et al. 2009). When females were infected, males found 

them highly attractive and attempted mating, even if the female was deceased.  

 Future studies should attempt to fulfull Koch’s Postulates with fungi isolated from 

millipedes displaying unusual behaviors, to determine if these isolated fungi are the 

cause of the behaviors. 

 

Putative New Species 
 
 In this study, evidence was found for at least seven putative new species (PNS), 

but only three were studied in detail. One of the three PNS studied was from the 

Ascomycota, in the order Chaetothyriales, and two were from the Mucoromycota, in the 

orders Mortierellales and Mucorales.  
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 Based on NCBI BLAST results, the PNS from the Chaetothyriales was called “aff. 

Fonsecaea sp.” The Fonsecaea isolate most similar to isolates from this study matched 

at 95% of loci, but there was only a single isolate of Fonsecaea in the top matches. 

Most of the next closest matches were to Rhinocladiella/Ramichloridium anceps, and 

were accompanied by a significant drop in percent match from the Fonsecaea isolate. In 

addition, the fungus R. anceps belongs to a different order, either the 

Mycosphaerellales or the Capnodiales (still under debate, Crous et al. 2009). Many of 

the orders that contain dematiaceous fungi, like Chaetothyriales, Chaetosphaeriales, 

Capnodiales, and others, are not resolvable with just the ITS region, further 

complicating the issue (Crous et al. 2009). Many phylogenetic studies in the literature 

appear to have found some resolution of these orders, but other papers using fungi 

supposedly in the same genus as those in the first yield a different phylogenetic 

structure (Arzanlou et al. 2007). 

 Regardless of the exact identification and higher taxonomy for the PNS “aff. 

Fonsecaea sp.,” our phylogenetic study indicates that it is not a close relative of 

Fonsecaea, and instead a close relative of Rhinocladiella anceps. All 11 isolates of “aff. 

Fonsecaea sp.” are clonal and come from at least 6 sites and 3 wood hosts, spanning 

all three millipede clades. Future work will focus on morphological studies and 

phylogenetic analyses that will explicitly include additional loci and members of the 

Mycosphaerellales and Capnodiales. Once completed, a formal description will follow. 

 NCBI BLAST results from the two other PNS were not ambiguous, and the higher 

taxonomy for the Mucoromycota has already been clearly established (Spatafora et al. 

2017). The PNS “Mortierella aff. ambigua” is represented by 27 clonal isolates from 7 
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sites and 5 wood hosts, spanning 2 millipede clades (Clade 3 and 4). This PNS forms a 

clade with known reference sequences of Mortierella ambigua, but is also in its own 

clade sister to M. ambigua, indicating that “Mortierella aff. ambigua” is a new species of 

Mortierella closely related to Mortierella ambigua.  

 An attempt was made to use a subset of Mortierella references representing the 

seven identified clades in the genus (Wagner et al. 2013), but our phylogeny failed to 

recover the same topology. Future work for “Mortierella aff. ambigua” will focus on 

morphological studies, particularly the unique structures produced in pure culture. Once 

completed, a formal description will follow. 

 The last PNS, “aff. Apophysomyces sp.,” is represented by five clonal isolates 

from one site, OK1, in Clade 4. The genus Apophysomyces includes four species, and 

is sister to the genus Saksenaea (Alvarez et al. 2010). This PNS forms a clade with 

known reference sequences of all four species known to exist in Apophysomyces, but is 

also in its own clade sister to the known species, indicating that “aff. Apophysomyces 

sp.” is likely a new genus of closely related to Apophysomyces. The amount of 

divergence between the PNS and known species of Apophysomyces is greater than the 

divergence within known species of Apophysomyces, further supporting the PNS as a 

new genus. 

 Future work for “aff. Apophysomyces sp.” will focus on morphological studies. 

Once completed, a formal description will follow. 

 Despite the use of more classical culture-based approaches, the recovery of 

seven putative new species highlights the vast amount of undescribed fungal 

biodiversity associated with millipedes. Culture-independent approaches will likely 
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uncover many more new species, possibly including some from unculturable lineages of 

fungi.  
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SUPPLEMENTAL TABLES 
 

SUPPLEMENTAL TABLE 1: Level III and IV ecoregions used. Source: EPA, 2013. 

Number Level III Level IV 
36B Ouachita Mountains Central Mountain Ranges 
36C Ouachita Mountains Central Hills, Ridges, and Valleys 
36D Ouachita Mountains Fourche Mountains 
37A Arkansas Valley Scattered High Ridges and Mountains 
45E Piedmont Northern Inner Piedmont 
66D Blue Ridge Southern Crystalline Ridges and Mountains 
67H Ridge and Valley Southern Sandstone Ridges 
67I Ridge and Valley Southern Dissected Ridges and Knobs 
69D Central Appalachians Dissected Appalachian Plateau 

 

SUPPLEMENTAL TABLE 2: NCBI reference numbers for reference sequences used in 
the “aff. Fonsecaea sp.” phylogenetic tree. 

Name Strain number ITS LSU 
Fonsecaea erecta CBS 125763 KC886414.1 KF155186.1 
Fonsecaea minima CBS 125760 KC886416.1 KF155187.1 
Fonsecara pedrosoi CBS 271.37 NR_130652.1 KJ930166.1 
Fonsecaea monophora CBS 102243 EU938579.1 FJ358247.1 
Fonsecaea brasiliensis BMU 07620 KJ701015.1 KJ930163.1 
Cladophialophora chaetospira CBS 491.70 EU035405.1 EU035405.1 
Phialophora verrucosa BMU 07676 KJ701006.1 KJ930157.1 
Phialophora macrospora BMU 07066 KF881933.1 KJ930071.1 
Cladophialophora potulentorum CBS 112222 EU035409.1 EU035409.1 
Cyphellophora oxyspora CBS 698.73 NR_132883.1 KC455262.1 
Capronia pilosella DAOM 208453 AF050255.1 AF050255.1 
Exophiala moniliae CBS 520.76 NR_111448.1 KJ930162.1 
Capronia leucadendri CBS 122672 EU552108.1 EU552108.1 
Rhinocladiella anceps AFTOL-ID 659 DQ826740.1 DQ823102.1 
Mucor abundans CBS 521.66 JN206110.1 JN206457.1 
Mucor fragilis CBS 236.35 JN205979.1 FN650671.1 
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SUPPLEMENTAL TABLE 3: NCBI reference numbers for reference sequences used in 
the “Mortierella aff. ambigua” phylogenetic tree. 

