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Background: ∆9-Tetrahydrocannabinol (THC, a CB1 receptor agonist) and Cannabidiol
(CBD, a non-competitive antagonist of endogenous CB1 and CB2 ligands) are two
primary components of Cannabis species, and may modulate fear learning in mammals.
The CB1 receptor is widely distributed throughout the cortex and some limbic regions
typically associated with fear learning. Humans with posttraumatic disorder (PTSD) have
widespread upregulation of CB1 receptor density and reduced availability of endogenous
cannabinoid anandamide, suggesting a role for the endocannabinoid system in PTSD.
Pharmacological blockade of memory reconsolidation following recall of a conditioned
response modulates the expression of learned fear and may represent a viable target for
the development of new treatments for PTSD. In this study, we focused on assessing the
impact of the key compounds of the marijuana plant both singly and, more importantly,
in concert on attenuation of learned fear. Specifically, we assessed the impact of THC,
CBD, and/or the remaining plant materials (post-extraction; background material), on
reconsolidation of learned fear.

Method: Male Sprague-Dawley rats received six 1.0 mA continuous foot shocks
(contextual training). Twenty-four hours later, rats were re-exposed to the context.
Immediately following memory retrieval (recall) rats received oral administration of low
dose THC, high dose THC, CBD, CBD + low THC, CBD + high THC [as isolated
phytochemicals and, in separate experiments, in combination with plant background
material (BM)]. Rodents were tested for freezing response context re-exposure at 24 h
and 7 days following training.

Results: CBD alone, but not THC alone, significantly attenuated fear memory
reconsolidation when administered immediately after recall. The effect persisted for
at least 7 days. A combination of CBD and THC also attenuated the fear response.
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Plant BM also significantly attenuated reconsolidation of learned fear both on its own and
in combination with THC and CBD. Finally, THC attenuated reconsolidation of learned
fear only when co-administered with CBD or plant BM.

Conclusion: CBD may provide a novel treatment strategy for targeting fear-memories.
Furthermore, plant BM also significantly attenuated the fear response. However, whereas
THC alone had no significant effects, its effects were modulated by the addition of other
compounds. Future research should investigate some of the other components present
in the plant BM (such as terpenes) for their effects alone, or in combination with isolated
pure cannabinoids, on fear learning.

Keywords: reconsolidation, blockade, fear, memory, cannabinoids, cannabis, THC, CBD

INTRODUCTION

∆9-Tetrahydrocannabinol (THC), the primary psychoactive
component of Cannabis (sativa, indica, and ruderalis), has been
reported to affect fear memory, expression, consolidation, and
extinction (Phan et al., 2008; Lemos et al., 2010; Klumpers F.
et al., 2012; Klumpers L. E. et al., 2012; Klumpers et al.,
2013; Rabinak et al., 2013, 2014). In addition, Cannabidiol (or
CBD), another component of the plant, has also been reported
to impact fear memory. Medical cannabis (or marijuana for
medical purposes, MMP) is widely used to self-medicate for
a variety of medical conditions, including disorders rooted
in fear learning such as post-traumatic stress disorder, PTSD
(Lucas and Walsh, 2017). However, the effects of marijuana on
fear memory reconsolidation have been only sparsely explored.
Additionally, MMP is often utilized as a whole plant material.
However, the effects of combined doses of THC and CBD in
varying concentrations, as well as the role of the remaining
(non-THC, non-CBD) plant material and its interactions with
THC and CBD, remain largely unexplored. Here, we aimed
to identify whether combined THC and CBD could affect
fear memory reconsolidation both in isolation and when
combined at varying concentrations. In addition, since it is highly
relevant for the use of whole plant material as MMP, we also
sought to determine whether the effects of THC and CBD on
reconsolidation are modulated by the inclusion of the remaining
plant material.

Behaviorally, in many respects CBD has been shown to
produce effects which are opposite those of THC. One
functional magnetic resonance imaging (fMRI) study found CBD
and THC had opposite effects on regional activation in the
hippocampus, amygdala, superior temporal cortex, and occipital
cortex (Bhattacharyya et al., 2010). The same study found that
pretreatment with 5 mg CBD intravenously (IV) attenuated the
severity of psychotic symptoms induced by THC.

