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Abstract: The neurotoxin β-N-methylamino-L-alanine (BMAA), a non-proteinogenic amino acid
produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms) microor-
ganisms, has been proposed to be associated with the development of neurodegenerative diseases. At
first, BMAA appeared to be ubiquitously present worldwide in various organisms, from aquatic and
terrestrial food webs. However, recent studies, using detection methods based on mass spectrometry,
instead of fluorescence detection, suggest that the trophic transfer of BMAA is debatable. This study
evaluated BMAA in 22 cetaceans of three different species (Phocoena phocoena, n = 8, Delphinus delphis,
n = 8, and Tursiops truncatus, n = 6), found stranded in North-West Spain. BMAA analysis of the
liver, kidney, or muscle tissues via sensitive liquid chromatography with tandem mass spectrometry
did not reveal the presence of this compound or its isomers. The absence recorded in this study
highlights the need to better understand the trophic transfer of BMAA and its anatomical distribution
in marine mammals.

Keywords: marine mammals; phycotoxins; harmful algae blooms; bioaccumulation; marine food
webs; Alzheimer disease

1. Introduction

The non-proteinogenic neurotoxin β-N-methylamino-L-alanine (BMAA) has been
proposed to act as an environmental factor, inducing the development of several neurode-
generative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, and
Parkinson’s disease [1–4]. However, the hypothesis of a causative association between
dietary exposure to BMAA and a neurodegenerative pathological condition remains con-
troversial [5–8]. Cox et al. (2005) [9] detected BMAA in 95% of all cyanobacterial genera
tested and concluded that BMAA was universally produced by cyanobacteria species from
aquatic and terrestrial habitats, in both symbiotic and free-living forms. However, this
conclusion was questioned, due to the non-specificity of the analytical method used. The
positive detection of BMAA, with liquid chromatography (LC) or gas chromatography
(GC), associated with ultraviolet, fluorescence spectroscopy, or single mass spectrometry
(MS), is just based on the retention time and signal of the parent ion [10–12]. All these
analytical methods might give false-positive results, considering that BMAA might co-elute
with its natural isomers (i.e., DAB, 2,4-diaminobutyric acid; BAMA, β-amino-N-methyl-
alanine; AEG, N-2(aminoethyl)glycine; DABA, 2,3-diaminobutyric acid; 3,4-diaminobutyric
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acid; 3-amino-2-(aminomethyl)-propanoic acid; and 2,3-diamino-2-methylpropanoic acid)
or other interfering compounds [13]. Currently, it is accepted that only the use of liquid
chromatography with tandem mass spectrometry detection (LC-MS/MS), with or without
previous derivatization, ensures a reliable BMAA identification, based on the retention
time, mass-to-charge ratio (m/z) of the precursor ion, and product fragmentions after
collision-induced dissociation, and the ratio between the intensities of respective ions
transitions in multiple reaction monitoring (MRM) spectrum [10,13]. Moreover, recent
studies, using LC-MS/MS, have shown that most cyanobacteria produce only trace levels
of BMAA [14,15].

In addition to cyanobacteria, several diatoms species produce BMAA and its structural
isomers [16–18]. Several of these potential BMAA-producers are present in our study area,
the coast of Galicia in North-West (NW) Spain (Figure 1), i.e., the diatoms Chaetoceros spp.,
Navicula spp., Skeletonema spp., and Thalassiosira spp. [19–23]. and cyanobacteria from the
genera Anabaena, Myxosarcina, Lyngbya, Phormidium, Symploca, Nodularia, Nostoc, Calothrix,
and Microcystis [20]. Moreover, the predominant wind and oceanographic conditions of
NW Spain enhance phytoplankton production, and diatoms and dinoflagellates blooms
are recurrently reported [20].
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Figure 1. Location of stranded marine mammals collected along Galician coast that were used in the
present study.

The presence of BMAA has been described in several organisms along the aquatic and
terrestrial food chains, including zooplankton [24–26], crustaceans [27,28], bivalves [25,29–31],
fish [25,32], and terrestrial plants and animals [33–36]. However, a review by Lance et al.
(2018) [37] observed no clear indication of the BMAA trophic transfer. If BMAA is bioac-
cumulated through the marine food web, it is plausible that the highest concentration of
BMAA would be present in apex predators [38–40]. Massive strands of marine mammals,
due to harmful algal events, have been reported worldwide, and evidences of their recurrent
exposure to these toxins was also suggested [41–44]. Cetaceans are important key species
for marine ecosystems, being excellent indicators of environmental changes. Indeed, recent
studies performed in the West Atlantic confirmed that common and bottlenose dolphins are
susceptible to BMAA accumulation and damage [8,45].

