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Abstract 21 

Aim Marine forests of brown macroalgae create essential habitats for coastal species and support 22 

invaluable ecological services. However, their global biodiversity patterns are insufficiently 23 



understood to provide an overall perspective on their biogeography and conservation priorities. 24 

This study maps species richness and endemicity patterns of brown macroalgae at global scales. 25 

Location Global 26 

Time period Contemporary 27 

Major taxa studied Marine forests of brown macroalgae, here defined as kelp (orders Laminariales, 28 

Tilopteridales, Desmarestiales) and fucoid (order Fucales) inhabiting subtidal and intertidal 29 

environments 30 

Methods We coupled a large dataset of macroalgal observations (420 species) with a high-resolution 31 

dataset of relevant environmental predictors (i.e., light, temperature, salinity, nitrate, wave energy, 32 

ice coverage) to develop species distribution models (SDMs). We stacked models across species 33 

(stacked-SDMs) to develop global species richness and endemicity estimates. 34 

Results Temperature and light were the main predictors shaping the distribution of subtidal species, 35 

while wave energy, temperature and salinity were the main predictors of intertidal species. Highest 36 

regional species richness for kelp was found in the North East Pacific (maximum 32 species) and for 37 

fucoids in South East Australia (maximum 53 species), supporting the hypothesis that these regions 38 

were the evolutionary sources for colonization of the world by brown macroalgae. Locations with 39 

low species richness coincided between kelp and fucoid, occurring mainly at higher latitudes (e.g., 40 

Siberia) and the Baltic Sea, where extensive ice-coverage and low-salinity regimes prevail. Regions 41 

of high endemism for both groups were identified in the Galapagos Islands, Antarctica, South Africa 42 

and East Russia. 43 

Main conclusions Geographical patterns and environmental predictors of species richness differ 44 

between kelp and fucoids, suggesting that their distinct ecological niches were shaped by past 45 

environmental conditions at their source regions of lineage evolution.  Our extensive mapping of 46 



species richness and endemism provides a global perspective of priority regions for conservation of 47 

brown macroalgae forest diversity. 48 
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 52 

Introduction 53 

Global species richness and endemicity patterns are the outcome of evolutionary and ecological 54 

processes driven by large-scale geological events and long-term climate characteristics and 55 

fluctuations (Wiens & Donoghue, 2004). Understanding and estimating these patterns has been a 56 

longstanding challenge, yet it remains a fundamental step in ecological, evolutionary and 57 

conservation studies (Costello et al., 2017; Tittensor et al., 2010). Contemporary changes in species 58 

richness driven by human-induced pressures can however rapidly alter patterns that would 59 

otherwise have been shaped across evolutionary time (Pecl et al., 2017). In the marine environment, 60 

such recent changes in the distributions of species and calls for protecting 30% of the oceans raised 61 

the need to assess global biodiversity patterns, namely the location of rich-spots of species richness 62 

and centres of endemicity.  63 

 64 

Species richness and endemism are fundamental metrics of biodiversity and indicators of high 65 

conservation value; however, their regional patterns do not necessarily overlap (Costelo et al., 2017; 66 

Kerswell, 2006; Selig et al., 2014). Our current knowledge of marine species richness gradients and 67 

endemicity centres remains heavily biased towards specific taxa and regions (e.g., Selig et al., 2014; 68 

Taheri et al., 2021; Tittensor et al., 2010). For the majority of the studied marine taxa (mostly fish, 69 

mammals, corals and bivalves) species richness follows a latitudinal bimodal distribution, with 70 



peaks varying geographically between clades (Chaudhary et al., 2016; Kusumoto et al., 2020; Lin et 71 

al., 2020). Although centres of high marine endemicity, mostly islands including Japan and the 72 

Galapagos, or climate-locked continental regions such as South Africa and South Australia, have 73 

been identified and are common across clades, they can still differ between taxa (Costello et al., 74 

2017; Harrison & Noss, 2017; Kier et al., 2009; Selig et al., 2014). Geographic biases in data have 75 

impaired proper estimates of biodiversity baselines for more taxonomic groups and regions. While 76 

recent online repositories containing large amounts of data (e.g., OBIS – Ocean Biogeographic 77 

Information System, GBIF – Global Biodiversity Information Facility) have opened new 78 

opportunities to broaden our knowledge of distributional patterns for a wider spectrum of marine 79 

species (e.g., Chaudhary et al., 2016; Costello et al., 2017; Kusumoto et al., 2020; Selig et al., 2014), 80 

they are still incomplete and may contain spatial and taxonomic errors (e.g., Assis et al., 2020). 81 