There is some data from central studies to suggest that
targeting the endocannabinoid (ECB) system may be a viable
strategy for pharmacologically attenuating established fear
memories. While THC acts as an agonist for the CB1 and
CB2 receptors, both of which have been implicated in
fear-learning (Lafenêtre et al., 2007; Ruehle et al., 2012),
the actions of CBD are complex. CBD exerts some of its

effects indirectly by inhibiting the actions of endogenous
CB1 and CB2 agonists. CBD has been shown to act as a potent
antagonist for CB1 and CB2 ligands, while displaying low
binding affinity for the CB1 receptor (Bisogno et al., 2001;
Thomas et al., 2004, 2007). CBD has also been shown to act as
an indirect agonist of 5-HT1A receptors, and may exert some
of its effects via this mechanism (Rock et al., 2012; McPartland
et al., 2015). CB1 receptors are expressed in the hippocampus,
basolateral and lateral amygdala, and medial prefrontal cortex
(mPFC; Tsou et al., 1998)—key regions implicated in fear
learning—but are absent in the central and medial nuclei of
the amygdala (Katona et al., 2001), regions involved in fear
expression. Thus, CB1 likely affects fear expression via an
indirect neuromodulatory mechanism. CB1 receptors are found
on GABAergic neurons of the basolateral amygdala (BLA), and
their activation dampens BLA inhibitory interneuron activity.
This disinhibition increases output from BLA projections
(Marsicano et al., 2002; Pistis et al., 2004). BLA stimulation
induces long-term potentiation (LTP) along the BLA-prelimbic
(PLC) pathway, and blockade of CB1 transmission prevents
this (Tan et al., 2010). The same study also demonstrated that
pharmacological blockade of BLA-PLC CB1 signaling blocks
encoding of fear learning. Thus there is a strong theoretical
framework for the notion that pharmacologically modulating
the ECB system may allow for the attenuation of traumatic
memories. It is possible that the blockade of CB1 agonists by
CBD impedes BLA-PLC signaling, thereby exerting its effects on
fear learning.

The distribution of central receptors in the ECB system
has already been implicated in human PTSD. Evidence from
positron emission tomography (PET) imaging suggests that
among those with PTSD there is a widespread upregulation
of CB1 receptor density particularly in regions implicated in
learned fear (the amygdala, hippocampus, orbitofrontal cortex,
and anterior cingulate; Neumeister et al., 2013). Combined with
behavioral evidence of cannabinoid involvement in fear-learning,
this suggests the endocannabinoid systemmay be involved in the
mediation of fear memories and may represent a viable target for
the mitigation of some PTSD symptoms. Indeed, some research
points to positive effects of oral THC in the reduction of hyper-
arousal and frequency of nightmares among those affected by
PTSD (Roitman et al., 2014).
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Some findings have also suggested that THC and CBD may
disrupt the reconsolidation of recalled fear memories (Lin et al.,
2006; Stern et al., 2012), a novel therapeutic strategy that may
have relevance for attenuating established memories of trauma.
Reconsolidation blockade is the process by which the expression
of formed memories is reduced by drugs administered following
recall (during the reconsolidation window; Nader et al., 2000;
Nader and Hardt, 2009; Pitman et al., 2011). This procedure may
offer new avenues for treatment of fear-based disorders that are
resistant to extinction. Although several medicinal plants and
isolated compounds have been reported to affect fear expression
and reconsolidation in rodents (Nader et al., 2000; Lin et al., 2006;
Da Silva et al., 2008; Bustos et al., 2009; Stern et al., 2012; Murkar
et al., 2016; de Carvalho and Takahashi, 2017), reconsolidation
paradigms have had mixed success when translated in human
studies (Brunet et al., 2008; Pitman et al., 2011; Spring et al.,
2015). Thus, new targets are needed for future translational
studies with humans and Cannabis spp. extracts may offer one
such target.

Although anecdotal findings regarding CBD and THC
are compelling, there is a dearth of information around
the effectiveness of cannabinoids at blocking fear memory
reconsolidation. There is some evidence to suggest that both CBD
and THC may block fear memory reconsolidation (Stern et al.,
2012, 2015). This is curious, since THC and CBD often produce
opposite effects. The effects of combined doses of CBD and
THC on fear memory reconsolidation have also been sparsely
explored (Stern et al., 2015), albeit at very low doses. It is
important to assess this, as the consumption of marijuana would
entail exposure to both the main cannabinoids simultaneously.
In addition, there may be other active components present in the
plant material that may be biologically active and may modulate
the effects of the key cannabinoids. However, the effects of other
components of the plant in combination with cannabinoids (such
as the terpenes) remain largely unexplored. In terms of relevance
for human use of MMP, it is important to explore the effects
of all components of the plant (since MMP, which is typically
administered as whole plant material, does not solely consist of
THC and CBD). It is also clear that the concentrations of THC
and CBD can vary based on the specific species of the plant; thus
it is important to identify and standardize the concentrations
of THC and CBD in administered extracts and to verify the
effects of the remainder of the plant extracts containing varying
concentrations of THC and CBD.

