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Abstract: Colorectal cancer (CRC) is the third most common cancer and the second leading cause
of death due to cancer in the world. Therefore, the identification of novel druggable targets is
urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as
oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and
TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all
three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending
on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment
and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored
role for these proteins in the context of CRC. Differential Tribbles expression was also explored in
diverse cellular experimental conditions where either genetic or pharmacological approaches were
used, providing novel hints for future research. This comprehensive bioinformatic analysis provides
new insights into Tribbles gene expression and transcript regulation in CRC.
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1. Introduction

Colorectal cancer (CRC) is a carcinoma that develops in the colon or rectum, also
known as bowel cancer. CRC initiates with the transformation of a normal epithelium to a
benign growth on the inner lining of the colon or rectum, named polyp, and progresses
through a stepwise accumulation of multiple genetic and epigenetic alterations in key
genes, in a context of a growing genetic instability [1,2].

Sporadic colorectal cancers have traditionally been described to develop through
two molecular pathways: the conventional adenoma–carcinoma and the serrated path-
way [3]. The conventional pathway is linked to chromosomal instability (CIN), which
refers to a high rate of gains or losses of whole, or large portions of chromosomes, and
is observed in 70 to 75% of sporadic CRC [3]. This pathway is characterized by the accu-
mulation of mutations in specific oncogenes, including Epithelial Growth Factor Receptor
(EGFR), KRAS proto-oncogene GTPase (KRAS), Cyclooxygenase 2 (COX2), and B-Raf
proto-oncogene serine/threonine kinase (BRAF), and tumor suppressor genes, such as
Adenomatous Polyposis Coli (APC), Deleted in Colon Cancer (DCC), Phosphatase and
Tensin Homolog (PTEN), and Tumor Protein 53 (TP53) [4]. The serrated pathway accounts
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for about 25–30% of sporadic colorectal cancers [3,5] and involves BRAF mutations and
microsatellite instability (MSI) [6–9], which is a consequence of the inactivation of DNA
mismatch repair (MMR) genes such as MutL Homolog 1 (MLH1), MutL Homolog 2 (MSH2),
and PMS1 Homolog 2, Mismatch Repair System Component (PMS2) [5,10]. A subset of
serrated lesions seem to evolve through the classical pathway as they show altered KRAS,
p53, and APC, and MSI is not present [11], suggesting the existence of a third pathway to
CRC development [12].

The identification of molecular alterations and other mechanisms contributing to CRC
development and progression have led to improved therapies for CRC patients, allowing
the development and use of targeted therapies, in addition to the classical therapies (i.e.,
surgery, chemotherapy, and radiotherapy). Nevertheless, despite the current developments
in prevention, diagnosis, and treatment, CRC is the third most common cancer and the
second leading cause of death due to cancer in the world [13]. Therefore, the identification
of new targets is sorely needed, especially for metastatic disease, for which the treatment
options are scarce and less is known regarding targetable molecular mechanisms.

Tribbles (TRIB) proteins have emerged as potential therapeutic targets for the treatment
of several cancer types. There are three mammalian Tribbles, TRIB1 (C8FW or SKIP1),
TRIB2 (C5FW), and TRIB3 (NIPK, SKIP3, or LKW), which contain both unique and shared
features. It is thought that eukaryotic Tribbles evolved from a common ancestor, the human
TRIB2 homolog, and all contain a highly atypical pseudokinase domain fused to a unique
docking site in an extended C tail that binds to ubiquitin E3 ligases [14,15]. Why three
distinct Tribbles pseudokinases evolved in human cells, and how they mechanistically
support diverse signaling pathways, is currently not fully understood.

Tribbles were reported to regulate intracellular cell signaling through two main mech-
anisms. One involves positioning proteins and controlling their E3 ligase-dependent
ubiquitination. The other involves a scaffolding function, which operates to integrate and
modulate canonical MAPK and AKT modules. Through these mechanisms, Tribbles are in-
volved in the regulation of the cell cycle, differentiation, metabolism, proliferation, and cell
stress [14,15]. Tribbles are also associated with pathologic states, including metabolic and
neurological diseases, and several types of cancer [14–18]. In cancer, Tribbles were shown
to have both oncogenic and tumor suppressive roles, dependent on the family member
and cellular context, suggesting a tightly regulated balance between these proteins [14,15].

All three Tribbles proteins were previously implicated in CRC in independent stud-
ies [19] and have been pointed as novel potential pharmacological targets for therapeutic
intervention [20–22]. However, TRIB1, TRIB2, and TRIB3 expression was not concurrently
evaluated in the same samples or datasets, precluding the identification of potential com-
plementary, synergistic, and exclusive mechanisms involving the three Tribbles in CRC.
Based on the sequence similarities between human Tribbles, their well conserved pseu-
dokinase domain [16], along with common interacting proteins [23,24], a certain degree
of overlapping functions might be expected. Previously, both inverse and correlative
relationships [25], and competition between Tribbles members [26], were identified.