Name Strain number ITS LSU 
Mortierella ambigua CBS 521.80 JX976120.1 KC018423.1 
Mortierella ambigua YCS-B5 KP744427.1 KP744409.1 
Mortierella ambigua MLTB1-2 KP744425.1 KP744407.1 
Mortierella capitata CBS 293.96 JX976123.1 KC018334.1 
Mortierella antarctica CBS 609.70 NR_111580.1 NG_042563.1 
Mortierella parvispora CBS 311.52 NR_077185.1 HM849689.1 
Mortierella macrocystis CBS 431.81 JX975897.1 KC018437.1 
Mortierella sclerotiella CBS 529.68 NR_145298.1 HQ667387.1 
Mortierella fatshederae CBS 388.71 JX976003.1 JX976136.1 
Mortierella microzygospora CBS 880.97 NR_111569.1 HQ667394.1 
Mortierella horticola CBS 305.52 NR_111572.1 NG_042556.1 
Mortierella epigama CBS 489.70 NR_077210.1 HQ667367.1 
Mortierella parazychae CBS 868.71 HQ630283.1 HQ667362.1 
Mortierella polygonia CBS 685.71 NR_111562.1 NG_042546.1 
Mortierella pseudozygospora CBS 779.86 JX975960.1 KC018353.1 
Mortierella chlamydospora CBS 120.34 HQ630354.1 HQ667430.1 
Mortierella beljakovae CBS 123.72 NR_111584.1 NG_042568.1 
Mortierella angusta CBS 293.61 NR_111555.1 HQ667358.1 
Mortierella stylospora CBS 211.32 NR_111556.1 HQ667359.1 
Mortierella rostafinskii CBS 522.70 NR_111586.1 NG_042570.1 
Mortierella strangulata CBS 455.67 HQ630359.1 HQ667437.1 
Mucor abundans CBS 521.66 JN206110.1 JN206457.1 
Mucor fragilis CBS 236.35 JN205979.1 FN650671.1 

 

SUPPLEMENTAL TABLE 4: NCBI reference numbers for reference sequences used in 
the “aff. Apophysomyces sp.” phylogenetic tree. 

Name Strain number ITS LSU 
Apophysomyces variabilis CBS 658.93 NR_130683.1 HM849695.1 
Apophysomyces elegans CBS 477.78 JN206280.1 JN206536.1 
Apophysomyces ossiformis UTHSC 04-838 NR_137035.1 FN554252.1 
Apophysomyces trapeziformis UTHSC 08-1425 NR_137034.1 FN554261.1 
Saksenaea vasiformis NRRL 2443 FR687327.1 HM776679.1 
Saksenaea erythrospora CBS 138279 KM102733.1 KM102734.1 
Mucor abundans CBS 521.66 JN206110.1 JN206457.1 
Mucor fragilis CBS 236.35 JN205979.1 FN650671.1 
Backusella circina CBS 128.70 NR_103649.1 JN206529.1 
Backusella recurva CBS 196.71 JN206265.1 JN206523.1 
Backusella lamprospora CBS 118.08 NR_145291.1 JN206531.1 
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Cunninghamella echinulata CBS 656.85 JN205896.1 JN206598.1 
Cunninghamella elegans CBS 158.28 JN205888.1 JN206602.1 
Cunninghamella bertholletiae CBS 190.84 JN205878.1 HM849701.1 
Cladophialophora chaetospira CBS 491.70 EU035405.1 EU035405.1 

  

SUPPLEMENTAL TABLE 5: Results of Tukey’s HSD post-hoc test comparing the 
fungal communities between wood hosts where more than one colony was sampled. 

Wood host #1 Wood host #2 Adj. p-value 
Ulmus sp. Acer 0.0000* 
Ulmus sp. Betula 0.0000* 
Ulmus sp. Carya 0.0000* 
Ulmus sp. Fagus 0.0000* 
Ulmus sp. Liriodendron 0.0000* 
Ulmus sp. Pinus 0.0000* 
Ulmus sp. Quercus 0.0000* 
Ulmus alatus Acer 0.0000* 
Ulmus alatus Betula 0.0000* 
Ulmus alatus Carya 0.0000* 
Ulmus alatus Fagus 0.0000* 
Ulmus alatus Fraxinus 0.0000* 
Ulmus alatus Liriodendron 0.0000* 
Ulmus alatus Pinus 0.0000* 
Ulmus alatus Quercus 0.0000* 
Fagus Betula 0.0120* 
Liriodendron Acer 0.0338* 
Liriodendron Fagus 0.0073* 
Betula Acer 0.0596 
Carya Acer 0.8868 
Carya Betula 0.7778 
Fagus Acer 0.9954 
Fagus Carya 0.3800 
Liriodendron Betula 1.0000 
Liriodendron Carya 0.6862 
Pinus Acer 1.0000 
Pinus Betula 0.2002 
Pinus Carya 0.9438 
Pinus Fagus 0.9990 
Pinus Liriodendron 0.1609 
Quercus Acer 0.3860 
Quercus Betula 0.9443 
Quercus Carya 0.9997 
Quercus Fagus 0.0878 
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Quercus Liriodendron 0.8753 
Quercus Pinus 0.6380 
Ulmus sp. Carpinus 1.0000 
Ulmus sp. Ulmus alatus 1.0000 
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CHAPTER 3: IDENTIFYING FUNCTIONAL ROLES OF BRACHYCYBE LECONTII-

ASSOCIATED FUNGI 

ABSTRACT 
 
Brachycybe (Wood) is a genus of fungivorous millipedes, whose fungal associates have 

only recently been described. The ecology of these fungi and their interactions with B. 

lecontii remain unclear. In an attempt to resolve these relationships, fungal cohort 

pairings and entomopathogenicity trials were conducted. Of the 156 pairings tested, 67 

resulted in competitive interactions. A majority of these interactions involved inhibition or 

overgrowth by fungi in the Hypocreales and Polyporales, respectively. Results of a 

series of entomopathogenicity trials indicated that B. lecontii was less susceptible to 

entomopathogenic fungi than an insect model, Galleria mellonella. Conversely, B. 

lecontii exhibited high mortality when challenged with Polyporales, while G. mellonella 

was unaffected. Recent work involving network analysis shows that a dozen fungal 

genera play a central role in millipede-fungus associations, and results of this study 

indicate that individual roles vary in unexpected ways. 

 

INTRODUCTION 
 

Millipedes (Arthropoda: Myriapoda: Diplopoda) are non-insect arthropods with 

many body segments and two pairs of legs per body segment. The oldest known 

millipede body fossil, Pneumodesmus newmanii, dates to the Silurian (420-440 million 

years ago), and presents the earliest evidence for air-breathing in any animal (Wilson 

and Anderson 2004). 

Millipedes are a relatively diverse group of animals, with approximately 12,000 
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millipede species described to date, in 16 orders and 140 families (Shear 2011). The 

majority are detritivores, feeding on dead and decaying plant material and animal waste 

on the forest floor, though anecdotal evidence supports herbivorous (Marek et al. 2012), 

fungivorous (Brewer et al. 2012, Marek et al. 2012), and carnivorous lifestyles 

(Srivastava and Srivastava 1967). Detritivorous millipedes play a crucial role in nutrient 

cycling, particularly in nutrient-poor areas (Mattson 2012, Lawrence and Samways 

2003, Bonkowski et al. 1998). Nearly all millipedes have a subterranean lifestyle, living 

in decomposing leaf litter, in the soil, or inside wet, rotting wood substrates. 