Herein, our experiments examined whether combined doses
of THC and CBD would block fear memory reconsolidation,
as well as whether the effects of the phytocannabinoids
are modulated by the remaining plant background material
(BM; all remaining plant components following CBD/THC
extraction). In order to simulate MMP preparations consisting
of whole plant material (which is much more relevant for
human medical cannabis use, which may contain other active
non-cannabinoids affecting fear memory), we tested doses of
isolated phytochemicals THC and CBD singly, or in combination
with each other, and in combination with plant BM. In addition,
in order to simulate the effects of varying concentrations of THC
in plant material, we tested the effects of co-administration of

CBD with both a low- and high-dose of THC (both with and
without BM).

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats (Charles River Laboratories
International, Inc., Wilmington, MA, USA; 180–200 g on
arrival) were pair housed and maintained on a 12-h light/dark
cycle (lights on at 07:00-h). Temperature was maintained at
23◦C, and relative humidity at 37%. Throughout the duration
of the study, animals had free access to food and water.
All experiments were conducted in accordance with the
guidelines established by the Canadian Council on Animal
Care and approved by the University of Ottawa Animal
Care Committee.

Drugs and Injections
Isolated compounds THC and CBD, as well as plant BM,
were extracted from raw plant material of a Cannabis indica
and Cannabis sativa hybrid variety (‘‘Strawberry Kush’’). Pure
compounds and BM were provided by T. Durst (University of
Ottawa, ON, Canada). Plant BM consisted of all other remaining
plant components in the extracts following the isolation of THC
and CBD. Due to the complexity of completely extracting all the
THC and/or CBD, our BM contained less than 3 ± 0.5% THC
and less than 0.6% of CBD. Animals were habituated to daily
administration of oral almond oil (vehicle; via intubation) for
1 week prior to the experiment. In conditions where the BM was
co-administered with cannabinoids, the amount of BM was held
constant at 30% of the total amount of compounds administered
(i.e., treatment dose was 70% cannabinoids and 30% BM; the
dose of BM was calculated as BM

(THC+CBD+BM)
= 0.3). Our

low doses of CBD and THC were comparable to moderate
doses administered systemically in previous research (Stern
et al., 2012, 2015). Stern et al. (2015) observed strong effects
on reconsolidation at 10 mg/kg I.P. THC, but did not test at
higher doses.

For Experiments 1 and 2, rats were randomly assigned to one
of seven treatment groups. (1) 50 mg/kg THC + 21.5 mg/kg BM;
(2) 50 mg/kg CBD + 21.5 mg/kg BM; (3) 5 mg/kg THC + 2mg/kg
BM; (4) 50 mg/kg THC + 50 mg/kg CBD + 43 mg/kg BM;
(5) 50 mg/kg CBD + 5 mg/kg THC + 24 mg/kg BM; (6) 43 mg/kg
BM; and (7) vehicle alone.

For Experiments 3 and 4, in order to explore the effects of
isolated cannabinoids in absence of the BM of the plant, rats
were randomly assigned to 1 of 4 treatment groups: (1) 5 mg/kg
THC; (2) 50 mg/kg CBD; (3) 50 mg/kg THC + 50 mg/kg CBD;
(4) 43 mg/kg BM; or (5) Vehicle.

For Experiment 5, rats were similarly randomly assigned to
one of five treatment groups: (1) 5 mg/kg THC; (2) 50 mg/kg
CBD; (3) 50 mg/kg THC + 50 mg/kg CBD; (4) 43 mg/kg BM; and
(5) Vehicle.