Galicia, located in NW Spain (Figure 1), holds important populations of marine
mammals, which reckon 23 species [46,47]. Among them, the common dolphin (Delphinus
delphis), bottlenose dolphin(Tursiops truncatus), and harbour porpoise (Phocoena phocoena)
are the most frequently found washed ashore [48–50]. The harbour porpoise in the area has
been identified as a new ecotype and proposed as a new subspecies [51].
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Therefore, to explore the potential BMAA trophic transfer, and its potential association
with the stranding of cetaceans, we analysed the BMAA, DAB, and AEG levels in three
different tissues (liver, kidney, and muscle) of 22 individuals from three cetacean species,
namely the common dolphin, bottlenose dolphin, and harbour porpoise. All individuals
were found stranded between 2011 and 2017.

2. Materials and Methods

A stranding network was established in Galicia, in 1990, and carried out by NGO Co-
ordinadora para o Estudo dos MamíferosMariños (CEMMA), to locate beached cetaceans,
pinnipeds, and sea turtles, ensuring the biological samples collection and rehabilitation
actions for live animals. Basic data recorded includes species, biometrics, gender iden-
tification, body condition, external examination for each animal, and signs of bycatch.
Any other relevant details were also recorded (Table 1). Necropsies were carried out on
fresh and moderately decomposed animals. Both external studies and necropsies followed
standardized protocols [52–54]. Figure 1 displays the location where the animals, used in
this study, were found.

Table 1. Individual data of animals analysed for BMAA, DAB, and AEG. For each animal, samples
of liver, kidney, and muscle were collected and analysed. Degradation state: 1 = found alive, dying
immediately afterwards, 2 = freshly dead, 3 = moderate decomposition, 4 = advanced decomposition,
5 = skeletal remains. F = female, M = male.

Sample ID Species
Data of

Collection
(yyyy/mm/dd)

Location (Locality and
Coordinates) Size (cm) * Female

(F)/Male (M)
Degradation

State Observations

DDE194 D. delphis 2017/07/16 Porto do Son (42.68131,
−9.03000) 194 F 3 No signs of bycatch

DDE195 D. delphis 2017/07/16 Ribeira (42.56142222,
−8.987644444) 195 M 3 No signs of bycatch

DDE189 D. delphis 2017/07/31 Cangas (42.24911, −8.79091) 189 F 3 Signs of bycatch

DDE182 D. delphis 2017/07/31 Nigrán (42.14245, −8.83796) 182 M 3
Three broken ribs
and subepidermic

hematoma

DDE173 D. delphis 2018/06/09 Ribeira (42.57156, −9.07536) 173 M 1 No signs of bycatch

DDE156 D. delphis 2018/11/07 Vigo (42.19025, −8.80904) 156 M 2 -

DDE124 D. delphis 2018/11/25 O Grove (42.45576667,
−8.921633333) 124 F 3 Signs of bycatch

DDE172 D. delphis 2018/12/17 Vigo (42.22298056,
−8.772766667) 172 F 3 Signs of bycatch

PPH153 P. phocoena 2009/11/25 Fisterra (42.941181, −9.231806) 153 F 3 Good aspect

PPH127 P. phocoena 2011/02/07 Fisterra (42.908431, −9.258883) 127 M 3 Signs of bycatch

PPH104 P. phocoena 2011/05/27 Baiona (43.056527, −9.295471) 104 F 2 Signs of bycatch

PPH137 P. phocoena 2012/12/02 Arteixo (43.316153, −8.534233) 137 F 3 Signs gulls and
shark bites

PPH142 P. phocoena 2013/10/15 O Grove (43.463064, −8.332825) 142 F 3 -

PPH159 P. phocoena 2014/02/28 Ferrol (43.540556, −8.298353) 159 M 3 Signs of bycatch

PPH131 P. phocoena 2015/01/16 Cangas (42.261026, −8.849869) 131 M 3 Signs of bycatch

PPH160 P. phocoena 2017/02/20 Carballo (43.456950, −8.673272) 160 M 3 Signs of bycatch

TTR258 T. truncatus 2015/10/30 Ribeira (42.523304, −9.014026) 258 M 3 Stomach with food
and Anisakis, ulcers

TTR314 T. struncatus 2015/12/30 Vilanova de Arousa
(42.570726, −8.830053) 314 F 2 Empty stomach

TTR286 T. truncatus 2016/09/02 Cangas (42.295522, −8.820978 286 F 3 Pregnant

TTR150.5 T. truncatus 2016/09/11 Rianxo (42.64833056, −8.8258) 150.5 M 3 Signs of aggressions
(possible infanticide)

