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Abstract—Object-oriented SLAM is a popular technology in
autonomous driving and robotics. In this paper, we propose
a stereo visual SLAM with a robust quadric landmark rep-
resentation method. The system consists of four components,
including deep learning detection, object-oriented data associa-
tion, dual quadric landmark initialization and object-based pose
optimization. State-of-the-art quadric-based SLAM algorithms
always face observation related problems and are sensitive to
observation noise, which limits their application in outdoor
scenes. To solve this problem, we propose a quadric initialization
method based on the decoupling of the quadric parameters
method, which improves the robustness to observation noise.
The sufficient object data association algorithm and the object-
oriented optimization with multiple cues enables a highly accu-
rate object pose estimation that is robust to local observations.
Experimental results show that the proposed system is more
robust to observation noise and significantly outperforms current
state-of-the-art methods in outdoor environments. In addition,
the proposed system demonstrates real-time performance.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a fun-
damental technique in order for robots to perceive the environ-
ment. When compared with classic SLAM methods that use
only the geometry of the scene, object-based SLAM has re-
cently focused on creating maps with both geometry and high-
level semantic objects within the environment [1]–[9]. This
semantically-enriched information can help robots with target-
oriented tasks like obstacle avoidance, robust relocalization
and human-robot interaction. The improvement in the accuracy
of semantic information acquisition, driven by deep learning
networks [10]–[12], has led to the increasing introduction of
object detection and semantic segmentation into visual SLAM
systems to build semantically enriched maps and enhance the
perception ability of robots.

Accurate object representation is a key issue in object-
oriented SLAM research and 3D object models [13], cubic
boxes [3]–[5] and ellipsoids [6]–[8] are among common meth-
ods utilized for object representation. Prior work like [4] and
[5] use the cubic box to represent the object, where the pose
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Fig. 1. Our proposed method uses 3D quadric landmarks to build the object-
oriented map in outdoor environments. Yellow quadrics illustrate the accuracy
of orientation and shape of the estimated ellipsoids when projected onto the
current image frame. Object ID is marked, and the magenta lines show the
center of the ellipsoids in previous frames when projected onto the image
frame, indicating the accuracy of the object data association. The red bounding
box is the object detected as dynamic and will not be constructed with
ellipsoids. Finally, the object maps are also provided.

of the cubic box can be estimated by vanishing points and
rotation sampling. Compared with the cubic box, the ellipsoid
can also accurately represent the position, orientation and size
of the object and has a more concise mathematical representa-
tion [6]. In projective geometry the quadric can be represented
by a symmetric matrix [14] where the compact perspective
projection model and the closed surfaces of ellipsoids are
meaningful for object landmarks.

The accuracy and robustness of current quadric-based
SLAM are not ideal, especially the quadric initialization
process, which is limited by the parameter coupling of the
direct linear solution method [6] or the necessity for point
cloud fitting [7], [9]. QuadricSLAM [6] is a recently pro-
posed object-oriented SLAM system that represents objects as
quadrics; a dual quadric observation model based on the object
detection is proposed. However, the closed-form constrained
dual quadric parameterization and the lack of observation
angles under the planar trajectory of the mobile vehicle make
the initialization of the quadric difficult and sensitive to obser-
vation noise. In [9], multiple constraints combined with points,
surface and quadrics are used in the optimization framework,



but the prior shape of the object is estimated based on deep
learning which incurs a high computational complexity and is
not robust. In [2], the texture plane and shape prior constraints
are added to the quadric estimation which solves the problem
of poor estimation performance when the observation angles
change in road driving scenes. However, the assumption that
the texture plane is parallel to the image plane during quadric
initialization causes the estimation to be sensitive to noise.

In addition, in prior work such as [6], [15], data association
methods have been proposed although they are typically not
robust to outdoor scenes. Dynamic objects in outdoor scenes
like moving cars and persons are a challenge for quadric
estimation since false object associations will lead to false
quadric initialization results.

To solve the aforementioned problems, we propose a ro-
bust and accurate quadric landmark initialization based on a
method for decoupling of quadric parameters (DQP) and an
object data association (ODA) algorithm in outdoor scenes.
The robustness of DQP to observation noise is improved by
independently estimating the quadric centroid translation and
the yaw rotation constraint which is satisfied for autonomous
vehicles in road planes in most cases. Then, an ellipsoid with
improved accuracy can be obtained by a nonlinear optimizer
combining the observation error, the texture plane error and
the prior object size. In terms of data association, we pro-
pose a multiple-cues algorithm combined with the Hungarian
assignment algorithm [16] which improves the robustness of
object pose estimation.