In this work, we analyzed TRIB1, TRIB2, and TRIB3 expression simultaneously in the
same sets of CRC data from the available gene expression arrays from GEO database [27,28].
With this strategy, we aimed at further elucidating redundancy and specificity of Tribbles in
CRC formation and progression. Moreover, we also intended to potentially identify novel
therapeutic strategies and pathways involved in the modulation of Tribbles expression.
Though our main focus was to evaluate human samples, we have also integrated the results
from established cell lines’ datasets. Overall, our results can provide novel hints for clinical
decision making in patients with CRC.

2. Results
2.1. Tribbles Expression in Colon Cancer Tissues and Cell Lines

Several authors have already individually identified the amplification and/or over-
expression of each of the Tribbles proteins in CRC samples compared to matched normal
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colon tissue [19]. Although different studies have used bioinformatic tools to study the
mRNA levels of Tribbles in CRC, there are no studies that simultaneously evaluate TRIB1,
TRIB2, and TRIB3 gene expression within the same datasets.

2.1.1. Colon and Rectal Cancer Tissues Compared to Controls

In the GEO profiles, we identified four independent datasets that compared human
colon tumors to either normal colonic mucosa from healthy donors or paired, adjacent nor-
mal tissue from patients (Table S1). Independent paired analysis of colorectal adenomatous
polyps/adenomas and normal colon mucosa (GDS2947) [29] (Figures 1A–C and S1A,B),
and of CRC tumors and adjacent non-cancerous tissues (GDS4382) [30]
(Figures 1D–F and S2A–C), showed a significant upregulation of TRIB3 in tumors
(Figures 1C,F, S1B and S2C). By contrast, either no significant differences (Figures 1A and S2A)
or a decrease in TRIB1 in tumors (Figure 1D), and no significant differences
(Figures 1B,E and S1A) or a relative increase (Figure S2B) in TRIB2 gene expression in
tumors, was observed. Interestingly, both TRIB2 and TRIB3 were significantly overex-
pressed in CRC (Figure 1H,I), i.e., between non-paired samples of primary CRC tumors
from male patients, 69 to 87 years old at diagnosis (late onset) vs. controls (GDS5232) [31,32],
while TRIB1 expression did not differ (Figure 1G). In agreement, both TRIB2 and TRIB3 (but
not TRIB1) were upregulated in colorectal adenocarcinomas with microsatellite instability
(MSI CRCs) (Figures 1J–L and S3), when compared to non-paired normal colonic mucosa
(GDS4515) [33]. Supporting the previous findings, we found a significantly higher expres-
sion of TRIB2 and TRIB3 in CRC tumors as compared to adjacent non-cancerous tissues in
the TCGA colon and rectum adenocarcinoma (COADREAD) cohort (Figure S4A–C).

When compared to the normal mucosa of healthy individuals, both TRIB1 and TRIB2
(but not TRIB3) were 2-fold overexpressed in normal-appearing colonic mucosa adjacent to
tumors of CRC patients below 50 years of age and without a previous family history of
CRC (GDS2609) [34] (Figures 2A–C and S5).

It has been previously suggested that young- vs. late-onset CRC have different
molecular profiles, namely at the mutation status or mRNA expression levels [35,36]. From
a set of CRC samples that included both male and female patients stratified by age at
diagnosis, we found that TRIB2, though not TRIB1 nor TRIB3, was preferentially expressed
in primary CRC tumors from female patients diagnosed with CRC at an early age (28 to
53 years of age) when compared with patients diagnosed at a later age (69 to 87 years)
(GDS5232) (Figure S6A–C). However, this difference in TRIB2 expression was not observed
in male patients. Only TRIB3 was upregulated in male patients diagnosed at an advanced
age compared to early onset diagnose (GDS5232) (Figure S6D–F). To confirm these findings,
we analyzed the TCGA colon and rectum adenocarcinoma (COADREAD) cohort and did
not find any significant difference regarding TRIB1, TRIB2 and TRIB3 expression in CRC
tumors between young and old patients, neither in females nor in males (Figure S7A–F).

Serrated and conventional colorectal carcinomas (CRCs) present not only morphologi-
cal differences, but also distinct gene expression profiles [12]. Nevertheless, no statistically
significant differences in the gene expression of Tribbles were identified between these two
types (GDS2201) (Table S2).
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Figure 1. TRIB1, TRIB2, and TRIB3 gene expression in colorectal tumors compared to controls. (A–C): Colorectal adenomas 
(pedunculated colorectal polyps) (Tumor, n = 32) compared to paired normal mucosa, i.e., normal colon from the same 
individual (Control, n = 32) (GDS2947). (D–F): CRC overt tumors, from patients with different gender and ages, in different 
stages (Tumor, n = 17) compared to paired adjacent non-cancerous tissues (Control, n = 17). (GDS4382). (G–I): Primary 
CRC tumors from male patients diagnosed at an advanced age (69 to 87 years; late onset) (Tumor, n = 11) compared to 
normal controls, i.e., normal colonic mucosa samples (Control, n = 3) (GDS5232). (J–L): Normal colonic mucosa (Control, 
n = 15) compared to colorectal adenocarcinomas (both hereditary and sporadic) with microsatellite instability (Tumor, n = 
34) (GDS4515). Independent datasets were analyzed, and samples plotted individually. TRIB1 ((A,D,J)—202241_at; (G)—