Millipedes are regularly reported in association with fungi, likely due to their 

detritivorous habit. Most records of fungal-millipede interactions are cases where 

millipedes occasionally graze on fungi in the environment, or where a parasitic fungus is 

attacking the millipede (Lilleskov and Burns 2005, Bultman and Mathews 1996, Hodge 

et al. 2017). Several species of specialist ectoparasitic fungi in the Laboulbeniales have 

been recorded from millipedes (Santamaria et al. 2014, Enghoff and Santamaria 2015). 

In the millipede pet trade, fungal infection due to poor animal husbandry is a widespread 

issue, especially in the most notable pet species, the giant African millipede 

(Archispirostreptus gigas) (McMonigle 2012). Opportunistic fungi may take advantage of 

weakened millipedes, but confirmed pathogenicity on healthy animals is uncommon in 

the literature (Brito 1994, Chitty 2006). At least two species of trichomycetes, obligate 

arthropod gut-associated fungi, also have been reported from millipedes (Wright 1979). 

Brachycybe (Wood) is a genus of millipedes in the family Andrognathidae 

(Diplopoda: Platydesmida) with eight described species and at least two additional 

undescribed species awaiting description (Brewer et al. 2012). In the United States, 
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there are two species in the Appalachian Mountains and three (plus two undescribed) in 

northern California. All Brachycybe are small millipedes, with some individuals reaching 

4 cm in length (pers. obs.). They are one of the few groups of arthropods that exhibit 

paternal care of their offspring (Kudo et al. 2011). Brachycybe are most frequently found 

living on rotten logs and branches with visible fungal growth (Shelley et al. 2005). They 

exhibit various social behaviors including overlapping adult generations and 

reproductive division of labor. They also form pinwheel-like multigenerational colonies 

around resupinate fungi underneath downed woody substrates (Gardner 1975). All 

members of the millipede subterclass Colobognatha, which includes Brachycybe, are 

believed to be strict fungivores (Gardner 1975), as evidenced by their diminutive 

mouthparts (Paul Marek, pers. comm.) their clustering around fungi, and the visual 

damage (i.e. divots) they leave behind on fungi. 

 The known geographic range of Brachycybe lecontii extends across 13 states 

from eastern Oklahoma to western South Carolina, south to Louisiana, and north to 

southern West Virginia (Shelley et al. 2005, Brewer et al. 2012). Their range 

encompasses five Level III and nine Level IV Ecoregions (as defined in 2013 report 

from U.S. EPA). The five Level III Ecoregions include: “Ouachita Mountains” (AR, OK), 

“Arkansas Valley” (AR), “Piedmont” (SC), “Blue Ridge” (GA, SC), “Ridge and Valley” 

(VA), and “Central Appalachians” (TN, VA, WV).  The nine Level IV Ecoregions were as 

follows: “Central Mountain Ranges”, “Central Hills, Ridges, and Valleys”, and “Fourche 

Mountains” (“Ouachita Mountains”); “Scattered High Ridges and Mountains” (“Arkansas 

Valley”); “Northern Inner Piedmont” (“Piedmont”); “Southern Crystalline Ridges and 

Mountains” (“Blue Ridge”); “Southern Sandstone Ridges” and “Southern Dissected 
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Ridges and Knobs” (“Ridge and Valley”); and “Dissected Appalachian Plateau” (“Central 

Appalachians”). Within this known range, five subpopulations have been identified 

(Shelley et al. 2005), four of which were recently validated using sequence data (Brewer 

et al. 2012).  

In the previous chapter, we determined that Brachycybe lecontii associates with 

a large, diverse community of fungi, including at least 183 genera in 40 fungal orders 

from 4 phyla. This diversity includes Peniophora, the only fungus historically reported in 

association with Brachycybe (Gardner 1975).  A majority of the fungal associates were 

in five broad morphological classes that encompassed 14 fungal orders. The 

Hypocreales were the most common order across all B. lecontii colonies. Community 

and diversity analyses confirmed high alpha diversity averaging 83 genera across three 

B. lecontii clades, and 39 genera across ten wood hosts.  Overall, significant differences 

were found among clades and wood hosts, although twelve genera displayed high 

connectivity across the whole network. These genera included Fonsecaea and 

Phialophora (Chaetothyriales), Cosmospora, Trichoderma, Verticillium (Hypocreales), 

Ramichloridium (Mycosphaerellales), Mortierella (Mortierellales), Mucor (Mucorales), 

Phanerochaete (Polyporales), Penicillium (Eurotiales), Umbelopsis (Umbelopsidales), 

and Xylaria (Xylariales). In addition, some fungi were associated with atypical millipede 

behavior, indicating a sub-optimal fungal community. 

 The objective of this study is to identify the functional roles of B. lecontii-

associated fungi, through laboratory assays of pathogenicity on millipedes, and assays 

to identify the interactions occurring between co-cultured fungi. 
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MATERIALS AND METHODS 
 
Fungal cohort pairings 
 
 Pairings were conducted at the site level, and only isolates recovered from an 

individual site were paired with each other. The purpose of this experimental design was 

to only test interactions between fungi that could interact in nature. Five sites were 

selected across the study area. Two of these sites were chosen because the millipedes 

had exhibited atypical behavior (Chapter 2). Representatives of the dominant fungi at 

each site were paired (Table 1). 

TABLE 1: Isolates used in fungal cohort pairings. Asterisk denotes putative new 
species. 

SITE  FUNGAL ORDER ISOLATE ID 
TN1 Amphisphaeriales   630-Pestalotiopsis microspore 

 Chaetosphaeriales   524-Chaetosphaeria chloroconia 
 Chaetothyriales   626-Cladophialophora sp. 
 Hypocreales   482-Verticillium insectorum 

 Mucorales   556-Mucor fragilis 
 Polyporales   523-Irpex lacteus 
 Umbelopsidales   529-Umbelopsis angularis 

SC1 Chaetothyriales   717-Phialophora americana 
 Hypocreales   678-Lecanicillium attenuatum 
 Hypocreales   701-Verticillium insectorum 
 Mucorales   695-Mucor fragilis 
 Polyporales   709-Phanerochaete cumulodentata 
 Umbelopsidales   702-Umbelopsis isabellina 
 Umbelopsidales   683-Umbelopsis ramanniana 

WV5 Amphisphaeriales 1283-Pestalotiopsis jesteri 
 Chaetosphaeriales 1318-Codinaea acacia 
 Chaetothyriales 1403-Phialophora americana 
 Hypocreales 1310-Verticillium insectorum 
 Mortierellales 1349-Mortierella aff. ambigua* 
 Mucorales 1285-Mucor circinelloides 
 Polyporales 1316-Bjerkandera adusta 
 Umbelopsidales 1290-Umbelopsis isabellina 

AR2 Amphisphaeriales 1217-Pestalotiopsis sp. 
 Hypocreales 1163-Metarhizium flavoviride 
 Hypocrelaes 1165-Pochonia chlamydosporia 
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 Hypocreales 1113-Tolypocladium album 
 Hypocrelaes 1084-Verticillium sp. 
 Mucorales 1001-Mucor genevensis 
 Umbelopsidales 1024-Umbelopsis isabellina 