Global diversity patterns for brown macroalgae are one such geographically biased example, with 82 

many studies concentrated in a few geographical regions, despite their key importance in providing 83 

ecosystem services. For such marine macroalgal forests, the distribution of global species richness 84 

and endemicity centres have to date been poorly understood due to insufficient and / or unreliable 85 

data at global scales (Costello et al., 2017). 86 

 87 

Macroalgae can form dense and complex marine forest habitats that provide habitat to numerous 88 

associated species, increase local biodiversity, and support ecosystem services including food 89 

provision and security, shoreline protection from wave energy, nutrient cycling and carbon fixation 90 

(e.g., Arafeh-Dalmau et al., 2020; Coleman & Wernberg, 2017; Krause-Jensen et al., 2018; Wernberg 91 

et al., 2019). Despite their importance, there are only a handful of studies addressing global patterns 92 

at the species level, restricted to limited taxa of the orders Bryopsidales (green algae) and Dictyotales 93 

(brown algae), mainly due to the lack of reliable data and poor taxonomic resolution (Kerswell, 94 



2006; Verbruggen et al., 2009; Vieira et al., 2021). Additional studies on global macroalgal richness 95 

and endemicity patterns were conducted, but only at the genus level, which is not necessarily 96 

representative of the species patterns (Keith et al., 2014; Kerswell, 2006). Besides, distinct lineages 97 

of macroalgae are expected to have distinct richness and endemicity patterns, reflecting their 98 

evolutionary histories, as is the case of fucoid versus kelp brown algae (e.g., Bringloe et al., 2020). 99 

 100 

This study aims to estimate global patterns of species richness of brown macroalgae, identify 101 

endemicity centres and explore the underlying environmental drivers shaping distributions. To 102 

address and overcome the information challenges and gaps highlighted above, we fitted species 103 

distribution models (SDMs; Anderson et al., 2011) and stacked them (Guisan & Rahbek, 2011). The 104 

models used a machine learning algorithm to examine the relationship between biologically 105 

relevant predictors (Assis et al., 2017a; Fragkopoulou et al., 2021) and occurrence records derived 106 

from a recently published large dataset of marine forests of kelp (a common name that here 107 

designates Laminariales, Tilopteridales, Desmarestiales) and fucoid (Fucales) macroalgae. The 108 

dataset provides information from multiple sources (online repositories, literature and herbaria), 109 

and was quality-controlled for spatial and taxonomical errors (Assis et al., 2020). This approach 110 

allowed us to produce biodiversity estimates per taxonomic group, accounting for dispersal and 111 

ecological constraints (Mendes et al., 2020). Our results provide global maps and environmental 112 

limits of regions with distinct levels of species diversity and endemicity for kelp and fucoid. This 113 

novel global and digital information is the baseline for planning and prioritising locations for 114 

biodiversity conservation and management (e.g., Zhao et al., 2020). 115 

 116 

Methods 117 

Occurrence records and environmental data 118 



Occurrence records of kelp (Orders Laminariales, Tilopteridales and Desmarestiales) and fucoid 119 

(order Fucales) were gathered from the curated dataset of marine forests (Assis et al., 2020). The 120 

dataset contains observations largely matching the time window of the environmental predictors 121 

(~80% records after 2000; see next paragraph; Assis et al., 2020). After removing species with less 122 

than 5 occurrence records (van Proosdij et al., 2016), the initial 531 species of interest were pruned 123 

to a final dataset of 420 species (113 species of kelp and 307 fucoid). 124 

A set of biologically relevant environmental predictors for near present-day conditions was 125 

extracted from Bio-ORACLE (long-term average climatologies between 2000 and 2017) for the 126 

benthic (i.e., along the seafloor) and intertidal realms (surface layers), depending on whether 127 

species have subtidal or intertidal distributions (Assis et al., 2017b; Tyberghein et al., 2012). Light 128 

availability, temperature (minimum and maximum), nitrate, salinity and sea ice coverage were 129 

selected as potential predictors for both subtidal (i.e., benthic data) and intertidal (i.e., surface data) 130 

macroalgae, and the additional low altitude cloud fraction and maximum air temperature were 131 

added to intertidal fucoids (i.e., surface data). Moreover, maximum wave energy was included as a 132 

potential predictor for both intertidal and subtidal macroalgae, to account for high-energy 133 

environments. This layer was produced to match the Bio-ORACLE 5 arcmin resolution with the 134 

nearest neighbour algorithm based on the classification developed by Fairley et al., (2020). Wave 135 

energy is provided in 6 classes, with 1 representing enclosed seas with calm conditions and 6 the 136 

highest-energy oceanic coasts, influenced by large, long period swells and storm conditions (Fairley 137 

et al., 2020). Prior to modelling, collinearity between predictors was assessed with Pearson's 138 

correlation coefficient as well as the Variance Inflation Factor (VIF; Araújo et al., 2019; Harisena et 139 

al., 2021). If high correlation was found between predictor pairs, only one would be included in the 140 

models. 141 

 142 



Stacked-Species Distribution Models (stacked-SDMs) 143 

Individual distribution models at the species level (SDMs) were produced with Boosted Regression 144 