TTR275 T. truncatus 2017/06/19 Foz (43.5665472, −7.2546361) 275 F 2 Skinny

TTR138 T. truncatus 2018/11/30 Muros (42.7747527, −9.05476) −138 M 4 Signs of bycatch

* The sign (-) indicates the animal is not entire, and the size is at least the indicated measure.
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Tissue samples of liver, kidney, and muscle were frozen at −20 ◦C for preservation.
Before analyses, the samples were freeze-dried (Freeze Dry System Labconco, Coolvacuum
Technologies, Barcelona, Spain). The BMAA (total soluble and precipitated bound) was
extracted, based on Murch et al. (2004) [55], with minor alterations, suggested byMasseret
et al. (2013) [56] and Lage et al. (2016) [57], as previously described [29,57,58]. The tissue
samples (2 mg dry weight each) were extracted in triplicate. After extraction, freeze-dried
BMAA total soluble and precipitated bound samples were reconstituted with 20 mM
HCl solution and dilutions were performed (if required), to obtain an optimum ratio of
protein-to-derivatization agent ratio [57]. Subsequently, the samples were derivatized with
AccQ-Tag, using a WAT052880 AccQ-Tag kit (Waters, Milford, MA, USA) before analysis.

Samples of each tissue type (liver, kidney, and muscle) and BMAA form (i.e., total
soluble and precipitated bound)were used for the analysis of limits of quantification; LOQ
was defined as S/N ≥ 10 [59]. Samples of liver BMAA precipitated bound form were
used for the evaluation of the matrix effect and extraction method recovery at the BMAA
concentrations of 5 and 10 ng mL−1 (n = 4).

LC-MS/MS analysis of derivatized BMAA, and its isomers AEG and DAB, were
performed in an Acquity UPLC system, coupled witha Xevo-TQ-MS system (Waters, Mil-
ford, MA, USA), as previously described [30].The LC separation was performed on an
AccQ-Tag Ultra C18 column (100 × 2.1 mm, 1.7 µm particle size, Waters, Milford, MA,
USA). Ionization was performed in positive ion mode, and the mass analyser was run in
the selected reaction monitoring (SRM) scanning mode, using the following transitions
to distinguish BMAA from its isomers, AEG and DAB: common to all three analytes,
459.1 > 119.1 (CE 30.0); DAB diagnostic fragment, 459.1 > 188.1(CE 38.0); BMAA diagnostic
fragment, 459.1 > 258.1 (CE 30.0); and AEG diagnostic fragment, 459.1 > 214.1 (CE 30.0). To
ensure the accurate identification of BMAA, the parameters retention time and fragmen-
tation ratio of the fragments, 119.1/258.1, were considered. All settings were optimized
for the detection of BMAA, as follows: spray voltage, 5500 V; source temperature, 450 ◦C;
decluttering potential, 50; focusing potential, 350; and entrance potential, 6.MassLynx V4.1
software (Waters, Milford, MA, USA) was used to analyse the acquired data.

3. Results and Discussion

No measurable levels of BMAA and its structural isomers (AEG and DAB) were
detected, in either the total soluble or precipitated bound forms of the three tissues (liver,
kidney, and muscle) of the 22 specimens studied. To the best of our knowledge, this is
the first study analysing the liver, kidney, and muscle tissue samples of cetaceans for the
presence of BMAA and its structural isomers. Previously, Davis et al. (2019) reported total
BMAA concentrations, ranging from 20 to 748 µg−1, in the brains of 13 dolphins, found
stranded in Florida and Massachusetts, USA. Furthermore, dolphins with detectable levels
of BMAA presented injuries in the cerebral cortex and increased β-amyloid plaques [8]. Un-
fortunately, the discrepancy in dolphins’ tissues, analysed by Davis et al. (2019) (i.e., brain)
and the current study (i.e., liver, kidney, and muscle), does not allow a direct comparison.

Although the brains of the animals were not available for the present study, considering
the lack of data on BMAA accumulation in marine mammals, we judged that the analyses
of other tissues may still be of relevance. In fish species, the four tissues (brain, liver, kidney,
and muscle) have been previously analysed, thus providing an estimation of the BMAA
anatomical distribution [25,60]. In several fish species, collected in the Baltic Sea and in
Lake Finjasjön (Sweden), the highest BMAA levels were found in the fish brains [25,60].
The total BMAA concentrations in the fish brains were up to 0.99 and 0.028 µg g−1 DW,
while in the fish muscle were up to 0.059 and 0.006 µg g−1 DW in the Baltic Sea and Lake
Finjasjön, respectively [25,60]. Moreover, from the total of 136 fish individuals analysed by
Lage et al. (2015), only 22 individuals (16%) contained quantifiable BMAA in their muscle,
while BMAA was quantified in the brains of 40 individuals (29%) [60]. No BMAA was
detected in the kidney and liver of fish collected in the Baltic Sea and Lake Finjasjön [25,60].
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In other studies of fish collected in the Baltic Sea, the Eastern North Atlantic, and the
Mediterranean Sea, no BMAA was detected in the fish muscle [16,26,28,61].