AR4 Amphisphaeriales 1212-Pestalotiopsis jesteri 
 Chaetothyriales 1091-Fonsecaea sp. 
 Chaetothyriales 1130-aff. Fonsecaea sp.* 
 Hypocreales 1172-Verticillium insectorum 
 Mortierellales 1148-Mortierella aff. ambigua* 
 Mucorales 1016-Mucor abundans 
 Polyporales 1143-Trametopsis cervina 
 Umbelopsidales 1023-Umbelopsis ramanniana 

 

  In total, 37 isolates were tested in 156 pairings. Single 0.9-cm diameter plugs 

were placed 3 cm from the edge of a potato dextrose agar plate, and the paired isolate 

placed opposite. Each pairing was done in triplicate. Plates were allowed to grow at 

20°C for 1-week intervals for up to 4 weeks total for slow-growing fungi. At the end of 

each 1-week period, observations of fungal interactions were taken. These interactions 

included overgrowth of one fungus by another, inhibition of one fungus by another, or no 

interaction between the paired fungi (Figure 1). 

 

FIGURE 1: Outcomes of fungal-fungal interactions. A: Overgrowth; Mucor fragilis 556 
(left) is being overgrown by Irpex lacteus 523 (right). B: Inhibition; Pochonia 

chlamydosporia 1165 (left) is inhibiting Mucor genevensis 1001 (right). C: Tie/no 
interaction; “Mortierella aff. ambigua” 1148 (left) has no interaction with Umbelopsis 

ramanniana 1023 (right). 

A B C
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Entomopathogenicity testing: live plating 
 
 Twenty-two representative isolates (Table 2) were chosen for live-plating 

entomopathogenicity assays on Galleria mellonella (waxworms, from New York Worms 

http://www.nyworms.com/) and Brachycybe lecontii (collected in confirmed sampling 

locations in WV). Waxworms were used in this assay because they are model 

organisms for studies of pathogenicity/toxicity in arthropods in general (Panaccione and 

Arnold 2017). 

TABLE 2: Isolates used in live plating pathogenicity assays. Asterisk denotes putative 
new species. 

FUNGAL ORDER ISOLATE ID 
Amphisphaeriales   630-Pestalotiopsis microspora 
Chaetosphaeriales   320-Chaetosphaeria myriocarpa 
Chaetothyriales 1244-Capronia dactylotricha 
Chaetothyriales 1147-aff. Fonsecaea sp.* 
Chaetothyriales 1193-Phialophora americana 
Hypocreales   678-Lecanicillium attenuatum 
Hypocreales 1163-Metarhizium flavoviride 
Hypocreales     29-Pochonia bulbillosa 
Hypocreales 1216-Trichoderma viride 
Hypocreales   482-Verticillium insectorum 
Mortierellales 1150-Mortierella aff. ambigua* 
Mortierellales   530-Mortierella sp. 
Mucorales 1015-aff. Apophysomyces sp.* 
Mucorales 1010-Mucor abundans 
Mycosphaerellales   329-Ramichloridium anceps 
Polyporales   310-Bjerkandera adusta 
Polyporales 1158-Ceriporia lacerata 
Polyporales   523-Irpex lacteus 
Polyporales   494-Trametopsis cervina 
Umbelopsidales   529-Umbelopsis angularis 
Umbelopsidales 1290-Umbelopsis isabellina 
Umbelopsidales 1028-Umbelopsis ramanniana 
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 Isolates were grown on glucose yeast extract agar (GYEA) and scraped to 

generate inoculum suspensions in sterile water. An aliquot of suspension was spread 

on six GYEA plates per fungus (three for millipedes, three for waxworms). After all 

plates were covered by fungal growth (~3 weeks), the arthropods were introduced for 7-

day pathogenicity trials. Five individuals were placed on each plate, for a total of 15 

animals of each type for each fungal treatment. For a negative control, animals were 

placed on clean GYEA plates that were changed each time contaminating fungal growth 

was observed. Plates required replacement due to inadvertent inoculation by phoretic 

contaminants and gut community members. Observations were made every 12 hours 

for the first 36 hours (until mortality began to appear), and every 4 hours for an 

additional 108 hours until 7 days were complete. At the end of the assay, samples of 

deceased individuals were preserved for future chemical analyses. Surviving waxworms  

were euthanized by freezing for 24 hours, and surviving millipedes were placed into 

laboratory colonies for future studies. 

 Statistical analysis of survivorship was performed using the “Survival / Reliability” 

function in JMP 13.1.0. Post-hoc pairwise comparisons to the control treatment were 

performed in descending order from highest mortality to lowest mortality, for each 

arthropod type, until such comparisons were no longer significant. Both log-rank and 

Wilcoxon tests were used. Log-rank tests score mortality at all time points evenly, while 

Wilcoxon tests score early mortality more heavily. Significance thresholds were 

Bonferroni-corrected. 
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Entomopathogenicity testing: injections 
 
 Thirty-one representative isolates (Table 3) were chosen for injection 

entomopathogenicity assays on Galleria mellonella. Waxworms were used in this assay 

because they are model organisms for studies of pathogenicity/toxicity in arthropods 

(Panaccione and Arnold 2017). In addition, Brachycybe lecontii could not be tested due 

to their small size and the difficulty of injecting through thick cuticle.  

TABLE 3: Isolates used in Galleria mellonella larvae injections. Asterisk denotes 
putative new species. 

FUNGAL ORDER ISOLATE ID 

CONIDIA 
CONCENTRATION 
(CONIDIA/ML) 

Chaetothyriales 1244-Capronia dactylotricha 2.5 x 107 
Chaetothyriales   626-Cladophialophora sp. 3.9 x 107 

Chaetothyriales   325-Cyphellophora sp. 1.3 x 107 

Chaetothyriales 1091-Fonsecaea sp. 1.5 x 107 
Chaetothyriales 1147-aff. Fonsecaea sp.* 3.0 x 107 

Chaetothyriales 1193-Phialophora americana 2.6 x 107 

Chaetothyriales 1164-Rhinocladiella atrovirens 2.2 x 107 

Hypocreales 1250-Beauveria caledonica 1.1 x 107 

Hypocreales   678-Lecanicillium attenuatum 3.5 x 107 
Hypocreales 1163-Metarhizium flavoviride 2.5 x 107 

Hypocreales   587-Pochonia chlamydosporia 6.2 x 107 

Hypocreales     17-Pochonia suchlasporia 1.9 x 107 

Hypocreales 1070-Purpureocillium lilacinum 3.6 x 107 

Hypocreales 1113-Tolypocladium album 3.4 x 107 

Hypocreales 1216-Trichoderma viride 4.8 x 107 

Hypocreales   488-Verticillium fungicola 3.5 x 107 

Hypocreales   482-Verticillium insectorum 2.9 x 107 

Hypocreales 1005-Verticillium insectorum 3.6 x 107 

Mortierellales 1150-Mortierella aff. ambigua* 6.2 x 106 

Mortierellales   530-Mortierella sp. 4.3 x 107 

Mucorales 1015-aff. Apophysomyces sp.* 0** 

Mucorales 1267-Backusella circina 1.7 x 107 

Mucorales 1044-Cunninghamella elegans 1.2 x 106 

Mucorales 1010-Mucor abundans 4.4 x 107 

Mucorales 1029-Mucor genevensis 5.2 x 107 
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Mucorales 1009-Mucor luteus 1.4 x 106 