Trees (BRT, De’ath, 2007), a machine learning algorithm that combines the advantages of regression 145 

trees and boosting, fits complex non-linear relationships between response (occurrence data) and 146 

predictor variables (environmental data), and provides high predictive performance (Assis et al., 147 

2017a; Elith et al., 2006; Fragkopoulou et al., 2021). Moreover, proper hyper-parametrization (e.g., 148 

number of trees, learning rate, etc.) and the ability to force monotonicity responses strongly 149 

reduced overfitting of BRT and therefore increased the potential for transferability (Elith et al., 150 

2008; Hofner et al., 2011). A minimum number of 1000 pseudo-absences or the same number as 151 

presences (if more than 1000) were randomly generated in sites where no presences of the species 152 

were recorded (Barbet-Massin et al., 2012), and were geographically limited to the provinces 153 

(Spalding et al., 2007) where the species occurs as well as their neighbouring provinces (Araújo et 154 

al., 2019). This limited pseudo-absences to regions where no records of the species were found, but 155 

where dispersal could occur, which is a crucial step in SDM development (Assis et al., 2017a; Barve 156 

et al., 2011).  157 

 158 

To reduce surplus information as well as the negative effect of autocorrelation in the models 159 

(Dormann et al., 2007), the correlation of predictors within the range of occurrence records 160 

(presence and pseudo-absences) was tested as a function of geographic distance. For this purpose, 161 

correlograms were built to pinpoint the minimum distance at which predictors were significantly 162 

correlated. Records per species were pruned by randomly selecting one record from the pool found 163 

within such distances (e.g., Assis et al., 2017a; Fragkopoulou et al., 2021).  164 



 165 

Models fitted records per species (presences and pseudo-absences) against predictor variables, and 166 

hyper-parametrization was optimized through cross-validation by partitioning data into 6 167 

independent latitudinal bands. In this process, models were interactively trained with all 168 

hyperparameter combinations (i.e., the “grid search” method) of number of trees (50 to 1000, at 169 

steps of 50), learning rate (0.01 and 0.001) and tree complexity (1 to 6, at steps of 1). Predictive 170 

performance of the models was evaluated in one latitudinal band withheld at a time with the area 171 

under the curve (AUC) of the receiver operating characteristic curve (Fielding & Bell, 1997). The 172 

optimal hyperparameter combination that reduced overfitting and increased transferability, was 173 

found as the one that produced models with higher AUC in cross-validation (Assis et al., 2017a; 174 

Vignali et al., 2020). The cross-validation framework also allowed inferring the final performance 175 

of the models tuned with the optimal hyperparameters in independent data (Assis et al., 2017a; 176 

Fragkopoulou et al., 2021; Vignali et al., 2020). Overfitting was further controlled through the 177 

forcing of specific monotonic responses to the predictors (i.e., negative or positive influence; Hofner 178 

et al., 2011). Negative monotonic responses were set for maximum temperature, ice coverage and 179 

maximum wave energy, and positive for the remaining environmental predictors.  180 

 181 

The relative contribution of predictors to the models was determined by computing the increase in 182 

AUC when each predictor was added to its alternative model (i.e., the one including all predictors 183 

except that being tested). Apparent physiological tolerance limits (maximum and minimum, 184 

depending on the predictor) were estimated from individual response functions produced for each 185 

predictor, while fixing all alternative predictors to their averages (Assis et al., 2017a; Elith et al., 186 

2008). Final models for prediction were built by discarding predictors with residual or negative 187 



contributions through a stepwise approach based on AUC. To this end, a full model was fitted (i.e., 188 

with all predictors) and predictors were interactively removed one at the time, from the least to the 189 

higher contributive, until the difference of AUC between the full model and the reduced model 190 

was higher than zero (Elith et al., 2008; Fragkopoulou et al., 2021). This resulted in parsimonious 191 

models (i.e., with fewer predictors), which tend to be more robust to the effects of multicollinearity 192 

in the data (Dormann et al. 2013) and have occasionally been shown to have higher spatial and 193 

temporal transferability (Randin et al., 2006; Sequeira et al., 2018; but see for a more thorough 194 

evaluation of the trade-offs between model complexity and predictive power, García-Callejas & 195 

Araújo, 2016). 196 

 197 

Maps reflecting the potential distribution and environmental suitability for each species were 198 

developed for global shorelines with the selected parsimonious models. These maps were 199 

reclassified into binomial surfaces reflecting the presence and absence of suitable habitats for the 200 

species, by applying a threshold maximizing both specificity (true negative rate) and sensitivity 201 