Figure 1. TRIB1, TRIB2, and TRIB3 gene expression in colorectal tumors compared to controls. (A–C): Colorectal adenomas
(pedunculated colorectal polyps) (Tumor, n = 32) compared to paired normal mucosa, i.e., normal colon from the same
individual (Control, n = 32) (GDS2947). (D–F): CRC overt tumors, from patients with different gender and ages, in different
stages (Tumor, n = 17) compared to paired adjacent non-cancerous tissues (Control, n = 17). (GDS4382). (G–I): Primary
CRC tumors from male patients diagnosed at an advanced age (69 to 87 years; late onset) (Tumor, n = 11) compared to
normal controls, i.e., normal colonic mucosa samples (Control, n = 3) (GDS5232). (J–L): Normal colonic mucosa (Control,
n = 15) compared to colorectal adenocarcinomas (both hereditary and sporadic) with microsatellite instability (Tumor,
n = 34) (GDS4515). Independent datasets were analyzed, and samples plotted individually. TRIB1 ((A,D,J)—202241_at;
(G)—150749), TRIB2 ((B,E,K)—202478_at; (H)—188922) and TRIB3 ((C,F,L)—218145_at; (I)—113737) gene expression is
represented as arbitrary units (AU). Wilcoxon paired test (A–E), paired two-tailed t test (I), unpaired two-tailed t test (G,H),
t test with Welch’s correction (F), or Mann–Whitney U test (J–L) was performed, and the p value is represented for each
graph. The horizontal bars represent the mean of the values in each group.
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in tumor) tissue after preoperative neoadjuvant radio-chemotherapy (RCT) treatment (p = 
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non-treated patients (p = 0.0003), but also to normal tissue, regardless of exposure to RCT 
(Figure 3B). TRIB3 was significantly overexpressed in rectal cancer before treatment, com-
pared to the normal tissue (p = 0.008) (Figure 3C, blue circles). Importantly, this difference 
in TRIB3 levels was not found in tumors subjected to preoperative neoadjuvant RCT, as 
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Chinese patients without a prior family history of CRC (Tumor, n = 10), whose tumors were classified as microsatellite-stable,
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performed, and the p value is represented for each graph. The horizontal bars represent the mean of the values in each group.
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Rectal samples from normal tissue and tumor specimens from a Norwegian cohort,
including patients with resectable adenocarcinoma of the rectum before and after treat-
ment, were also compared (GDS3756) [37]. As for most of the CRC data presented above
(Figure 1), TRIB1 levels were equivalent in normal vs. tumor samples without treatment
(control) (Figure 3A, blue circles). However, TRIB1 levels were higher in normal (but
not in tumor) tissue after preoperative neoadjuvant radio-chemotherapy (RCT) treatment
(p = 0.027), compared to the normal not treated tissue (control) (Figure 3A). TRIB2 was
expressed at a higher level in tumors subjected to RCT, compared not only to tumors from
non-treated patients (p = 0.0003), but also to normal tissue, regardless of exposure to RCT
(Figure 3B). TRIB3 was significantly overexpressed in rectal cancer before treatment, com-
pared to the normal tissue (p = 0.008) (Figure 3C, blue circles). Importantly, this difference in
TRIB3 levels was not found in tumors subjected to preoperative neoadjuvant RCT, as TRIB3
expression was significantly lower than in tumors not subjected to RCT and comparable to
normal tissue (treated and not treated) (Figure 3C, black squares). These data showed that
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only TRIB3 was upregulated in rectal tumors vs. normal tissue. Interestingly, TRIB2 and
TRIB3 transcripts in rectal cancer were conversely regulated upon RCT.

CRC stem cells were previously implicated in tumor initiation, metastases, and re-
sistance to therapy [38]. CD133, a transmembrane glycoprotein has been widely used as
a marker to identify and isolate CRC stem cells [39,40]. When analyzing either CD133-
positive or CD133-negative CRC cells, and their neighboring carcinoma associated fibrob-
lasts (CAFs), isolated from the same stage II patient sample (GDS4385) [41], TRIB1 (Figure 4A)
and TRIB3 (Figures 4C and S8B) showed both higher expression in CRC compared to CAFs.
By contrast, expression of TRIB2 was significantly lower in CRC cells (Figures 4B and S8A).
In either case, the gene expression of Tribbles was not different between CD133-positive
and CD133-negative CRC cells (Figures 4A–C and S8A,B), suggesting that Tribbles tran-
scriptional regulation is independent of cell stemness. Additional values from a second
TRIB1 probe were not considered for analysis as they were below the detection call.
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2.1.2. Colon Cancer Cells Lines

The use of immortalized cancer cell lines as an in vitro model system allows for a
further understanding of tumorigenesis. For this reason, we analyzed the NCI-60 panel
of established cancer cell lines, which included seven different colon cancer cell lines
(COLO205, HCC2998, HCT116, HCT15, HT29, KM12, and SW620) (GDS4296) [42–45],
and also specifically compared SW480 (primary tumor) and SW620 (metastatic) isogenic
colon cancer cell lines (GDS756) [46]. Globally, our main results indicate that TRIB2 was
preferentially expressed in COLO205 cells (Table S3), and when comparing isogenic cells,
SW480 expressed higher levels of TRIB1 and TRIB2, while SW620 metastatic cells displayed
greater TRIB3 levels (Table S3). These findings could provide a useful guidance to cell-based
experiments to investigate the role of Tribbles in colon cancer.