Mycosphaerellales   329-Ramichloridium anceps 4.8 x 107 
Polyporales   305-Bjerkandera adusta 4.7 x 107 

Umbelopsidales   529-Umbelopsis angularis 1.7 x 107 

Umbelopsidales 1290-Umbelopsis isabellina 4.7 x 107 

Umbelopsidales 1028-Umbelopsis ramanniana 2.4 x 107 
 

**”aff. Apophysomyces sp.” did not produce spores in culture, but the suspension 
generated contained enough hyphal fragments to attempt the trial. 

 

 Selected isolates were grown on GYEA and scraped to generate spore 

suspensions in sterile distilled water. Spore concentrations were checked via 

hemocytometer and diluted to a concentration between 1 x 107 and 5 x 107 conidia/mL, 

except for four Mucoromycotan isolates that did not produce enough conidia and were 

assayed at the concentrations given in Table 3. Due to the use of conidia for inoculum, 

several groups of non-sporulating isolates could not be tested, most notably many 

Polyporales. Injections were performed with a disposable 29.5-gauge hypodermic 

needle, and a fresh needle was used for each treatment. In each treatment, 20 

waxworms were injected behind the left rear proleg with 20 μL of conidial suspension 

supplemented with 10 μg/mL rifampicin, an antibiotic to combat wound infections 

(Panaccione and Arnold 2017). For a negative control, 20 worms were injected with only 

sterile water and rifampicin. To test for a negative effect from injections, the negative 

control group was compared to 20 non-injected worms. Observations were made every 

four hours for the first 48 hours, and every 12 hours for an additional 96 hours, for a 

total of 144 hours. At the end of the assay, samples of deceased individuals were 

preserved for future chemical analyses. Surviving waxworms were euthanized by 

freezing for 24 hours.  
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 Injections were performed in three separate batches of 7 to16 treatments, and 

each batch had a water + rifampicin injection treatment and a no-injection treatment as 

independent controls. 

 Statistical analysis of survivorship was performed using the “Survival / Reliability” 

function in JMP 13.1.0. Waxworms that pupated during the studies were censored. 

Post-hoc pairwise comparisons to the control treatment were performed in descending 

order from highest mortality to lowest mortality, for each arthropod type, until such 

comparisons were no longer significant. Both log-rank and Wilcoxon tests were used. 

Log-rank tests score mortality at all time points evenly, while Wilcoxon tests score early 

mortality more heavily. Significance thresholds were Bonferroni-corrected. 

 

RESULTS 
 
 
Fungal cohort pairings 
 
 A majority of cohort pairings did not result in inhibition. There were 156 pairings, 

and of these, 49 resulted in one fungus overgrowing another, and 18 resulted in one 

fungus inhibiting the growth of another (Figure 2).  

 Of the 42 pairings involving entomopathogenic Hypocreales (excluding Hypo. X 

Hypo. pairings), one overgrew the other fungus and eight inhibited the paired non-

Hypocreales isolate. In AR2, six Hypo. X Hypo. interactions were tested and four of six 

resulted in inhibition. In these pairings, a pattern of inhibition emerged: Pochonia 

chlamydosporia inhibited Verticillium sp., which inhibited Tolypocladium album, which 

inhibited Metarhizium flavoviride (Figure 2). 
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 Of the 40 pairings involving a dematiaceous yeast (Chaetothyriales or 

Chaetosphaeriales, and excluding Dem. X Dem. pairings), zero overgrew the other 

fungus and four inhibited the other non-dematiaceous-yeast isolate. Only three Dem. X 

Dem. interactions were tested and two of three had no interaction. In the interacting 

pair, Cladophialophora sp. inhibited Chaetosphaeria chloroconia (Figure 2).  

 Of the 62 pairings involving a zygomycete (Umbelopsis, Mucor, or Mortierella, 

and excluding zygo. X zygo. pairings), 14 overgrew the other fungus, and one inhibited 

the other non-zygomycete isolate. Eleven zygo. X zygo. interactions were tested and six 

resulted in no interaction. In all five other cases, a Mucor sp. overgrew the other fungus 

(Umbelopsis or Mortierella) (Figure 2). 

 Of the 46 pairings involving a white filamentous fungus (Amphisphaeriales and 

Polyporales, and excluding W.F.F. X W.F.F. pairings), 28 overgrew the other fungus, 

and zero inhibited the other non-white-filamentous isolate. Only three W. F. F. x W. F. F. 

interactions were tested, and one of three had no interaction. The remaining two 

interactions involved overgrowth: in one, Pestalotiopsis jesteri overgrew Bjerkandera 

adusta, and in the other, Pestalotiopsis jesteri was overgrown by Trametopsis cervina 

(Figure 2).  
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FIGURE 2: Interaction tables showing the results of fungal cohort pairings, by site. The 
color of each isolate label indicates its fungal morphotype, and the shade of grey inside 

the chart indicates if the interaction resulted in inhibition, overgrowth, or a tie/no 
interaction. Arrows indicate the “winners” of inhibition or overgrowth interactions. 

 

Entomopathogenicity testing: live plating 
 
 A majority of the fungi used in live plating entomopathogenicity tests did not 

cause significant mortality in Galleria mellonella or Brachycybe lecontii. For B. lecontii, 

only treatments that are significantly different from the control are shown in the 

survivorship curve in Figure 3. 

TN1 523 630 529 556 524 626 482 WV5 1283 1316 1285 1290 1349 1318 1403 1310
523 1283
630 1316
529 1285
556 1290
524 1349
626 1318
482 1403

1310
SC1 709 683 695 702 717 678 701
709 AR4 1143 1212 1016 1023 1148 1091 1130 1172
683 1143
695 1212
702 1016
717 1023
678 1148
701 1091

1130
AR2 1217 1001 1024 1084 1113 1163 1165 1172
1217
1001       LEGEND
1024 White Filamentous Fungi  Inhibition
1084 Zygomycetes  Overgrowth
1113 Dematiaceous Yeasts  Tie/No Interaction
1163 Entomopathogenic Hypocreales
1165
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FIGURE 3: Survivorship curves for Brachycybe lecontii live-plating trials. Only fungal 
treatments that were significantly different from the control are shown.  

 

 In Brachycybe lecontii, white filamentous fungi caused the most severe damage, 

with 50% mortality at 48 hours post-plating for Bjerkandera adusta and at 64 hours post-

plating for Trametopsis cervina. In addition to the white filamentous fungi, one 

entomopathogenic Hypocrealean fungus, Metarhizium flavoviride, caused 50% mortality 

at 136 hours post-plating. No other treatment reached 50% mortality. Fungi from all 

other groups did not appear to have any negative effect on Brachycybe.  