(Fielding & Bell, 1997).  202 

 203 

To account for dispersal constraints, maps were clipped to suitable reachable area, an approach that 204 

reduces potential overprediction, with no increase in underprediction (Thuiller et al., 2004; Mendes 205 

et al., 2020). This assumes that a species might not cross potential barriers with unsuitable 206 

conditions, such as land and ocean basins, unless demonstrated by occurrence records (Ballesteros-207 

Mejia et al., 2017). Final predictive performance was assessed with AUC and True Skill Statistic 208 

(TSS; Allouche et al., 2006) for both maps clipped and unclipped to reachable areas. 209 



 210 

Potential species richness was inferred for kelp and fucoid forests by stacking predictions from 211 

individual distribution models with a sum function (i.e., binary stacked species distribution models; 212 

Guisan & Rahbek, 2011). Because species richness estimates are scale dependent (Kusumoto et al., 213 

2020), we inferred the optimal resolution of the standardized Uber’s hexagonal hierarchical spatial 214 

data (Bondaruk et al., 2019) by computing the average difference between observed and predicted 215 

species richness at each resolution of hexagon shapes. The Uber’s hexagonal framework was chosen 216 

due to its equal-area projection and optimal indexing algorithm, which allows fast data aggregation 217 

over its hierarchical resolutions (Bondaruk et al., 2019). Further, the local (i.e., per hexagon) species 218 

range-rarity was quantified as a measure of endemism by the corrected endemism index (CWEI; 219 

Crisp et al., 2001; Schmitt et al., 2017). The weighted endemism index (WEI; 1) for the hexagon c 220 

was calculated by summing the inverse of the geographical range size ri,c for each of the nc species. 221 

In this way, species with a smaller geographical range were assigned a larger weight. To reduce 222 

correlation between species richness and endemism, the corrected endemism index CWEIc (2) was 223 

calculated as the weighted endemism index WEIc divided by the total number of species RSc found 224 

within each hexagon c (Crisp et al., 2001; Schmitt et al., 2017). 225 

   (1)                                                (2) 226 

 227 

Results 228 

The final dataset for which individual species distribution models were produced, comprised 113 229 

kelp (628,425 occurrence records) and 307 fucoid species (383,958 records). Of these, 36 were 230 



intertidal (Table S1). Models achieved high performance in predicting species occurrence for both 231 

kelp (cross-validation AUC: 0.87 ± 0.07; AUC: 0.98 ± 0.02; TSS: 0.92 ± 0.07) and fucoids (cross-232 

validation AUC: 0.95 ± 0.08; AUC: 0.98 ± 0.01, TSS: 0.93 ± 0.07; Table S2). 233 

 234 

The performance of the models significantly improved for kelp and fucoids after accounting for 235 

dispersal constraints across unsuitable habitats, i.e., clipping to suitable reachable areas (Significant 236 

increase for kelp: ΔAUC: 0.02 ± 0.01, ΔTSS: 0.06 ± 0.02; Significant increase for fucoid: ΔAUC: 0.02 237 

± 0.01, ΔTSS: 0.06 ± 0.03; Wilcoxon signed-rank test). 238 

 239 

The distribution of the subtidal kelp and fucoid species was best explained by light and extreme 240 

temperature (minimum and maximum) at the seafloor (relative average contributions >10%; Figure 241 

1). Intertidal distributions were best explained by wave energy, temperature (minimum and 242 

maximum) and salinity (relative average contributions >10%; Figure 1). Nitrate concentration and 243 

sea ice coverage had a lower (~5-10%; Figure 1) contribution to the models, yet the distribution 244 

limits of some species were strongly shaped by thresholds defined by these predictors (95th 245 

percentile of contributions 19% - 38% for both subtidal and intertidal species; Figure 1). Cloud 246 

fraction and maximum air temperature showed a low contribution to the models for intertidal 247 

species (contributions ~5%; Figure 1; Table S3). These findings are reinforced by the overall low 248 

collinearity between predictors (Table S4); as only minimum and maximum ocean temperatures 249 

showed stronger collinearity for subtidal species, while collinearity was also found between 250 

maximum air and sea temperatures for intertidal species (Pearson's Correlation > 0.85; VIF > 5; S4). 251 

However, their opposite monotonic fit in BRT (negative for maximum temperatures and positive 252 

for minimum temperatures) allowed removing confounding inferences about the contribution of 253 

predictors. 254 



 255 

Physiological thresholds, inferred from partial dependency plots for each environmental predictor 256 

(Figure 2), were, for kelp biome, 2.7ºC and 23.7ºC (95th percentile -1.8ºC and 32.5ºC) for thermal 257 

tolerance (long-term average of minimum and maximum temperatures across species) and 0.24 E 258 

m-2 y-1 minimum light. Subtidal fucoids showed higher estimated thermal tolerance thresholds, 259 