2.2. Tribbles Expression Association to Colon Cancer Progression, Staging, and Metastasis

Previous studies have correlated the expression of Tribbles with poor prognosis and
overall survival [19], but not with cancer staging. Herein, in the single set of staged patients
obtained from the GEO profiles [47], we found that Tribbles expression did not associate
with staging (or metastasis), independently of the procedure of sample extraction being
laser microdissection (GDS4516) (Figures 5A–C and S9A–C) or classical homogenization
(GDS4718) (Figure S9D–I). In addition, we confirmed that TRIB1, TRIB2, and TRIB3 expres-
sion were not significantly different in samples from different stages in the TCGA colon
and rectum adenocarcinoma (COADREAD) cohort (Figure S10A–C).
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In agreement, there were no differences when comparing the expression of Tribbles
in metastasis with the primary tumor, independently of the patients being classified as
responders or non-responders for FOLFOX treatment (combined therapy with Fluorouracil
(5-FU), leucovorin and oxaliplatin) (GDS4393 and GDS4396, as training and test set, respec-
tively) [48] (data not shown).

2.3. Tribbles Expression and Its Association to Colon Cancer Relapse

To the best of our knowledge, there are currently no specific studies on the impact
of Tribbles expression on the relapse of CRC patients, though a recent study identified
high TRIB2 expression association with an adverse recurrence-free survival [49]. Never-
theless, the analysis of primary tumors from patients with Dukes’ stage B colon cancer
that recurred in 5 years, compared to tumors from patients that remained disease-free
5 years after surgery (GDS1263) [50], showed no differences regarding the expression of
Tribbles (Table S2). Accordingly, the expression of all Tribbles was similar in both, tumor
samples from sporadic stage II colon cancer patients who relapsed, or not, during the 5-year
follow-up after being treated by elective standard oncological resection (GDS4513) [51]
(Table S2).

2.4. Tribbles Expression Association to Colon Cancer Drug-Resistance

To the best of our knowledge, there are currently no specific studies on the impact of
Tribbles expression in CRC and resistance to therapies. However, one study, which mainly
focused on the identification of biomarkers for tumor sensitivity to the EGFR inhibitor
erlotinib in non-small cell lung cancer (NSCLC), revealed that TRIB3 expression (combined
with other transcripts) negatively correlated with the sensitivity to erlotinib in colon cancer
cell lines of the NCI60 collection [52].



Gastrointest. Disord. 2021, 3 225

In our analysis, the expression of all Tribbles was not altered between samples from
patient-derived CRC xenografts, sensitive or resistant to the Src inhibitor saracatinib
(GDS4383) [53] (Table S2). Similarly, we could not identify expression differences in primary
or metastatic lesions when comparing FOLFOX responders to non-responders (GDS4393
and GDS4396) [48] (data not shown). In a cellular context, we observed that in HT29 colon
cancer cells, either sensitive or resistant to methotrexate (MTX) (GDS3330) [54–56], while
TRIB1 levels were lower, TRIB3 expression was higher in MTX-resistant (HT-29-R) cells,
compared to sensitive cells (Table S3). Both assay probes for TRIB2 were excluded for this
dataset based on our criteria established in the methodology (i.e., below detection), making
it impossible to disclose TRIB2 transcript expression in this context.

2.5. Tribbles Transcriptional Regulation in Colon Cancer

The mechanism behind the overexpression of Tribbles in colorectal cancer patients is
still currently not fully established. While for TRIB3 different transcription factors have
been identified to be involved in its transcriptional regulation, such as β-catenin/TCF4 [57]
and ATF4/CHOP [58,59], TRIB1 and TRIB2 upstream regulators in CRC have been less
explored. Contributing to the characterization of Tribbles regulation at the transcriptional
level will allow a better understanding on how Tribbles are physiologically and pathologi-
cally modulated, as well as how its transcript levels might be pharmacologically targeted.

2.5.1. Tribbles Regulation in Response to Protein Modulation

To explore the transcriptional regulation of TRIB1, TRIB2, and TRIB3 in response
to genetic alterations impacting different proteins, we selected and analyzed seven in-
dependent gene datasets extracted from the GEO profiles. From these, six were from
genetically modified cell lines (Table S3), which included SW480 cells stably overexpressing
Snail (GDS4596), [60], HCT116 cells depleted of PTEN by gene targeting (GDS2446) [61],
HCT116 cells, either fully (p53+/+), partially (p53−/+), or not (p53−/−) expressing TP53
tumor suppressor (GDS170) [62], Ls174T cells upon genetically induced blockage of Wnt
signaling (GDS4386) [63], HCT116 overexpressing either wild-type or mutant forms of
HLA-F-adjacent transcript 10 (FAT10) (GDS5439) [64], and knock-down (KD) of X-linked
inhibitor of apoptosis (XIAP) in HCT116 cells (GDS3482) [65].