We demonstrate the performance of the proposed system in
both a simulation environment and using the KITTI Raw Data
[17] datasets. The experimental results show that the proposed
system is more robust to observation noise than other existing
methods and improves the accuracy of the position, orientation
and size of the object estimation in the outdoor environment.

The main contributions of this work are:
• To effectively overcome the observation noise, we pro-

pose an accurate and robust quadric landmark initializa-
tion method based on the DQP algorithm by decoupling
of translation and rotation of quadric centroids.

• We proposed an ODA algorithm that combines the se-
mantic inliers distribution, Kalman-based motion predic-
tion, and ellipsoidal projection to achieve accurate object
data association and object pose estimation.

• Based on the proposed algorithms, we implement real-
time stereo visual SLAM with accurate and robust el-
lipsoids representing objects, aiming to build an object-
oriented and semantically-enhanced map for outdoor nav-
igation.

II. SYSTEM OVERVIEW

A. Mathematical Representation of a Quadric Model
For convenience of description, the notations used in this

paper are as follows:
• (·)w is the world coordinate, (·)c is the camera coordinate,

(·)r is the reference camera coordinate of the object, and
(·)q is the quadric center frame.
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Fig. 2. Overview of our proposed system, there are two key modules: 1) The
detection thread takes images and acquires semantic and detection results.
2) The tracking thread initializes quadrics with the DQP method and the
ODA associates detected object quadrics with the mapped objects for further
optimization. Finally, the object map is stored with ellipsoid representations.

• K - The intrinsic matrix of a pinhole camera model.
• Tcw ∈ R4×4 - The transformation from world frame to

camera frame, which is composed of a rotation Rcw ∈
R3×3 and a translation tcw ∈ R3×1.

• P = KT - The camera projection matrix that contains
intrinsic and extrinsic camera parameters.

• B = [x1, y1, x2, y2]T - The 2D object detection bounding
box (BBox).

• M is the segmentation instance mask, D is the detection
instance, O is the object instance.

• Di
j represent the detected object instance Dj that is

assigned to the object Oi, cls(D) and cls(O) represent
the class label of the detected instance and object instance
respectively.

• In(B, x) - The checking of image points x that are
located in the B detection box.

• Q ∈ R4×4 - The quadric matrix in 3D space and Q∗ ∈
R4×4 is denoted as the dual quadric matrix.

• Π = [π1, π2, π3, π4]T - The 3-D plane surface in homoge-
neous coordinate and all quadric plane fulfil ΠTQ∗Π = 0.

• q = [ax, ay, az, tx, ty, tz, θx, θy, θz]
T - The 9-D vector

representing the attributes of the quadric, including axial
length, translation and rotation.

When a dual quadric is projected onto an image plane, it
creates a dual conic, following the rule C∗ = PQ∗PT . For
more specific properties of the quadric, please refer to [6].

B. System Architecture

The proposed system is shown in Fig.2. We implement our
algorithms on the basis of ORB-SLAM3 [18], and a stereo
camera is used to obtain a metric scale of the estimated



trajectory for the autonomous driving scene to avoid scale
ambiguity caused by monocular SLAM [19]. However, we also
highlight that our method can be used for monocular SLAM.
There are two key modules, the visual SLAM module and
the detection module. The visual SLAM module consists of
parallel threads, including the tracking thread and the local
mapping thread. Finally, the camera pose is estimated and a
semantically-enhanced object map is also stored in the map
database.

(1) The detection thread uses YOLOACT [10] to acquire
semantic information from the left images of the stereo pair.
The output results are object detection BBoxes and the in-
stance segmentation masks.

(2) The tracking thread takes images and estimates the
camera pose from consecutive frames. Meanwhile, the thread
waits for the detection instances and associates them with the
existing objects in the object map database or decides whether
to create a new object using the ODA algorithm. In addition,
if the current frame is a keyframe and an observation satisfies
the quadric initialization condition, the DQP algorithm is used
for robust and accurate quadric initialization.

(3) The local mapping thread optimizes the map points
of keyframes with local bundle adjustment. In addition, when
the objects are observed by newly inserted keyframes, the new
observation can be added to the object optimizer for nonlinear
optimization of the ellipsoidal representation of objects.

(4) The map Database stores the final maps, including the
geometry information of map points and the object-oriented
map with ellipsoids.