Tissue composition may play an important role in BMAA accumulation. BMAA is
misincorporated, instead of L-serine during protein synthesis. Moreover, BMAA anatomical
distribution in adult mice showed a distribution pattern analogous to protein-forming
amino acids [62,63]. Another study in neonatal rats reported a higher uptake and retention
of BMAA in tissues, with high rates of protein synthesis and cell turnover, suggesting that
BMAA may be incorporated or associated with newly synthesized proteins [64]. However,
BMAA was cleared out of the body over time. Thus, the non-detection of BMAA in the
muscle, liver, and kidney of cetaceans found stranded in Galicia might be due to the higher
turn-over rate of these tissues, leading to the degradation and release of BMAA, especially
if the cetaceans were starved for a long period of time.

Although brain samples were not analysed, the muscle of several fish species caught
in Lake Taihu (China) had total BMAA concentrations higher than the muscle of fish caught
in the Baltic Sea, Eastern North Atlantic, and Mediterranean Sea, with concentrations
ranging from 0.07 and 35.91 µg g−1 DW [65]. Moreover, sharks, apex predators caught in
South Florida (USA), had total BMAA concentrations between 19.2 and 33.15 µg g−1 FW in
the fins and muscle [32,66]. Furthermore, dietary supplements containing shark cartilage,
from various species and origins (not reported), had total BMAA concentrations between
74.8 and 352.2 µg g−1 DW [67]. BMAA contents in organisms may vary, depending on the
methodological differences between studies, inter-specific variations in their trophic status,
geographical and seasonal parameters, and ecological responses of its producers [37]. Thus,
as previously documented for fish [16,25,26,28,32,60,61], dolphins of certain geographical
areas might also contain higher concentrations of BMAA than others. Accordingly, Davis
et al. (2019) reported three-fold higher concentrations of total BMAA in dolphins stranded
in Florida than in dolphins from Massachusetts [45].

Methodological differences between studies are often responsible for the variability
of data reported on BMAA concentration in biota, especially when dealing with complex
tissues, which may induce matrix interferences [10,37,68]. A previously published and
in-house validated LC-MS/MS method [56,57,69], which had minor differences from the
method used by Davis et al. (2019,2021), was used in the present study [8,45]. The LOQ
on BMAA spiked tissue samples was 0.5 ng mL−1 (corresponding to 0.11 µg g−1), and the
matrix effect in the liver tissue precipitated bound BMAA samples was 64.04 ± 3.77 and
54.22 ±6.14% in the 5 and 10 ng mL−1 spiked concentrations, respectively (Figure 2).
The BMAA recovery rates in the 5 and 10 ng mL−1 spiked BMAA liver samples were
96.62 ± 20.12 and 99.20 ± 17.44%, respectively. Davis et al. (2019, 2021) reported a
LOQ of 7.0 ng mL−1 and an average % recovery of BMAA of 98.3% [8,45]. Moreover,
matrix spiked recovery (%) of several metabolites has been previously shown to be similar
among various cetaceans tissues, i.e., blubber, muscle, liver, kidney, stomach, melon, and
gonad [70]. Therefore, if the tissues analysed in the present study had BMAA concentrations
comparable with the concentrations reported for the brains of cetaceans stranded in the
USA, they would have been quantified. Unfortunately, as we did not analyse brain tissues
or cerebral spinal fluid, we cannot rule out higher toxin levels in these tissues.

The absence of BMAA in our samples is unexpected. In Galicia, the phytoplankton
successions, during the upwelling system dynamics, are characterized by the dominance
of diatoms from late-winter to summer [19,20]. Among these diatoms, several potential
BMAA-producers are accounted reaching high densities [19–23]. The estuaries (“rías”)
receive nutrients and phytoplankton from rivers, and high abundances of cyanobacteria,
including potential BMAA-producers, are frequent in moderately stratified waters [71–75].
Unfortunately, BMAA levels for these bloom periods are unknown. Regulated toxins, such
as amnesic toxins (domoic acid), paralytic shellfish toxins (saxitoxins), and the diarrhetic
shellfish toxins (okadaic acid and derivatives), are regularly monitored, according to EU
directives, to ensure human food safety [76]. However, BMAA lacks specific regulations
and monitoring plans.
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The BMAA absence, recorded in this study, highlights the need to better understand
the trophic transfer of BMAA, depending on environment conditions and its anatomical
distribution in marine mammals.
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