TP53 is a tumor suppressor gene known to be regulated by PI3K/AKT signaling [66],
and TP53 mutations are common in human cancers. From mutant p53 CRC human samples
(GDS4384) [67], TRIB1 showed downregulation when compared to wild-type, though in
only one of the probes used (Table S2). From an independent dataset in HCT116 colon
cancer cells (GDS170) [62], which compared different levels of p53 protein (and not mutated
forms, as in the previous study), TRIB1 levels revealed no differences between genotypes,
whereas TRIB2 expression showed a trend to upregulation in TP53−/− when compared to
TP53+/+ (Table S3). Only one probe was available for TRIB1 and TRIB2, while any TRIB3
probe was available at this gene dataset.

Phosphatase and tensin homolog (PTEN) is a tumor suppressor antagonizing PI3K
activity and therefore inhibiting downstream AKT/mTOR signaling [68]. By analyzing
HCT116 colon cancer cells depleted in PTEN by gene targeting (GDS2446) [61], we found
that TRIB2 gene expression was consistently over 2-fold upregulated (in both assay probes
available) in response to PTEN deletion (Table S3) suggesting the existence of a negative
feedback loop in the regulation of TRIB2 activity [69], while TRIB1 and TRIB3 remained
unchanged compared to control cells.

HLA-F-adjacent transcript 10 (FAT10) is a ubiquitin-like modifier protein involved
in proteasomal protein degradation [70]. In the parental HCT116 colon cancer cell line,
compared to cells overexpressing either the wild-type (WT) FAT10 or three different mutants
(GDS5439) [64], TRIB3 was downregulated in WT FAT10, compared to parental cells
(Figure S11C). This effect was partially or fully lost in M1 or M2 region mutation and
double (M12) region mutations, respectively (Figure S11C). The mutations disrupted
potential amino acid charge-dependent interactions, though not leading to denaturation or
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misfolding of the mutant protein, as described [64]. In contrast, TRIB1 and TRIB2 levels
remained unchanged between genotypes (Figure S11A,B).

Additional cellular approaches, namely Wnt signaling blockage, XIAP KD, or Snail
overexpression did not, at least consistently, modify Tribbles expression levels (Table S3).

2.5.2. Tribbles Regulation in Response to Pharmacological Treatments

As TRIB proteins have been found to be involved in drug resistance, the up or down-
regulation of their expression upon compound treatment might provide important insights
into resistance mechanisms and guide decision-making in the clinic. Regarding the expres-
sion of Tribbles upon pharmacological modulation, there are only a few studies published,
and mainly on TRIB3, that were able to show expression changes [58,71]. Most were
due to indirect effects on transcription factors previously described, and not directly at
the protein level. Here, we analyzed six independent datasets which included different
putative therapeutic strategies. From these, one was from human patients derived CRC
samples (Table S1).

Cyclooxygenase 2 (COX-2) is greatly enriched in CRC specimens compared to adjacent
tissues [72]. Its potential active participation in tumorigenesis, fostered the interest in COX
inhibition as a pharmacological approach. Celecoxib is a COX-2 inhibitor that, besides its
proven and approved anti-inflammatory action, exhibits anti-cancer activity in CRC [73],
though also proposed to be through COX-independent mechanisms [74]. We found that
TRIB2 expression experienced an almost 2-fold increase in samples from human colorectal
adenocarcinoma patients pre-treated with celecoxib (400 mg twice a day) for 7 days prior
to tumor resection (GDS3384) [75] (Figures 6B and S12), while TRIB1 was found unchanged
(Figure 6A), when compared to control non-treated patients. Although the increase in
TRIB2 expression did not reach statistical significance (p < 0.1 in both assayed probes), it
could suggest that some patients might not benefit from celecoxib treatment due to TRIB2
upregulation. TRIB3 probe was not present in this specific array.
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Datasets from established cell lines included SW620 cells treated with a rosemary
extract (GDS5416) [76], SW480 cells treated with a MEK inhibitor or a selective Tankyrase
inhibitor, alone or combined (GDS5029) [77], HCT116 cells treated with a cyclin-dependent ki-
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nase inhibitor (GDS5268) [78], RKO cells exposed to 4-hydroxy-2-nonenal (HNE)
(GDS1413) [79], and HT29 cells treated with apratoxin A or incubated with hydrogen
peroxide, exposed to UV light, or subjected to a heat shock (GDS1902) [80], which main
results are depicted in Table S3.