9.4ºC and 28.7ºC (95th percentile -1.8ºC and 34.9ºC), and higher minimum light, above 1.11 E m-2 260 

y-1. In contrast, intertidal fucoids, showed lower thermal tolerances, 2.5ºC and 22.8ºC (95th 261 

percentile between -1.8ºC and 28.6ºC), maximum wave energy of class 5 (95th percentile between 1 262 

and 6) and minimum salinity above 16 (95th percentile between 3.3 and 34.6; Table S3). 263 

 264 

Stacking individual SDMs to unique layers allowed the estimation of potential species richness 265 

distribution patterns. The optimal resolution of the global grid system based on Uber hexagon 266 

shapes was 60 km edge length (Figure 3). At this resolution, the average difference between 267 

observed and predicted species richness was 0.96 (i.e., we predicted 0.96 species more than 268 

observed), with a Pearson correlation of 0.85 (Figure 3). This 60 km optimal resolution scale was 269 

then used to aggregate regional species richness and endemicity estimations for kelp (Figure 4) and 270 

fucoid forests (Figure 5) from the model predictions. 271 

 272 

Overall, suitable habitat area estimated for kelp (1,705,227 km2) was smaller than for fucoids     273 

(2,574,986 km2), but the two groups had some overlap in suitable regions (Table S5). Species 274 

richness patterns differed latitudinally, with peaks of diversity in distinct regions for kelp and 275 

fucoids and overall endemicity regions coinciding, although with some differences between the 276 

two groups (Figure 4; Figure 5). 277 



  278 

Kelp exhibited a latitudinal bimodal species richness distribution, with a minimum near the equator 279 

and peaks between 13-77º in the northern and 5-64º in the southern hemisphere (Figure 4a). The 280 

highest regional species richness (32 species) was found in the North East Pacific, with numerous 281 

regional rich-spots from Alaska to Baja California. In the northern hemisphere, additional rich-282 

spots occurred in the Atlantic regions of Greenland to Newfoundland and from Norway to Portugal; 283 

followed by fewer rich-spots in the West Pacific, from the Okhotsk Sea to South Korea. In the 284 

southern hemisphere, species richness was lower (maximum 10 species) and the richest regions 285 

were South-East Australia and around New Zealand. Regions of low kelp species richness (i.e., poor-286 

spots) were predicted at higher latitudes (1-2 species), but extended along large areas, such as in 287 

North and South America and North Russia, associated with ice-driven or river-discharges salinity 288 

minima. Smaller-sized poor-spots were predicted in the warm regions of the Mediterranean, the 289 

Red Sea and South China (Figure 4a). Highest kelp endemicity was predicted in the Galapagos 290 

Islands, Peru, Chile, Brazil, Falkland Islands, Antarctica, South Africa, Heard Island and McDonald 291 

Islands and East Russia (Sakhalin and Kuril Islands; Figure 4b; Table S6). 292 

Fucoid species diversity was distributed from 171º North to 64º South (Figure 5a). The highest 293 

regional richness (53 species) was predicted in South Australia with numerous rich-spots from 294 

Brisbane to Kalbarri. Additional rich-spots were predicted in New Zealand, in the Indo-Pacific 295 

(Indonesia), North-West Pacific along the coasts of Japan and Guangdong China, North Atlantic 296 

from Norway to Morocco, around Iceland and along the Newfoundland coast (Figure 5a). Poor-297 

spots were mostly predicted in the South-East Pacific (Chile), the South-East Mediterranean and 298 

the Black Sea. Fucoid endemicity was predicted in Hawaii, Baja California, the Galapagos Islands 299 

and continental Ecuador, Antarctica, South Africa, Red Sea and Arabian Peninsula, South China, 300 



Japan, East Russia (Sakhalin and Kuril Islands), South East Australia and New Zealand (Figure 5b; 301 

Table S7). 302 

 303 

Discussion 304 

We estimated the global distribution of species richness and endemicity for marine forests of kelp 305 

and fucoids; a goal previously hindered by insufficient or unreliable data. The geographic centres 306 

of species richness here identified differed between groups and were strongly driven by thermal 307 

affinities. For kelp, highest species richness was found in the North East Pacific (up to 32 species) 308 

and for fucoids in South East Australia (up to 53 species). These rich-spots differ from those 309 

previously identified for the predominantly tropical macroalgae orders Bryopsidales (Indo-310 

Australian Archipelago; Kerswell, 2006) and Dictyotales (Central Indo-Pacific; Vieira et al., 2021), 311 

and even differed within each order between intertidal and subtidal species, consistent with the 312 

geography of their evolutionary origin. In contrast, poor-spots of species richness coincided 313 

between kelp and fucoids (e.g., higher latitudes; Figure 4a; Figure 5a), in line with previous studies 314 