III. DECOUPLING OF QUADRIC PARAMETERS
INITIALIZATION ALGORITHM

A. Decoupling of Quadric Central Translation

We present the mathematical analysis of the dual quadric pa-
rameters to illustrate the effect of the translation component on
the estimation of rotation and shape. The dual form parameters
of the ellipsoid can be decomposed by eigen-decomposition in
the reference camera coordinates of the object:

Q∗
r = TrqQ

∗
qT

T
rq

=

[
Rrq trq
0T 1
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] [
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r33 −trq
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(1)

where D ∈ R3×3 is the diagonal matrix composed of the
squares of the quadric axial lengths, and trq ∈ R3×1 is the
quadric centroid translation in the reference camera coordi-
nates. The parameters of the block matrix Q∗

r33 ∈ R3×3 couple
the rotation and translation of the quadric. Since the length of
the quadric centroid translation is much larger than that of
the rotation and axes, small errors in the estimation of the
quadric centroid translation have a significant impact on the

accurate estimation of the dual quadric matrix, which is why
QuadricSLAM [6] is sensitive to observation noise.

We can also see from Eq.1 that the translation parame-
ters are independent in dual form parameters q∗14, q∗24, q∗34.
Therefore we estimate the translation component parameters
trq ∈ R3×1 independently to eliminate the effect of coupling
parameters, a key aspect of our approach. We triangulate the
center of the 2D detection box xibc and obtain the triangula-
tion map point t̂rq, which is almost close with the quadric
center trq in outdoor scenes. This assumption is proved by
experiments in VI-A. Observations of two or more frames of
detection centers form the overdetermined equation to solve
trq , [

Pc [1, ∗]Twr − xibc[1] · Pc[3, ∗]Twr
Pc [2, ∗]Twr − xibc[2] · Pc[3, ∗]Twr

]
trq = 0 (2)

where, xibc[i] is the i-th element of 2D detection center,
Pc[i, ∗] is the i-th row of the projection matrix Pc.

B. Decoupling of Quadric Rotation and Axial Length

The rotation and quadric axial lengths are considered after
the quadric centroid translation has been estimated indepen-
dently. We assume that the ellipsoid of the object, such as an
autonomous vehicle or robot, is under the constraint of yaw
rotation, while the pitch and roll are constant at zero. This
is satisfied for autonomous vehicles on the road in outdoor
scenes. Therefore, we can replace the rotation matrix in Eq.1
by:

Rrq =


cosθy 0 sinθy

0 1 0

−sinθy 0 cosθy
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where, txrq, t
y
rq , t

z
rq are elements of the quadric centroid

translation vector.
We can simplify the linear form in [6] by using the landmark

BBox observations B and the corresponding dual quadric
planes Π by substituting the trq.
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(4)

M
[
q∗11 q∗13 q∗22 q∗33 q∗44

]T
= 0 (5)

The decoupled linear form of Eq.5 can be solved by singular
value decomposition (SVD) [6], where qij is the remaining
elements of the dual quadric to be estimated.



Finally, the 9-D vector q of the quadric with orientation,
translation and axial lengths of the ellipsoid can be obtained
by the estimated dual quadric matrix Q∗:

θy = arctan(2Q3/(Q8 −Q1))/2

ax =
√
|Q1 − 2Q3 +Q8| /2

ay =
√
Q2

az =
√
|Q1 + 2Q3 +Q8| /2

(6)

where,

Q1 = −q
∗
11

q∗44
+ tx2rq Q2 = −q

∗
22

q∗44
+ ty2rq

Q3 = −q
∗
13

q∗44
+ txrqt

z
rq Q8 = −q

∗
23

q∗44
+ tz2rq

(7)

IV. 3D OBJECT OBSERVATION CONSTRAINTS
OPTIMIZATION

In the local mapping thread, we optimize the quadrics by
using odometry factors and landmark factors combined with
the observation of local keyframes. We define the set of
detected objects as D, and the set of mapped objects as O. By
minimizing the observation error between observed instances
Dk and associated mapped instance Oi, q of the quadric can
be optimized with the following constraint:

q = arg min
q

(
∑

Hb(fb) +
∑

Ha(fa)) +
∑

Hp(fp) (8)

The Huber kernel H(.) is used to enhance the robustness
of outlier observations, and the LM algorithm [20] is used to
optimize the target cost function.