In the context of cell lines, we identified potential effects on the expression of Tribbles
upon different pharmacological approaches, previously proposed to show anticancer
activity in different cancer types. For instance, analysis of SW620 colon cancer cells treated
with supercritical Rosemary (Rosmarinus officinalis L.) extract RE-2 at different doses (30,
60, and 100 µg/mL) (GDS5416) [76], showed that the expression of all Tribbles genes was
mildly affected depending on the dose. While both TRIB1 and TRIB3 were upregulated at
higher doses, compared to control vehicle, TRIB2 expression was gradually inhibited upon
RE treatment, showing a maximal reduction at a concentration of the 60 µg/mL (Table S3).
In another study, RKO colorectal carcinoma cells were exposed to HNE, a product of
cellular lipid peroxidation with anti-cancer potential [81], at three different doses (5, 20,
and 60 µM) for 6 or 24 h (GDS1413) [79]. Regarding TRIB1 transcript levels, there was a
dose-dependent downregulation after 6 h of HNE treatment compared to control cells,
which was lost after 24 h. Although some degree of inconsistency between both available
probes was observed for TRIB3 at the lower doses, its expression levels were consistently
upregulated in cells treated with 60 µM HNE after both 6 h and 24 h (Table S3). Both
assay probes for TRIB2 were excluded based on our criteria established in the methodology
regarding threshold for detection from the Affymetrix platform. Taken together, these
results suggest that RE-2 and HNE act through different molecular mechanisms affecting
specific factors capable of differentially regulating the transcription of the Tribbles genes.
However, the interpretation of such results is currently limited by the absence of statistical
analysis derived from the low number of replicates (Table S3).

3. Discussion

As recently reviewed [19], only a few studies have specifically studied TRIB1, TRIB2, or
TRIB3 in CRC, though never concurrently. This might be of great importance, as only when
all three isoforms are analyzed simultaneously and compared is it possible to investigate
and determine the potential existence of redundancy or compensatory effects, as previously
evidenced [16,25,26].

While researchers usually use a specific dataset to look for differentially expressed
genes, we took the reverse strategy from the available gene expression arrays in order to dig
into the transcript levels of Tribbles in response to several different stimuli and conditions
in the CRC setting. This approach allows us to identify novel hints to establish this family
of genes as putative oncogenes and/or useful CRC biomarkers, as the knowledge on its
regulation will also allow us to better understand its biology and clarify its potential as
novel therapeutic targets. Tribbles have been individually implicated in colorectal cancer.
Nevertheless, a simultaneous analysis of TRIB1, TRIB2, and TRIB3 in the same samples was,
to best of our knowledge, not reported before. Therefore, we performed a comprehensive
bioinformatic analysis of GEO data, which provided new insights into the expression levels
and transcript regulation of Tribbles genes in colorectal cancer.

We found TRIB1 and TRIB2 to be overexpressed in morphologically normal-appearing
colon mucosa adjacent to tumors when compared to normal colon mucosa from healthy
individuals. This finding suggests that these may be deregulated in a mucosa “primed”
for carcinogenesis [34]. When comparing the transcriptome of early stage adenomas with
normal colon mucosa from the same individuals, we found that TRIB3 was overexpressed
in paired tumors. By contrast, TRIB1 and TRIB2 expression was not different between
adenomas and adjacent normal colon. The fact that TRIB2 levels are increased in the
normal-appearing colonic mucosa adjacent to tumors of CRC patients, when compared
to the normal mucosa from healthy individuals might explain the absence of differences
between TRIB2 levels in adjacent tissue compared to the tumor itself. Indeed, analyzing
the transcriptomics data from a different study, which reported the isolation of cancer-
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associated fibroblasts (CAFs) and CRC cells from tumors [41], we found that TRIB1 and
TRIB3 were expressed at higher levels in CRC cells. Conversely, TRIB2 levels were higher
in CAFs, the most prevalent cells found in the tumor stroma. Therefore, TRIB2 may be
preferentially expressed in stromal cells, which may contribute to the higher levels of TRIB2
in tumor samples precluding the identification of consistent expression differences between
cancerous cells and their normal counterparts unless the tissues are dissociated and sorted.

When comparing the expression of TRIB1, TRIB2, and TRIB3 in CRC specimens
from different stages of the disease, none of the three Tribbles presented differences in
expression between tumor stages. Age at diagnosis also does not seem to be a factor
contributing to differences in Tribbles expression. Importantly, a clear upregulation of
TRIB2 and TRIB3 was found in tumors when compared to normal colon of healthy controls,
while TRIB1 remained unchanged. This is somewhat unexpected, as all Tribbles were
previously reported in independent studies to be expressed at higher levels in CRC than
in normal colon tissues, both at the mRNA and protein levels [21,82,83]. Nevertheless,
it was previously described that TRIB1 and TRIB2 overexpression was only detected in
around 70% of patients, while TRIB3 overexpression was detected in 90% of patients in each
respective study cohort [19]. Therefore, differences may be more easily detected for the
latter when studying smaller and more heterogeneous cohorts as in the present study. This
possibility is supported by the finding of a smaller but statistically significant difference for
TRIB2 in the validation cohort.

In rectal carcinoma, we found TRIB3 also overexpressed in the tumor when compared
to normal rectal tissue. Nevertheless, its expression was decreased following neoadjuvant
radio-chemotherapy (RCT). Conversely, although TRIB2 levels were not significantly up-
regulated in rectal cancer, its levels were higher in the tumor after therapy, suggesting that
it may be induced in response to RCT and it should be studied as a potential biomarker
of response to therapy. Therefore, as not all patients responded similarly to the RCT in
this study [37], it would be important to investigate whether a correlation between TRIB2
levels and the response to treatment could be inferred, and potentially implicating TRIB2
in treatment resistance, as previously evidenced in other cancer types [84,85].