 A survival analysis was performed for the live-plating assay on Brachycybe 

lecontii. Of the 345 millipedes used in this study, 266 were unaffected by fungi. Both 

log-rank and Wilcoxon tests were performed to determine if the treatment received had 

an effect on survivorship. Both tests yielded a p-value less than 0.0001. All millipedes in 

the control treatment (plating with no fungus) survived, in addition to all millipedes in the 

13 following treatments: Chaetosphaeria myriocarpa, “Mortierella aff. ambigua”, “aff. 

Fonsecaea sp.”, “aff Apophysomyces sp.”, Verticillium insectorum, Lecanicillium 
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attenuatum, Umbelopsis ramanniana, Mucor abundans, Capronia dactylotricha, 

Umbelopsis isabellina, Pochonia bulbillosa, Ramichloridium anceps, and Ceriporia 

lacerata. Three additional treatments lost no more than two of 15 millipedes over the 

course of the experiment. The remaining six treatments, Trametopsis cervina, 

Metarhizium flavoviride, Bjerkandera adusta, Irpex lacteus, Mortierella sp., and 

Pestalotiopsis microspora lost 15, 13, 12, seven, four, and three millipedes, 

respectively.  Pairwise comparisons were made for treatments starting with those that 

resulted in the most severe mortality. Comparisons were halted after the first non-

significant comparison.  

 Four fungal treatments, Trametopsis cervina, Metarhizium flavoviride, 

Bjerkandera adusta, and Irpex lacteus, were significantly different from the control 

based on Log-rank and Wilcoxon tests (Supplemental Table 1). 

 In Galleria mellonella, entomopathogenic Hypocreales caused the most severe 

damage, with 50% mortality at 44 hours post-plating for Metarhizium flavoviride, and at 

132 hours post-plating for Pochonia bulbillosa. No other treatment reached 50% 

mortality (Figure 4), but the other treatments in the entomopathogenic Hypocreales 

(Lecanicillium attenuatum, Verticillium insectorum) resulted in dermal lesions with active 

sporulation. Fungi from all other groups did not appear to have any effect on Galleria.  
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FIGURE 4: Survivorship curves for Galleria mellonella live-plating trials. Only fungal 
treatments that were significantly different from the control are shown.  

  

 A survival analysis was performed for the live-plating assay on Galleria 

mellonella. Of the 345 waxworms used in this study, 299 were unaffected by fungi or 

had pupated by the end of the study. Both log-rank and Wilcoxon tests were performed 

to determine if the treatment received had an effect on survivorship. Both tests yielded a 

p-value less than 0.0001. All waxworms in the control treatment (plating with no fungus) 

survived, in addition to all waxworms in “aff. Fonsecaea sp.”, Pestalotiopsis microspora, 

Irpex lacteus, Ramichloridium anceps, and Bjerkandera adusta. Fourteen additional 

treatments lost no more than two waxworms over the course of the experiment. The 

remaining three treatments, Metarhizium flavoviride, Pochonia bulbillosa, and 

Phialophora americana, lost 15, nine, and four waxworms, respectively. Two fungal 

treatments, Metarhizium flavoviride and Pochonia bulbillosa, were significantly different 

from the control based on Log-rank and Wilcoxon tests (Supplemental Table 2). 
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Entomopathogenicity testing: injections 
 
 Most fungi used in injection entomopathogenicity tests were harmful to Galleria 

mellonella (Figure 5). Only 8 of 31 treatments did not cause at least 50% mortality.  

 The Mucorales had the most rapid effect, causing complete melanization of the 

larvae within two hours of injection and 50% mortality by 24-60 hours post-injection. The 

only Mucorales without this effect was aff. Apophysomyces sp., which did not reach 

50% mortality by the end of the experiment (Figure 5). 

 The dematiaceous yeasts exhibited the same larval melanization effect as the 

Mucorales but did not always result in severe mortality. Only five of eight treatments 

involving dematiaceous yeasts resulted in 50% mortality by the end of the assay (Figure 

5).  

 Among all Hypocreales treatments, nine of 10 resulted in 50% mortality by the 

end of the study, and all nine were from families of known entomopathogenic 

Hypocreales. Among these treatments, 50% mortality was reached by 28-72 hours 

post-injection (mean and median 44 HPI) (Figure 5).  

 The remaining treatments in orders Umbelopsidales and Mortierellales did not 

cause significant mortality by the end of the study (Figure 5). 

 A survival analysis was performed for the injection assays on Galleria mellonella. 

The injection assay was performed in three separate batches, each with their own 

controls, so survival analysis was performed for each batch separately. Of the 740 

waxworms used in injection trials, 279 were unaffected by fungi. 
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FIGURE 5: Survivorship curves for Galleria mellonella injection trials, grouped by the 
batch in which each fungus was tested. Only fungal treatments that were significantly 
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different from the control are shown.  
 

  Batch 1 had four fungal treatments and the two controls (no injection, water 

injection+antibiotic). Only the control groups had no mortality. Both log-rank and 

Wilcoxon tests were performed to determine if the treatment received had an effect on 

survivorship. Both tests yielded a p-value less than 0.0001. The four treatments, M. 

flavoviride, P. lilacinum, V. insectorum, and U. ramanniana, lost 20, 20, 19, and three 

waxworms, respectively (Figure 5). Since there was no mortality recorded in the control 

groups (no injection, water + antibiotic), they were not statistically compared. Fungal 

treatments were then only compared to the water + antibiotic control. Three fungal 

treatments, M. flavoviride, P. lilacinum, and V. insectorum were significantly different 

from the control based on Log-rank and Wilcoxon tests (Supplemental Table 3). 

 Batch 2 had fourteen fungal treatments and the two controls. No mortality was 

observed in the control groups and in “Mortierella aff. ambigua.” Both log-rank and 

Wilcoxon tests were performed to check for differences between all treatments. Both 

tests yielded a p-value less than 0.0001. Only eight of the fourteen treatments lost at 

least 10 waxworms by the end of the trial: Mucor luteus (20 waxworms deceased), 

Ramichloridium anceps (17), Mucor abundans (20), Pochonia chlamydosporia (20), 

Mortierella sp. (20), Mucor genevensis (17), Lecanicillium attenuatum (20), and 

Cladophialophora sp. (20) (Figure 5). Similar to Batch 1, there was no mortality 

recorded in either control group (no injection, water + antibiotic), so fungal treatments 

were then only compared to the water + antibiotic control. Ten fungal treatments, Mucor 

luteus, Mucor abundans, Pochonia chlamydosporia, Mortierella sp., Lecanicillium 

attenuatum, Cladophialophora sp., Ramichloridium anceps, Mucor genevensis, 
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Fonsecaea sp., and Trichoderma viride were significantly different from the control 

based on Log-rank and Wilcoxon tests (Supplemental Table 4). 