(Kerswell, 2006; Vieira et al., 2021). Coinciding regions of species endemicity for kelp and fucoids 315 

were identified in the Galapagos Islands, Antarctica, South Africa, Japan and East Russia (Sakhalin 316 

and Kuril Islands; Figure 4b; Figure 5b). 317 

 318 

The selection of relevant environmental predictors taking into consideration important 319 

physiological drivers (e.g., light availability for photosynthesis) resulted in sound model predictions 320 

(Fragkopoulou et al., 2021; Sequeira et al., 2018) of high accuracy (average performance of AUC > 321 

0.98 and TSS > 0.92). Stacked-SDMs are widely used for estimates of community composition and 322 

can be particularly useful in data-poor regions (Cooper & Soberón, 2018; Jayathilake & Costello, 323 



2020). When combined with dispersal constraints, they can reduce overprediction, a common but 324 

often neglected SDMs weakness (Mendes et al., 2020), and outperform macroecological models that 325 

lack the ability to predict community composition (e.g., Cooper & Soberón, 2018; Mendes et al., 326 

2020). The species richness models tended to overestimate, but only by about one species compared 327 

to the global average predicted species richness. This indicates that the potential niche is often 328 

realised at scales of 60 km, where community interactions, such as grazing and competition, as well 329 

as temporal fluctuations in occurrence, do not affect the regional scale distribution.  330 

 331 

The main environmental predictors shaping the present distribution and defining bioclimatic 332 

envelopes of kelp and fucoids, inferred from the models, revealed that temperature, light and wave 333 

energy are key predictors defining habitat suitability for 420 species, in agreement with 334 

expectations from known habitat requirements (Jayathilake & Costello, 2020, 2021; Wernberg et 335 

al., 2019; Wilson et al., 2019). Although physiological thresholds differ among species, our results 336 

demonstrate that, overall, favourable conditions for subtidal species were primarily shaped by light 337 

availability (kelp: > 0.24 E m-2 yr-1; fucoid: >1.11E m-2 yr-1) and temperature at the seafloor (kelp: 338 

2.8 - 23.7ºC; fucoid: 9.4 - 28.7ºC); while for intertidal fucoids they were shaped by high wave energy 339 

(class 5; Fairley et al., 2020), sea surface temperatures (2.5 - 22.8ºC) and salinity (>16.02 PSS). 340 

Environmental drivers such as ice cover, contributed less on average to the models, but had high 341 

explanatory power on species that reached high latitude (polar and subpolar) distributional ranges 342 

(Figure 1; S3) owing to the detrimental effect of ice scouring over intertidal organisms and light 343 

attenuation in the subtidal (Assis et al., 2017a; Krause-Jensen et al., 2012). Similarly, salinity had 344 

increased explanatory power for species distributed along sharp salinity gradients, such as in the 345 

Baltic Sea (Schubert et al., 2011) or in Hudson Bay (Assis et al., 2014), and the Siberian shelf, 346 

receiving the discharge of some of the world’s largest rivers. These main drivers predicted kelp and 347 



fucoid biomes matching well-described biogeographical limits, such as those in Baja California 348 

(Cavanaugh et al., 2019), Morocco (Assis et al., 2014; Lourenço et al., 2016), South Africa (Anderson 349 

et al., 2007), Kalbarri Australia (Wernberg et al., 2013) and the extreme cold environments with 350 

low-salinity regimes and extensive ice-coverage of the higher latitudes (Jayathilake & Costello, 351 

2020; Kerswell, 2006; Vieira et al., 2021). Although higher resolution is preferred to accurately 352 

detect patchy patterns in the distribution of kelp and fucoids, suitable areas for kelp were predicted 353 

to cover ~1,71 million km2, matching the scale of previous studies (1.5 and 2 million km2; 354 

Jayathilake & Costello, 2020, 2021). Fucoids had a larger predicted suitable habitat area than kelps, 355 

covering ~2,57 million km2, a first global estimate for this group.  356 

 357 

The inferred regional species richness (poor-spots and rich-spots) and endemicity patterns at global 358 

scales can be linked to biogeographic and evolutionary hypotheses for marine forest species 359 

(Harrison & Noss, 2017, Kier et al., 2009). Specifically for kelp, the highest regional species richness 360 

was found along the California and Alaska coasts, followed by rich-spots in the Okhotsk and Japan-361 

Korea regions, the North Atlantic and the Arctic (Figure 4). Our findings match phylogenetic 362 

hypotheses raised by previous studies that suggested that kelp originated in the North-East Pacific 363 