Contextual Fear Conditioning
The conditioning chambers (Coulbourn Instruments) measured
31 cm × 25 cm × 30 cm. The front and back walls were
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made of clear acrylic, and the two side walls and top made of
stainless steel. The floor was composed of 16 stainless steel rods
(4 mm diameter spaced 1.4 cm apart) connected to Coulbourn
precision regulated animal shockers, which delivered scrambled
footshock (1.0 mA). Animals (N = 7–10/group) were randomly
distributed into treatment groups. Subjects that failed to achieve
a minimum baseline freezing level of 40% during re-exposure
to the fearful context (memory recall; assessed on Day 2) were
removed from the analyses. All experimental procedures were
conducted in accordance with methods established by our prior
research (Murkar et al., 2018).

Experimental Procedure
Experiment 1: Effects of Plant Extracts With
Background Material on Fear Memory
Reconsolidation, Short-Term
Animals were exposed to six consecutive 1-s footshocks over the
course of 11 min. Contextual conditioning was used (pairing
of footshock with the conditioning chamber). Twenty-four
hours later, animals were re-exposed to the context in which
they received the footshock (conditioning chamber) for a
duration of 5 min, and freezing (total time spent in complete
immobility) was measured (Day 2; recall). Cage placement
and assignment to drug treatment groups were randomized
and counterbalanced.

Immediately following the 5-min recall session, animals
were administered drugs according to one of the experimental
conditions (low THC + BM; high THC + BM; CBD + BM;
high CBD + low THC + BM; high CBD + high THC + BM;
BM alone; or vehicle alone). Twenty-four hours later (Day 3;
testing), animals were re-exposed to the conditioning chamber
and freezing wasmeasured over the course of 10min. Freezing on
Day 3 was scored in two 5-min time blocks (0–5 and 6–10 min).
The timeline of procedures used for fear conditioning and the
results are illustrated in Figure 1. There were no significant group
differences prior to drug administration (see Supplementary
Figure S1).

Experiment 2: Effects of Plant Extracts With
Background Material Reconsolidation of Fear
Memory, Long-Term
Using the same training procedures as experiment 1, experiment
2 was conducted to test for long-term effects of isolated
cannabinoids in combination with plant BM on fear memory
reconsolidation.

Immediately following the 5-min recall session, animals were
exposed to one of the experimental conditions (low THC +
BM; high THC + BM; CBD + BM; high CBD + low THC
+ BM; high CBD + high THC + BM; BM alone; or vehicle
alone). One week later (Day 10), animals were re-exposed to
the conditioning chamber and freezing was measured over the
course of 10 min. Freezing on Day 10 was scored in two 5-min
time blocks (0–5 and 6–10 min). The timeline of procedures
used for fear conditioning and the results are illustrated in
Figure 2. There were no significant group differences prior to
drug administration (see Supplementary Figure S2).

FIGURE 1 | Cannabis extracts with background material (BM) significantly
attenuate the reconsolidation of contextual learned fear 24 h after drug
administration. ∗p < 0.05, ∗∗p < 0.01.

FIGURE 2 | Cannabis extracts with BM significantly attenuated the
reconsolidation of contextual learned fear; effect is present on testing day 10.
∗p < 0.05, ∗∗p < 0.01

Experiment 3: Effects of Plant Extracts Without
Background Material on Fear Memory
Reconsolidation, Short-Term
Using the same training procedures as Experiments 1, 3 was
conducted to test for short-term effects of isolated cannabinoids
in the absence of plant BM, on fear memory reconsolidation.

Immediately following the 5-min recall session, animals
were exposed to one of the following experimental conditions
(low THC; high THC; CBD, CBD + THC; BM alone; or
vehicle alone). Twenty-four hours later (Day 3; testing),
animals were re-exposed to the conditioning chamber and
freezing was measured over the course of 10 min. Freezing
on Day 3 was scored in two 5-min time blocks (0–5 and
6–10 min). The timeline of procedures used for fear conditioning
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FIGURE 3 | Isolated cannabinoids alone significantly attenuated
reconsolidation of contextual learned fear 24 h after drug administration.

FIGURE 4 | Isolated cannabinoids significantly attenuated the
reconsolidation of contextual learned fear; effect is present on testing day 10.

and the results are illustrated in Figure 3. There were no
significant group differences prior to drug administration (see
Supplementary Figure S2).

Experiment 4: Effects of Plant Extracts Without
Background Material on Fear Memory
Reconsolidation, Longer-Term
Using the same training procedures as Experiments 1,
4 was conducted to test for longer-term effects of isolated
cannabinoids, in the absence of plant BM on fear memory
reconsolidation.

FIGURE 5 | The individual Cannabis extracts on their own had no significant
effects on reconsolidation of contextual learned fear 24 h after drug
administration in the absence of fearful memory-trace recall.