 Batch 3 had thirteen fungal treatments and the two controls. The control groups 

had mild mortality: the no-injection treatment lost one worm by the end of the trial, and 

the water + antibiotic treatment lost five. No treatment had all worms surviving at the 

end of the trial. Both log-rank and Wilcoxon tests were performed to determine if the 

treatment received had an effect on survivorship. Both tests yielded a significant p-

value. Twelve of the thirteen fungal treatments lost at least 10 waxworms by the end of 

the trial: Cyphellophora oxyspora (16), Backusella circina (20), Cunninghamella elegans 

(20), Umbelopsis angularis (10), Verticillium fungicola (20), Verticillium insectorum (20), 

Beauveria caledonica (20), Pochonia suchlasporia (20), Tolypocladium album (19), “aff. 

Fonsecaea sp.” (15), Phialophora americana (15), and Capronia dactylotricha (12) 

(Supplemental Table 5). Because mortality was observed in both control groups, they 

were statistically compared but were not significantly different. Only the water + 

antibiotic control was used for pairwise comparisons with fungal treatments. Nine fungal 

treatments, Backusella circina, Cunninghamella elegans, Verticillium fungicola, 

Beauveria caledonica, Pochonia suchlasporia, Tolypocladium album, Cyphellophora 

oxyspora, aff. Fonsecaea sp., and Phialophora americana were significantly different 

from the control based on Log-rank and Wilcoxon tests (Supplemental Table 5). 
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DISCUSSION 
 
Fungal cohort pairings 
 
 Overall, most fungi paired up in cohort pairings did not inhibit or overgrow other 

fungi. Out of 156 pairings, 12% resulted in one fungus inhibiting the growth of another, 

and 31% resulted in one fungus overgrowing another. 

 Entomopathogenic Hypocrealean fungi displayed the most inhibitory effects on 

other fungi (17%) and amongst each other (66%), followed by dematiaceous yeasts 

(10% for other / 33% amongst each other), zygomycetes (2% / 0%), and white 

filamentous fungi (0% / 0%). White filamentous fungi displayed the most overgrowth in 

response to competition (61% / 66%), followed by zygomycetes (23% / 45%), 

entomopathogenic Hypocreales (2% / 0%), and dematiaceous yeasts (0% / 0%).  

 Based on these results, entomopathogenic Hypocreales invest in the competitive 

strategy of chemical warfare, where they produce diffusible compounds into their growth 

substrate that prevent or slow the growth of other fungi. Several studies have 

characterized numerous secondary metabolites that inhibit the growth and reproduction 

of other fungi (Molnar et al. 2010, Vicente et al. 2016, Schulz et al. 2002).  Some 

dematiaceous yeasts may also invest in this strategy to a lesser degree. It has been 

hypothesized previously (Shear 2015) that millipedes may sequester chemicals that 

they then use for their own defenses, and it is possible that the preference B. lecontii 

displays for entomopathogenic Hypocreales (17% of all CFUs, Chapter 2) is a result of 

this. Another possibility is that B. lecontii selectively harbors and inoculates substrate 

with entomopathogenic Hypocrealean fungi, which help prevent the growth of fungi that 

are not desired. Having wood substrate preferentially filled with entomopathogenic fungi 
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may also help keep the worst B. lecontii predators (ants) and competitors (termites) 

away (Kudo et al. 2011). If this hypothesis is correct, resistance to entomopathogenic 

fungi in B. lecontii would offer evidence to support this assertion. 

 Zygomycetes and white filamentous fungi (especially Irpex lacteus), however, 

invest in a completely different strategy, physical overgrowth of the competition. These 

fungi rapidly colonize all available substrates, and will overgrow other fungi that are 

present, killing them and using them as a food source (Kasson et al. 2015, Mikeskova et 

al. 2012). These fungi represent 8% and 7% of all CFUs identified in Chapter 2, 

respectively, and may represent preferred fungal community members. However, it is 

also possible that these fungi are “weeds” to B. lecontii. This is unlikely for white 

filamentous fungi, since B. lecontii are nearly always observed in the field on or near 

fruiting Polyporalean fungi (Chapter 2). However, in contrast, white filamentous fungi 

were only identified from 48.3% of B. lecontii colonies (Chapter 2). Members of the 

Polyporales are also known to produce many secondary metabolites (Yao et al. 2016), 

and it is possible that B. lecontii sequesters those compounds and uses them for their 

own purposes. If any of these hypotheses are correct, the absence of pathogenicity in 

B. lecontii would offer evidence to support this assertion. 

 
Entomopathogenicity testing: live plating 
 
 Galleria mellonella live plating trials were used to determine which fungi isolated 

from B. lecontii can be considered general entomopathogens. Most fungal treatments 

resulted in no mortality over 7-day trials, except for the entomopathogenic Hypocreales. 

M. flavoviride and P. bulbillosa caused mortality in >60% of all tested individuals. No 
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other treatment reached 50% mortality, but the other treatments in the 

entomopathogenic Hypocreales (L. attenuatum, V. insectorum) resulted in dermal 

lesions with active sporulation on a majority of individuals. These results indicate that, 

as expected, only entomopathogenic Hypocrealean fungi are general 

entomopathogens. 

 When the same fungi were tested in B. lecontii, however, very different results 

were obtained. Only one entomopathogenic Hypocrealean fungus caused 100% 

mortality in B. lecontii (Metarhizium flavoviride). The most severe mortality came from 

white filamentous fungi, especially the Polyporales Bjerkandera adusta (50% mortality 

at 48 hours post-plating) and Trametopsis cervina (50% mortality at 64 hours post-

plating). This result was highly unexpected, given the abundance of Polyporales in the 

field and the apparent behavioral preference for them. It is possible that the life stage of 

these fungi may affect their toxicity/pathogenicity to B. lecontii (Lu et al. 2014, Calvo et 

al. 2002), though a similar pattern ought to have appeared in the waxworm trials, since 

they were exposed to fungi at the same life stage. When a Polyporalean fungus first 

enters a log, it must actively compete with other fungi already present in the log (Kasson 

et al. 2016, Ottosson et al. 2015). This competition may result in the production of 

chemicals that inadvertently harm millipedes. In the field, B. lecontii is seen in 

association with fungal fruiting bodies. If a fungus has grown enough to be able to 

produce a fruiting body, it is possible that these harmful chemicals may no longer be 

produced. To a fungus, an uncolonized agar plate may more closely resemble the early 

stages of growth in a log, causing it to produce harmful compounds. 
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Entomopathogenicity testing: injections 
 
 In addition to live platings, Galleria mellonella fungal injection trials were used to 

determine ability of fungi isolated from B. lecontii to opportunistically colonize 

arthropods. The body wall provides a strong defense against pathogens for all animals, 

so injection of spores through the body wall could permit weakly pathogenic fungi to 

cause disease. Conversely, if direct injection of spores does not result in disease, this 

may rule out pathogenicity all together (Kasson et al. 2015).  