(where higher richness was here predicted), later colonized the North-West Pacific and, after 364 

recurrent trans-Arctic passages, invaded and colonized the Arctic and North Atlantic Ocean 365 

through the opening of the Bering Sea 5.5 Ma ago (Bolton, 2010; Starko et al., 2019). The high 366 

richness found in the North East Atlantic (Figure 4a) can be further explained by the larger number 367 

of quaternary refugia, allowing long-term persistence of populations, compared to the North-West 368 

Atlantic and the Arctic regions where more extensive coastal ice coverage might have affected 369 

populations to a higher degree (Assis et al., 2014, 2017a). The general lower species richness (Figure 370 

4a) found in the southern hemisphere is in agreement with evolutionary hypotheses suggesting that 371 



southern hemisphere colonizations were rare and in the Laminariales they only occurred for the 372 

genera Ecklonia-Eisenia, Lessonia and Laminaria (Table S5; Bolton, 2010), where only the genus 373 

Lessonia is endemic to the southern hemisphere. Antarctica in particular, is poor in Laminarian 374 

kelp species, but rich in endemic species of the genus Desmarestia, namely Desmarestia 375 

confervoides; D. menziesii; D. chordalis (Figure 4b; Table S6; Bringloe et al., 2020), matching the 376 

hypothesis of a southern hemisphere origin of this family (Peters et al., 1997). Antarctica thus 377 

appears to have been kept mostly isolated, likely due to permanent coastal sea ice cover along most 378 

coastlines and seasonal sea ice expansion, in addition to the possible dispersal barrier represented 379 

by the Antarctic Circumpolar Current. Regions of kelp endemism, besides Desmarestia species in 380 

Antarctica, include New Zealand and Southern Ocean islands, and poor-spots of South America 381 

(e.g., Laminaria abyssalis in Brazil; Eisenia galapagensis in the Galapagos Islands) and South Africa 382 

(Ecklonia maxima and Laminaria pallida). The main kelp endemism region for the northern 383 

hemisphere is Eastern Russia (Saccharina gyrata and S. cichorioides f. coriacea; Figure 4b; Table S6). 384 

 385 

The geographical patterns of richness and endemicity of fucoids differed strongly from kelp and 386 

matched well the expectation from the evolutionary history of the many species that comprise the 387 

order Fucales, with highest regional species richness in South-East Australia, followed by rich-spots 388 

in Indonesia and the North-East Atlantic (Figure 5; Table S5). These findings are in agreement with 389 

evolutionary hypotheses inferred for the family Sargassaceae, that comprises over 90% of the 390 

Fucales species and therefore dominates the patterns of this group (Table 5; Bringloe et al., 2020). 391 

The high richness in the tropics and especially in the Indo-Pacific realm (211 species; Table S5) 392 

reflects the cosmopolitan distribution of the species-rich genus Sargassum (Bringloe et al., 2020; 393 

Yip et al., 2020). Sargassum was inferred to have evolved and massively radiated in the island-rich 394 

central Indo-Pacific region, and only much later diversified into species in other world regions (Yip 395 



et al. 2020), matching our richness patterns. From there, it colonized the Atlantic where species 396 

richness is lower (Table S5). The other two fucoid families with several species are the southern 397 

hemisphere Seirococcaceae and the anti-tropically distributed Fucaceae. The latter also evolved in 398 

Australasia (Cánovas et al., 2011; Serrão et al., 1999), from where they dispersed to the northern 399 

Pacific and, when the Bering Sea opened 3-5.5 Ma ago, colonised the Atlantic Ocean where they 400 

diversified into multiple lineages (Cánovas et al., 2011; Coyer et al., 2006; Serrão et al., 1999). Thus, 401 

the high species richness predicted by our models in the North Atlantic (25 versus 10 Fucaceae 402 

species in the North Pacific; Table S5) agrees with hypotheses of higher speciation due to multiple 403 

independent crossings of the Bering Strait (Cánovas et al., 2011). Regions of higher fucoid 404 

endemicity include both poor-spots such as the Galapagos Islands (e.g., Sargassum  galapagense, S. 405 

ecuadoreanum, S. setifolium), Antarctica (e.g., Cystosphaera jacquinotti), Arabian Peninsula (e.g., 406 

Sargassum dentifolium, S. boveanum, S. acinaciforme) and rich-spots such as Baja California (e.g., 407 

Stephanocystis setchellii, S. dioica, Sargassum johnstonii, S. sinicola), South Africa (e.g., 408 

Bifurcariopsis capensis, Brassicophycus brassicaeformis, Cystophora fibrosa), Japan (e.g., Sargassum 409 

yendoi, S. ammophilum, Coccophora langsdorfii), South Australia (e.g., Cystophora xiphocarpa, 410 

Carpoglossum confluens) and New Zealand (e.g., Durvillaea willana; Figure 5b; Table S7). 411 