Immediately following the 5-min recall session, animals were
exposed to one of the following experimental conditions (low
THC; high THC; CBD; CBD + THC; BM alone; or vehicle
alone). One week later (Day 10), animals were re-exposed to
the conditioning chamber and freezing was measured over the
course of 10 min. Freezing on Day 10 was scored in two 5-min
time blocks (0–5 and 6–10 min). The timeline of procedures used
for fear conditioning and the results are illustrated in Figure 4.

Experiment 5: Effects of Plant Extracts in the
Absence of Memory Recall (No-Recall Control
Conditions)
Experiment 5 was conducted as a control experiment to
determine whether blockade of reconsolidation required
reactivation of the memory trace. The same training and testing
procedures as the other experiments were used, except that recall
of the fearful memory trace on Day 2 was absent.

Animals in this experiment were exposed to one of five
treatment conditions (low THC; CBD; CBD + high THC; BM;
or vehicle) on Day 2 in home cage (no recall). Animals were then
exposed to the conditioning chamber on Day 3, and freezing was
measured over the course of 10min in two 5-min blocks (0–5 and
6–10 min). The timeline of procedures for this no-recall control
and the results are illustrated in Figure 5.

Statistical Analyses
All statistical analyses were conducted using IBM Statistics
Package for the Social Sciencesr (SPSS) 20. Data were
analyzed by mixed-measures analysis of variance (ANOVA),
in which drug treatment was the between-groups variable
and time was the within-groups variable. Greenhouse-Geisser
correction was applied where the assumption of sphericity was
violated. Follow-up comparisons of significant main effects and
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interaction effects were conducted using Bonferroni corrected
t-tests, or Games-Howell post hoc analysis where the assumption
of homogeneity of variance was violated.

RESULTS

Experiment 1
Figure 1 shows the effects of plant extracts administered
immediately post recall on freezing behavior as measured during
testing on Day 3. The mixed measures ANOVA revealed
a significant main effect of treatment condition on freezing
behavior, F(6,53) = 5.509, p < 0.001.

Follow-up analyses indicated that animals treated with either
low THC (5 mg/kg + BM; p < 0.05) or CBD + high THC
(50 mg/kg each + BM; p < 0.05) displayed significantly reduced
freezing behavior during the first 5 min of testing. Animals that
received low THC (5 mg/kg + BM; p < 0.05), CBD (50 mg/kg +
BM; p < 0.05), or BM alone (p < 0.05) following memory recall
on Day 2 also displayed significantly less Freezing than vehicle-
treated animals during the second 5 min bin of testing on Day 3.
Animals that received CBD + high THC (50 mg CBD + 50 mg/kg
THC + BM) p < 0.01) also displayed significantly reduced
freezing on day 3. This suggests that all groups except for high
THC + BM (50 mg/kg; p > 0.05) and CBD + low THC (50 mg
CBD + 5 mg/kg THC + BM, p > 0.05) had a significant
effect on freezing behavior when co-administered with
plant BM.

Experiment 2
Figure 2 shows the effects of plant extracts administered
immediately post recall, on freezing behavior on Day
10 (long-term). The mixed measures ANOVA revealed a
significant main effect of treatment group on freezing behavior,
F(6,53) = 4.974, p < 0.001.

Follow-up analyses indicated that animals treated with either
low dose of THC (5 mg/kg + BM; p < 0.01) or CBD + high THC
(50 mg/kg each + BM; p < 0.01) displayed significantly reduced
freezing behavior during the first 5 min of testing. Animals
treated with low dose of THC (5 mg/kg + BM; p < 0.01), CBD
(50 mg/kg + BM; p < 0.01), CBD + low THC (50 mg/kg CBD
and 5 mg/kg THC + BM, p < 0.01), CBD + high THC (50 mg/kg
each + BM, p < 0.01), or BM alone (p < 0.01) following memory
recall on Day 2, displayed significantly less Freezing than vehicle-
treated animals during the last 5 min of testing on Day 3. This
suggests that all drug treatments except for the high dose of
THC + BM (50 mg/kg; p > 0.05) had a significant effect on
subsequent long-term freezing behavior when co-administered
with plant BM.

During the last 5 min of testing, CBD + high THC (50 mg/kg
each + BM) yielded significant reductions in freezing behavior
(p < 0.05), as did BM (p < 0.05). All other group effects were
non-significant during the last 5 min of testing.