We also explored the regulation of Tribbles transcripts in CRC by analyzing data from
human samples or cell lines with altered signaling through genetic or pharmacological
approaches. In view of the observational nature of the findings, and limited by the low
number of samples available constraining statistical analyses, we narrowed our findings to
main differential results. Indeed, from thirteen independent datasets, only two were from
human samples. In these, we did not find either very consistent nor statistically significant
expression changes, namely in response to p53 mutations or celecoxib treatments, respec-
tively. Moreover, the relatively small study groups may have precluded the possibility to
confirm differences in Tribbles expression in the different cell lines.

Even so, some cellular treatments showed relatively coherent results, which might be
important to guide future research projects on Tribbles in the CRC setting.

Firstly, it has been well described that TRIB3 is upregulated at the transcriptional
level upon endoplasmic reticulum (ER) stress [86], implicating the drugs involved in the
activation of ER stress as expected inducers of TRIB3. Rosemary (Rosmarinus officinalis L.)
extracts (RE), naturally rich in carnosic acid, have been previously emphasized due to its
potential anticancer activity in different cancer types, such as CRC [87,88]. Mechanistically,
different studies have identified induced unfolded protein response (UPR) and ER stress
activation in HT29 colorectal adenocarcinoma [89,90], and in HCT116 CRC cell lines using
xenograft models [91]. However, it is not surprising to detect an induction of TRIB3 in
response to RE treatment, as TRIB3 is a known transcriptional target of ATF4/CHOP [86].
By contrast, TRIB2 expression was decreased after RE treatment, suggesting that different
mechanisms might be involved. As TRIB2 directly interacts with AKT and promotes its
phosphorylation at the Serine 473 residue, leading to AKT activation [92], TRIB2 down-
regulation in response to RE could be contributing to the impairment of AKT signaling
pathway described in NSCLC after RE treatment [93], which should be further explored.
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Secondly, another compound of interest is HNE (4-hydroxy-2-nonenal), which results
from polyunsaturated fatty acids oxidation. Mainly due to its electrophilic characteristics,
it reacts with both DNA and proteins [94], which have led to the increasing interest
on its impact on cell death induction, occurring mainly through apoptosis [95]. In the
original dataset article [79], the authors have identified alterations in the expression of
genes involved in ER stress and nutrient deprivation responses. Therefore, it was not
unexpected that TRIB3 transcript levels were increased after treatment with HNE at the
considered cytotoxic concentration (20 µM), early after 6 h of incubation, as previously
listed [79]. As for TRIB1, we found it was regulated in opposite directions in response to
these two aforementioned TRIB3-inducing treatments (up upon RE and down upon HNE),
so additional unknown effectors might be operating.

Finally, there is accumulating evidence supporting that TRIB3 may either function as
an oncogene or as a tumor suppressor. Respectively, while TRIB3 may lead to the activation
of the AKT survival pathway in retinoblastoma [96], oral squamous cell carcinoma [97],
or breast cancer [98], it also may lead to decreased AKT activity and proliferation in en-
dometrial cancer cells [99], or in breast carcinoma BT474 and hepatocellular carcinoma
(HCC) HepG2 cell lines [100,101]. Consistent with the finding that FAT10 was upregu-
lated in colon tumors [102], its ectopic expression in HCT116 CRC cells was described to
promote tumor growth [103]. FAT10 oncogenic effects were shown to be dependent of
AKT signaling pathway activation in HCC [104]. Indeed, FAT10 overexpression induced
phosphorylation of AKT in both HCC and bladder cancer cells [104,105]. Remarkably,
TRIB3 has been previously listed has one of the genes involved in cell death and survival,
modulated by exogenous FAT10 expression [103]. However, the authors did not expand
this finding [103]. Through our analyses, we identified TRIB3 downregulation in response
to FAT10 overexpression, but not in response to the double mutant protein, which abrogates
FAT10–Mad2 interaction (described in [64]). This finding suggests that TRIB3 could be
a transcriptional target of FAT10, which could be an indirect response to the malignant
phenotype, or a direct target gene at the promoter level. On the other hand, taking into
account the reported AKT suppression mediated by TRIB3 [100], decreased TRIB3 levels
could be the missing link between FAT10 overexpression and increased AKT activity. This
hypothesis remains to be established.

4. Materials and Methods
4.1. Sources of Data

Gene expression RNA-seq and microarray data from colorectal cancer cell lines
and primary samples were obtained from the Gene Expression Omnibus (GEO) profiles
database [27,28]. Gene data sets (GDS) were selected based on data availability, using
advanced search with keywords “colorectal OR colon AND TRIB*”. The expression data
were downloaded and, when indicated, the relative fold change to an experimentally
or clinically defined control was calculated to each GDS. Whenever indicated, multiple
statistical analyses were performed for the same GDS. Datasets with less than 2 samples
per group were excluded.