 412 

The models had generally high performance but still contain inherent limitations such as potential 413 

data gaps and uneven sampling effort at global scales. Observed spatial biases are known, for 414 

example, for the southern hemisphere, the tropics or Africa (Taheri et al., 2021), stressing the need 415 

for additional sampling. Further, missing information on biotic interactions and abiotic 416 

characteristics, such as type of substratum, could improve the models and coverage estimates, but 417 

no such data are currently available at global scales (Jayathilake & Costello, 2020; Kusumoto et al., 418 

2020). Hence, the current estimate of area is likely an overestimate, as it assumes that all substrata 419 



are suitable to support brown macroalgae, although these are largely restricted to rocky shores or 420 

hard substrata, such as coral reefs and other biogenic hard structures. Nevertheless, in our approach 421 

we used the most accurate and pruned brown macroalgal dataset available and a combination of 422 

well-documented methodological approaches to increase model accuracy and provide insights on 423 

the potential species richness patterns (Araújo et al., 2019). In particular, integrating dispersal 424 

constraints was a key step to reduce overestimations.  425 

 426 

Our results establish novel and valuable baseline information on kelp and fucoid species richness 427 

and endemicity estimates. These can be used to inform conservation, management and mitigation 428 

strategies. Considering the potential overestimation of predictions of suitable habitats, our 429 

endemism estimates are conservative, therefore identifying actual locations of range-restricted 430 

species that are of high conservation value. Conservation priority efforts could be directed both at 431 

rich-spots, aiming to protect as much biodiversity as possible (Trebilco et al., 2011) and at poor-432 

spots, where habitat availability and ecological services of coastal ecosystems may depend solely on 433 

a few species, especially if those contain endemic, range-restricted species (e.g., the Galapagos 434 

Islands, Antarctica, South Africa). The estimates here provided could be used as baseline 435 

information in habitat restoration planning or in the current efforts to reduce the global mismatch 436 

between marine biodiversity and protected areas, in the scope of the Global Biodiversity 437 

Framework (Lindegren et al., 2018; Zhao et al., 2020). This is particularly relevant in the context of 438 

present and future climate change. Warming trends and extreme climate events have become 439 

longer and more frequent (Oliver et al., 2018), impacting marine forests globally and triggering 440 

ecosystem tipping points affecting multiple associated species (Arafeh-Dalmau et al., 2020). 441 

Characteristic examples of contractions in the distribution of marine forests by hundreds of 442 

kilometres within the last one or two decades, causing significant loss of genetic diversity and / or 443 



ecosystem biodiversity, with no signs of recovery, include Southern Australia in 2011 (Wernberg 444 

et al., 2013, Coleman & Wernberg, 2017; Gurgel et al., 2020); California in 2014-2016 (Cavanaugh 445 

et al., 2019) and northwest Africa / Iberia (Assis et al., 2017c; Lourenço et al. 2016; Nicastro et al. 446 

2013). Building on this framework, future projections anticipate rapid changes in the marine 447 

environment and more extreme events (Oliver et al., 2019), that would further impact the 448 

distribution of marine forests and threaten some regions of high genetic diversity (Assis et al., 449 

2017a). Therefore, upcoming initiatives should combine our results with future climate projections 450 

to flag areas where brown macroalgal forests may be threatened with climate change, contributing 451 

to timely consideration of potential conservation and mitigation actions. 452 

 453 

Figures  454 

 455 

 456 

Figure 1. Relative contribution (%) of each environmental predictor to the performance of models 457 

for marine forests of (a) kelp, (b) intertidal fucoid and (c) subtidal fucoid. Red lines and red square 458 

markers indicate the 95th percentile and the average relative contribution of predictors, 459 

respectively. 460 



 461 

462 

Figure 2. Apparent physiological thresholds inferred from models for marine forests of (a) kelp, (b) 463 

intertidal fucoid and (c) subtidal fucoid. Thresholds reflect tolerance limits that can be on the lower 464 

(positive) or upper (negative) values of the predictor’s gradient. Region defined by red lines and red 465 

square marker, indicate the 95th percentile and the average relative contribution of predictors, 466 

respectively. 467 

 468 

469 

Figure 3. (a) Difference between observed and predicted species richness in relation to the 470 



resolution of hexagon shapes. (b) Correlation between observed and predicted potential species 471 

richness at the optimal resolution of hexagon shapes (60 km).  472 

 473 

     474 

Figure 4. Global estimates of kelp (a) species richness and (b) endemicity for an optimal resolution 475 

of the global hexagon grid system (60km). Total suitable habitat area determined with latitudinal 476 

bins of 0.5º resolution is presented on the side graphs. 477 



 478 

 479 

Figure 5. Global estimates of fucoid (a) species richness and (b) endemicity for an optimal resolution 480 

of the global hexagon grid system (60km). Total suitable habitat area determined with latitudinal 481 

bins of 0.5º resolution is presented on the side graphs.  482 
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