Experiment 3
Results from Experiment 3 are illustrated in Figure 3. The mixed
measures ANOVA revealed a significant main effect of treatment
group on freezing behavior, F(4,40) = 7.517, p < 0.001.

Follow-up analyses indicated that animals that received BM
(p < 0.05) or CBD + high THC (50 mg/kg each; p < 0.05)
displayed significantly reduced freezing behavior during the
6–10 min window of testing. Animals that received CBD
(50 mg/kg; p < 0.05) following memory recall on Day 2 also
displayed significantly less Freezing than vehicle-treated animals
during the last 5 min of testing on Day 3. This suggests
that all drug treatments except for low-dose THC (5 mg/kg;
p> 0.05) had a significant effect on subsequent freezing behavior
when administered as pure compounds (in the absence of
plant BM).

Experiment 4
Figure 4 shows the results of Experiment 4. The mixed measures
ANOVA revealed a significant main treatment effect on freezing
behavior, F(4,40) = 6.670, p < 0.001.

Follow-up analyses indicated that animals that received the
BM (p < 0.05) or CBD + high THC (50 mg/kg each; p < 0.05)
displayed significantly reduced freezing behavior during the
first 5 min and last 5 min of testing on Day 10. Animals
that received oral CBD (50 mg/kg) following memory recall
on Day 2 also displayed significantly less Freezing than control
(vehicle-treated) animals during both the first 5 min (p < 0.05)
and last 5 min (p < 0.05) of testing on Day 10. This suggests
that all drug treatments except for low-dose THC (5 mg/kg;
p > 0.05) had a significant effect on subsequent longer-term
freezing behavior when administered as isolated compounds
without plant BM.

During the last 5 min of testing, CBD + high THC
(50 mg/kg each) yielded significant reductions in freezing
behavior (p < 0.05), as did BM (p < 0.05). All other group effects
were non-significant during the last 5 min of testing.

Experiment 5
Figure 5 shows the results of Experiment 5. Analyses revealed
no significant main effects of group for Experiment 5,
F(4,40) = 0.919, p > 0.05.

DISCUSSION

Our findings suggest that CBD can modulate reconsolidation
of learned fear, potentially opening up new treatment avenues
for fear-based disorders. Our results also demonstrated that
THC at the doses used (the primary psychoactive component
of the plant) had no discernible effects on its own, but
when co-administered with CBD and/or whole plant BM, was
effective in modulating the response (suggesting the effects of
THC on fear learning are influenced by other components
of the plant). Our studies also revealed an inverted ‘‘u’’
dose response, such that at low- and high-dose THC had
opposite effects when co-administered with plant BM. Low-dose
THC, but not high-dose THC, attenuated reconsolidation of
learned fear, when co-administered with BM. However, these
effects were dependent on mediation by co-administration
of either CBD or BM. In contrast to previous work (Stern
et al., 2015), we found no significant effects of pure THC on
reconsolidation of contextual learned fear. We also observed
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no attenuation of the learned fear expression, when drugs were
administered without recall (re-exposure to the conditioned
stimulus), suggesting the effect was dependent upon recall of the
fearful memory.

These findings partially support prior work which suggests
the effects of THC are synergized by the addition of other
compounds (either in combination with CBD or whole plant
material; Carlini et al., 1974; Fairbairn and Pickens, 1981;
Mechoulam and Ben-Shabat, 1999). Research suggests that the
behavioral effects of THC are modified by co-administration
of other compounds, increasing some potentially therapeutic
effects while diminishing sedative and anxiogenic effects (Russo,
2011), and our findings would seem to partially confirm this.
However, since BM significantly attenuated the reconsolidation
of learned fear on its own, it is unclear whether this is a
synergistic effect of THC administered with whole plant material.
Since the effects of 5 mg/kg THC were not augmented by
co-administration (and since the effect of BM persisted when
administered without the addition of THC), it is possible that
therapeutic effects resulted primarily from the BM alone rather
than THC-BM synergism.