Gene probes IDs were indicated for each analysis. Different platforms might use
specific informative extensions. Illumina uses “I” when a probe recognizes a single isoform
and “A” when recognizing all isoforms. Affymetrix uses “_at” indicating a probe that
recognizes a unique gene isoform or “_s_at” indicating the probe can recognize multiple
isoforms of the same gene. Specifically for the data obtained from the Affymetrix plat-
form, extensions “_x_at” and also assay probes where over 75% of the samples presented
expression values below detection (i.e., “absent”), were excluded. When more than one
assay probe for the same gene was available, both sets of data were always independently
analyzed and the combined data interpreted, described, and referenced. In this case, only
one was shown in main figures, and the other was represented in Supplementary Material,
as described below.
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For main figures, consistently only one probe from each platform was shown, re-
spectively for TRIB1 (202241_at from [HG-U133A] Affymetrix Human Genome U133A Ar-
ray (Affy U133A); 150749 from ABI Human Genome Survey Microarray Version 2 (ABI);
AJ000480_at from [Hu6800] Affymetrix Human Full Length HuGeneFL Array (Affy HuGeneFL);
ILMN_1803811 from Illumina HumanHT-12 V4.0 expression beadchip (Illu HT-12); 35597_at
from [HG_U95Av2] Affymetrix Human Genome U95 Version 2 Array (Affy U95); and A_24_
P252497 from Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Agi)), TRIB2
(202478_at from Affy U133A; 188922 from ABI; D87119_at from Affy HuGeneFL; ILMN_
1714700 from Illu HT-12; 40113_at from Affy U95; and A_24_P396753 from Agi), and
TRIB3 (218145_at from Affy U133A; 113737 from ABI; ILMN_1787815 from Illu HT-12;
and A_24_P305541 from Agi), which are denoted in figure legends. When available, the
following probes were consistently represented only at Supplementary Figures: TRIB1
(235641_at from Affy U133A and A_23_P123503 from Agi), TRIB2 (202479_s_at from Affy
U133A; 717_at from Affy U95; and A_23_P90696 from Agi), and TRIB3 (1555788_a_at from
Affy U133A and A_23_P210690 from Agi), disclosed in figure legends.

For the validation cohorts, gene expression bioinformatic analyses were performed on
colorectal samples from the TCGA colon and rectum adenocarcinoma (COADREAD) cohort
from a publicly available database, The Cancer Genome Atlas Consortium (TCGA) [106].
The data was derived from Illumina HiSeq 2000 RNA Sequencing. This dataset includes
gene-level transcription estimates, expressed in RSEM normalized count.

Both the RNA sequencing dataset and the clinicopathological features of patients with
CRC, such as gender, age, and pathologic stage, were downloaded from the UCSC Xena
website [107], and samples with missing clinical information were removed from the analy-
sis. Gene expression data from different cell lines from the Cell Line Cancer Encyclopedia
(CCLE) database [108] were also downloaded from the UCSC Xena platform [107].

4.2. Statistical Analysis

GraphPad Prism version 8 (GraphPad Software, La Jolla, CA, USA) was used for
statistical analysis. The normal/gaussian distribution of the values was accessed by
the Shapiro–Wilk test. For values not normally distributed, the non-parametric Mann–
Whitney U test was used to compare two unmatched groups. For non-parametric paired
analyses, the Wilcoxon matched-pairs signed rank test was applied. In the case of normally
distributed values, the F test was used to compare variances. Groups with normally
distributed values and equal variances were compared using paired or unpaired two tailed
Student’s t test, to compare data between two groups. On the other hand, groups with
normally distributed values and different variances were compared using the t-test with
Welch’s correction.

To compare data between more than two groups, i.e., three or more unpaired groups,
based on the assumption of normal distribution, one-way ANOVA (including multiple
comparisons) were used. In these cases, the Brown and Forsythe test was used to assess
equality of variances. The Welch version of one-way ANOVA was used whenever unequal
variances were identified. For both ANOVA versions, Tukey’s multiple comparisons test
was also performed. In the absence of normality, accessed by the Shapiro–Wilk test, the
nonparametric Kruskal–Wallis test was used to compare three or more independent groups.
In this case, multiple comparisons were obtained by Dunn’s post test. Whenever indicated,
additional t-tests or equivalent, were performed to compare two groups individually.
Datasets for which normality could not be properly assessed due to a too small number of
samples per group (i.e., n = 3), non-parametric tests were always applied. In the case of
datasets from cell lines, in which samples were considered as technical replicates or at least
a group was n ≤ 3, statistical analyses were omitted, and results merely described.

A p < 0.05 was considered statistically significant. All statistical tests performed are
disclosed in figure legends, and p values are shown in figures; all p < 0.1 were highlighted
in bold. In each graph, the horizontal bars represent the mean of the values in each group.
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5. Conclusions

In summary, we found that at the transcript level, TRIB2 and TRIB3 are upregulated in
CR tumors as compared to normal tissues from healthy controls, although the expression
levels of all Tribbles genes remain comparable throughout the CRC stages. Though all
Tribbles were previously identified in CRC, we have shown for the first time that these genes
are not all overexpressed in the same tumors alongside, but rather that the transcriptional
levels of each family member may be induced in response to specific characteristics of the
CRC patients, and even differentially expressed based on the tumor sampling for analyses.
Herein, we have also confirmed TRIB3 overexpression in response to different cellular
stress inducers. Although we also included validation cohorts for some datasets, future
perspectives include performing quantitative analyses of gene and protein expression, to
validate specific results obtained from these arrays.
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