 Most fungi (23 of 31 treatments) caused at least 50% mortality in waxworms by 

the end of the 6-day pathogenicity trials. The Mucorales and the dematiaceous yeasts 

caused a melanization response within 2 hours of injection, indicating that the fungi 

were recognized by the larval immune system as attackers (Loh et al. 2013). All 

Mucorales except “aff. Apophysomyces sp.” caused 50% mortality within 24-60 hours 

post-injection. The result for “aff. Apophysomyces sp.” is not unexpected, since few to 

no conidia were present in the inoculum (Table 3). This pattern of rapid colonization is 

consistent with the results from the fungal co-plate assays, where Mucoralean fungi 

overgrew their competition in 26% of interactions with other fungi. 

 While dematiaceous yeasts did cause melanization, they did not always cause 

mortality. Only 5 of 8 treatments involving dematiaceous yeasts resulted in 50% 

mortality by the end of the study, and this mortality all occurred near the end of the 

study. These results indicate that even following injection, waxworms are able to hold 

off attacks from dematiaceous yeasts, at least for a time. 

 As expected, all entomopathogenic Hypocrealean fungi tested resulted in 50% 

mortality by the end of the study, within 28-72 hours post-injection. 
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 The remaining treatments in Umbelopsidales and Mortierellales did not cause 

significant mortality in waxworms, even following direct injections. Future work should 

investigate potential positive effects for these fungi, especially since results from 

Chapter 2 place these fungi in the core of the preferred B. lecontii fungal community. 
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SUPPLEMENTAL TABLES 
 
SUPPLEMENTAL TABLE 1: Results of pairwise comparisons for B. lecontii live-plating 

trials. All listed fungal isolates are compared to the negative control. 
 

Fungal isolate Log-Rank P Wilcoxon P 
Bonferroni-corrected 
significance threshold 

Trametopsis cervina <.0001* <.0001* 0.05 
Metarhizium flavoviride <.0001* <.0001* 0.025 
Bjerkandera adusta <.0001* <.0001* 0.0167 
Irpex lacteus 0.0028* 0.0031* 0.0125 
Mortierella sp. 0.0346 0.035 0.01 

 
 

SUPPLEMENTAL TABLE 2: Results of pairwise comparisons for G. mellonella live-
plating trials. All listed fungal isolates are compared to the negative control. 

 

Fungal isolate Log-Rank P Wilcoxon P 
Bonferroni-corrected 
significance threshold 

Metarhizium flavoviride <.0001* <.0001* 0.05 
Pochonia bulbillosa <.0004* .0005* 0.025 
Phialophora americana 0.0348 0.0351 0.0167 

 
 

SUPPLEMENTAL TABLE 3: Results of pairwise comparisons for G. mellonella 
injection trials (Batch 1). All listed fungal isolates are compared to the water + antibiotic 

negative control. 
 

Fungal isolate Log-Rank P Wilcoxon P 
Bonferroni-corrected 
significance threshold 

Metarhizium flavoviride <.0001* <.0001* 0.05 
Purpureocillium lilacinum <.0001* <.0001* 0.025 
Verticillium insectorum <.0001* <.0001* 0.0167 
Umbelopsis ramanniana 0.0753 0.0755 0.0125 
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SUPPLEMENTAL TABLE 4: Results of pairwise comparisons for G. mellonella 
injection trials (Batch 2). All listed fungal isolates are compared to the water + antibiotic 

negative control. 
 

Fungal isolate Log-Rank P Wilcoxon P 
Bonferroni-corrected 
significance threshold 

Mucor luteus <.0001* <.0001* 0.05 
Mucor abundans <.0001* <.0001* 0.025 
Pochonia chlamydosporia <.0001* <.0001* 0.0167 
Mortierella sp. <.0001* <.0001* 0.0125 
Lecanicillium attenuatum <.0001* <.0001* 0.01 
Cladophialophora sp. <.0001* <.0001* 0.0083 
Ramichloridium anceps <.0001* <.0001* 0.0071 
Mucor genevensis <.0001* <.0001* 0.0063 
Fonsecaea sp. 0.0007* 0.0008* 0.0056 
Trichoderma viride 0.004* 0.0041* 0.005 
aff. Apophysomyces sp. 0.0754 0.0756 0.0045 

 
 
 

SUPPLEMENTAL TABLE 5: Results of pairwise comparisons for G. mellonella 
injection trials (Batch 2). All listed fungal isolates are compared to the water + antibiotic 

negative control. 
 

Fungal isolate Log-Rank P Wilcoxon P 
Bonferroni-corrected 
significance threshold 

(No	injection) 0.011 0.1025 0.05 
Backusella	circina <.0001* <.0001* 0.025 
Cunninghamella	elegans <.0001* <.0001* 0.0167 
Verticillium	fungicola <.0001* <.0001* 0.0125 
Beauveria	caledonica <.0001* <.0001* 0.01 
Pochonia	suchlasporia <.0001* <.0001* 0.0083 
Tolypocladium	album <.0001* <.0001* 0.0071 
Cyphellophora	oxyspora 0.0011* .0026* 0.0063 
aff.	Fonsecaea	sp. .0003* .0001* 0.0056 
Phialophora	americana 0.0005* 0.0003* 0.005 
Capronia	dactylotricha 0.0312 0.0402 0.0045 
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Appendix A: Media Used 

Glucose Yeast Extract Agar with Antibiotics (GYEA): 
 Agar          20g 
 Dextrose        10g 
 Yeast extract          2g 
 KH2PO4          1g 
 MgSO4       0.5g 
 Thiamine      50μg 
 Biotin       10μg 
 Microelements 
  Fe3+              500μg 
  Mn2+              439μg 
  Zn2+              154μg 
 Distilled water         1L 
 Autoclave 22 minutes, cool to ~50C, add antibiotics, mix & pour 
  Tetracycline hydrochloride 100mg 
  Streptomycin sulfate    10mg  
 
Potato Dextrose Agar (PDA): 
 Difcoâ potato dextrose agar      39g 
 Distilled water          1L 
 Autoclave 22 minutes, cool to ~50C, pour 
 
 

Appendix B: DNA Extraction Protocol 

1. Harvest mycelium and dry between filter paper. Transfer to 1.5 mL 
Eppendorf tubes.  

2. Add 600 μL Nuclei Lysis Solution, macerate.  
3. Incubate at 65C for 15 minutes, vortex for 10 seconds, and incubate for 

another 15 minutes.  
4. Cool to room temperature for 5 minutes.  
5. Add 200 μL Protein Precipitation Solution, vortex for 20 seconds, and 

centrifuge at 13000xg for 3 minutes.  
6. Transfer supernatant to a new 1.5 mL Eppendorf tube containing 600 μL  

isopropanol. Mix by inversion and centrifuge at 13000xg for 1 minute.  
7. Decant supernatant and add 600 μL 70% ethanol. Centrifuge at 13000xg 

for 1 minute. Decant supernatant.  
8. For extra purification, repeat step 7.  
9. Air-dry the pellet for approximately 30 minutes. Add 100 μL Elution Buffer  

and store in freezer. 
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