The effects of cannabinoids on fear learning might also
be mediated by other factors. CB1 receptors have been
shown to play a role in modulating the release of other
neurotransmitters such as acetylcholine and dopamine (Piomelli,
2003; Terzian et al., 2011; Micale et al., 2013). Knock-out
mice lacking CB1 receptors on dopamine expressing neurons
(type-1 receptors; D1Rs) have enhanced expression of cued
fear (Terzian et al., 2011), and mice lacking CB1 receptors on
neurons expressing D1Rs also exhibited deficits in safety learning
in a step-down avoidance task in one study (Micale et al.,
2017). Similarly, the effects of CB1 activation on anxiety-like
behavior in rodents is partially dependent upon GABAergic and
glutamatergic factors (Rey et al., 2012). It is therefore likely that
the neuromodulatory effects of CB1 activation on a variety of
neurochemical networks play a complex role in the effects of
cannabinoids on fear learning as well.

Since BM was essentially devoid of THC and CBD
but contained all remaining plant components, a number
of molecules could potentially have had effects on
reconsolidation of learned fear on their own. Furthermore,
THC and CBD precursors cannabidiolic acid (CBDA) and
tetrahydrocannabinolic acid (THCA) can be decarboxylated to
CBD and THC (Marks et al., 2009), and were present in the
BM in small quantities, and could potentially be transformed
to active cannabinoid molecules THC and CBD over time. The
quantity of THC in our BM sample was 3 ± 0.5% and a minute
quantity of CBD (less than 0.3%). The resulting dose of active
THC may have been sub-anxiolytic on its own; however, it
is likely that the effects of low-dose THC in the BM could be
potentiated by some of the other molecules in the BM (e.g.,
terpenoids). In such a case, we could anticipate a potentiation
of the behavioral effects of 5 mg/kg THC by the BM when
co-administered. In our experiments this was not the case, but a
floor effect due to very low freezing levels among both conditions
(BM alone and 5 mg/kg THC plus BM) may have masked such
an effect.

Another possibility is that other non-THC, non-CBD
constituents of the plant modulated fear learning on their own.
Cannabis spp. BM contains a number of terpenoid molecules,
some of which have been shown to affect anxiety and fear
learning. β-Caryophyllene (BCP), for example, is present in
Cannabis spp. and has been shown to exert anxiolytic-like activity
in rodents (Bahi et al., 2014). Anxiolytic effects of BCP are
blocked by CB2 antagonist AM630 (Bahi et al., 2014), but not
by 5-HT1A antagonist NAN-190 or the GABAA Benzodiazepine
partial agonist Flumazenil (Galdino et al., 2012). This suggests
BCP may act through CB2 receptors to produce anxiolytic-like
effects in rodents. However, the exact mechanism by which BCP
exerts its effects remains unknown. In addition, the terpenoids
present may vary significantly among different plant strains (in
our case, a detailed analysis of the terpenoids present in the BM is
not available). Clearly, further research is needed in this regard.
Our experiments are also not without limitations. Here, we did
not conduct an in-depth dose-response of BM. Furthermore,
our animals were pair-housed which could potentially result in
the social transmission of fear, and be a confounding factor. In
our experience, however, the stress of isolation through single
housing is potentially a more severe confounding factor. Last but
not least, one might highlight the potential confounding effects
of locomotor effects of THC on subsequent freezing as a limiting
factor. However, the elimination of THC in the rat is biphasic,
with an initial rapid drop in THC levels in the first 120 min
post-administration followed by a slower elimination half-life of
THC afterward (Klausner and Dingell, 1971; Tseng et al., 2004).
11-hydroxy- ∆9-THC (the primary active metabolite of THC)
is rapidly eliminated, and levels of 11-OH- ∆9-THC return to
baseline only 240 min post-administration in both male and
female rats (Tseng et al., 2004). As a result, the behavioral effects
of THC in the rat are short-lived. This is reflected in our data,
since our THC 50mg/kg group exhibited freezing levels that were
nearly identical to those of the vehicle-treated animals, 24 h later.

In order to simulate MMP, dosages of BM in our studies
were maintained at a constant 30% of total compounds
administered for each group. Future studies should aim to
conduct dose-response experiments with BM alone and in
combination with THC and CBD. Studies should also aim to
explore the effects of isolated terpenes (Cannabis-derived) alone
and in combination with THC and/or CBD. Finally, future
studies could benefit from central microinjection studies aimed
at sites known to play a role in fear learning (e.g., BLA, CA1,
mPFC), and attempt to block the effects with co-administration
of antagonists, to help identify the potential locus (loci) of action.

With regards to humans, behavioral studies suggest that
the response to marijuana in individuals self-medicating for
PTSD varies with symptom type and severity. Wilkinson et al.
(2015) for example, found that symptom severity and violent
behavior are significantly worse among veterans with PTSD
who self-medicated with marijuana. It may be the case that
those individuals with greater symptom severity were more likely
to seek out alternate means to self-medicate. Indeed, veterans
with PTSD are more likely to use marijuana and synthetic
cannabis products than veterans without PTSD (Grant et al.,
2016). Further evidence suggests that individuals with PTSD
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with marijuana dependence have blunted emotional reactivity,
supporting the notion that cannabinoids may affect fear
expression (Tull et al., 2016). Our results suggest that by using
reconsolidation paradigms, prolonged treatment (or chronic use)
may not be necessary in order to alleviate learned fear. Also,
since CBD by itself was effective in our study, administration of
CBD alone (i.e., a non-psychoactive component) may potentially
be effective without exposing individuals to long-term treatment
with psychoactive substances.

While these insights are valuable, the bulk of recent research
on the effects of cannabinoids in humans with PTSD has
observed the effects through the lens of self-medication (rather
than clinical trial), and the lack of experimental guidance of
drug administration in studies utilizing raw plant material
leaves open the question of whether differences in plant
composition may have led to variability in results (and whether
different components of the plants—e.g., THC, CBD, etc.—are
present in differing ratios and hence differentially affect PTSD
symptomology). Since our findings revealed an inverted-u
shaped dose response for THC in combination with BM and
CBD, it is important that (as we have done here) studies using
plant-derived cannabinoids characterize the specific THC and
CBD content of extracts and raw plant material. Our studies
also demonstrated that the plant BM is not necessarily inert,
and also exerts effects on reconsolidation of fear memory. This
suggests THC andCBD are not the only fearmemorymodulating
molecules contained within the plant. Although CBD and THC
(when co-administered with other compounds) may modulate
fear learning, future research should be cautious to identify and
quantify the THC, CBD, and other compounds that may be
contributing to the measured effects on behavior.

Karniol et al. examined the effects of CBD alone as early as
1974 (Karniol et al., 1974), and found that oral CBD reduced
THC-induced anxiety. The same group later demonstrated
that CBD could block the effects of THC in normal, healthy
participants (Zuardi et al., 1982). More recently, synthetic
cannabinoid Nabilone has been demonstrated to effectively
reduce the frequency of nightmares in sufferers of PTSD
(Fraser, 2009; Cameron et al., 2014). Interestingly, oral THC
has been shown to reduce amygdala activation in response to
images of threat-related faces (Ballard et al., 2012); however,
this contradicts earlier findings showing THC alone may be
anxiogenic (Karniol et al., 1974). As a result, it is clear that
our current understanding of the role of the endocannabinoid
system in PTSD, anxiety, and learned fear is far from complete.
Our findings seem to suggest that—at least at the doses
used—THC by itself is not sufficient to modulate fear learning,
but needs to be co-administered either with CBD, or with
other compounds in the cannabis plant, to be effective. Since
evidence suggests that PTSD is characterized by upregulation
of CB1 receptors and reduced availability of anandamide, it
may be the case that CB1 receptor activation by pharmacologic
agents might serve to compensate for this receptor upregulation
and restore the normal ‘‘tone’’ of the endocannabinoid system
over time. However, effects of acute vs. chronic activation
by pharmacological agents may not necessarily be the same.
Future research should, therefore, aim to clarify the acute

effects of CB1 agonists vs. chronic use, as well as examining
differences in effects among normal, healthy subjects vs. those
at risk of having altered endocannabinoid activity (e.g., sufferers
of PTSD).

CONCLUSION

Both past and recent data cumulatively support the notion that
CBD may impart anxiolytic action (Blessing et al., 2015). In
addition, the action of THC in animal and human models
of fear-learning warrants further clinical research to elucidate
whether cannabinoids may serve as a novel intervention(s) for
fear-related disorders such as PTSD. It will be important for
these trials to identify the other potentially non-psychoactive
components of Cannabis spp. to determine if and how they
mediate fear learning. It goes without saying that ongoing and
future studies aimed at unraveling the mechanism(s) of action
of THC and CBD are critically important to fully exploit the
therapeutic potential of these pharmacologic targets. Finally, it
would be interesting to better understand if and how various
pharmacologically active components of Cannabis spp. may
interact to modulate the signaling of relevant brain circuits (e.g.,
pathways linking cortex and the amygdala) to affect encoding,
consolidation, and reconsolidation of learned fear.
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