A. The 2D detection error
The 2D detection error is used to calculate the distance error

between the 2D object BBox BkOi
and the detected BBox BDj

in the kth keyframe. Detection results near the edge of the
image are ignored in order to eliminate the effect of occlusion.

fb = eb(B
k
Oi
, BDj

)TΩbeb(B
k
Oi
, BDj )

eb(B
k
Oi
, BDj

) = BkOi
−BDj

(9)

B. Prior axial length error
The prior axial length error is calculated by the distance

between the prior axial length aprior and the object quadric
axial length aOi with the same object class.

fa = ea(Oi)
TΩaea(Oi)

ea(Oi) = aprior(cls(Oi))− aOi

(10)

C. Texture plane error
Similar to the method proposed by [2], the texture plane

error is obtained by the minimum distance between the fitted
texture plane and the quadric landmark. The plane parameters
of the texture plane is obtained by Delauney Triangulation
of the object’s map points with the normal vector nDj and
plane distance ZDj of a texture plane ΠDj . The texture plane
distance error can be calculated as:

fp = ep(ΠDj ,ΠOi)
TΩpep(ΠDj ,ΠOi)

ep(ΠDj ,ΠOi) = ZDj − ZOi

(11)

V. THE OBJECT DATA ASSOCIATION ALGORITHM

Multi-view geometry information is used for object land-
mark initialization, while the object detection results are
obtained by the single-frame image. Therefore, it is necessary
to correctly associate the detected instance of the same object
within the map. We propose the ODA algorithm to integrate
information for data association. The Hungarian algorithm [16]
is used to complete the assignment with the minimum distance
error. Three different distance metrics are used for affinity
functions to obtain aij , which is the element of the cost matrix
A. The α, β and γ parameters are experimentally set to 0.8,
1, and 0.8 respectively.

aij = αapij + βagij + γakij (12)

A. Semantic Inliers Points Distance

To overcome the overlap of the detection masks, we use
Bi-directional Optical Flow (BODF) to track the keypoints
within the detection mask Mj from the last keyframe and
obtain the keypoints set {xkj }. We calculate the ratio of
inliers corresponding to the same object class, where size{.}
calculates the element numbers of the set:

apij = 1−
size{In(Mk

Oi
, Xk

j )}
size{Xk

j }
(13)

B. Intersection of Union Distance

To calculate the intersection of union distance, we use the
intersection ratio between the 2D quadric landmark projection
BBox BOi of Oi and the 2D detection result BDj of the object
instance Dj .

agij = 1−
BOi
∩BDj

BOi ∪BDj

(14)

C. Prior Object Size Distance

For each object instance Oi, the motion prediction method
based on the Kalman filter [21] is adopted to predict the state
of the detection in the image frame. The predicted 2D BBox
of Dj is denoted as BaDj

, the prior object size distance akij is
defined by:

akij = 1−
BaOi
∩BaDj

BaOi
∪BaDj

(15)

VI. EXPERIMENTS

The proposed system consists of two modules, including
the SLAM module and the detection module. The overall
system architecture is described in Fig.2. In order to eval-
uate the performance of our proposed method, we build an
experimental simulation environment based on OpenGL to
compare the robustness and accuracy against other state-
of-the-art techniques. The KITTI Raw Data dataset [17] is
adopted as the benchmark real-world dataset to demonstrate
the effectiveness of our method in outdoor scenes. All the
experiments are conducted using an Intel(R) Core(TM) i7-
9750H CPU@2.6GHZ, 16G memory, and Nvidia GTX 1080
Ti.



We define the following criteria for evaluation:
(1) IoU2D: The intersection ratio between the ground truth

(GT) and the estimated quadric projection detection.

IoU2D =
Bgt ∩Bpred
Bgt ∪Bpred

(16)

(2) etrans: The error of quadric centroid translation between
the GT ellipsoid and the prediction estimation, indicating the
accuracy of the ellipsoid position estimation.

etrans = ‖tgtwq − tpredwq ‖2 (17)

(3) eaxe: The error of ellipsoid axial length between the GT
ellipsoid and the predict estimation in the world coordinate,
indicating the accuracy of the object shape estimation.

eaxe = ‖agt − apred‖2 (18)

A. Quantitative Evaluation of Simulation

Simulation provides GT of object positions and it is easy
to test the robustness of the methods with different types of
disturbance. We create the synthetic dataset with OpenGL,
five cameras are evenly deployed within 18◦ circular arcs to
simulate the camera observation in the outdoor environment.
An ellipsoid with varying shape and yaw rotation is deployed,
the GT 2D object BBox and the position are provided. The
yaw rotation of the ellipsoid is randomly sampled in the range
of ±5◦ to simulate objects with rotation. To avoid the influence
of random errors on the experimental results, for each type of
noise, 10 ellipsoids are generated with Gaussian noise from
10 seeds resulting in a total of 100 trials.

To test the effect of different types of noise on the quadric
initialization method, the relative camera poses are obtained
by introducing zero-mean Gaussian noise with standard de-
viations in the range 5% ∼ 30% to simulate the trajectory
error. In addition, a detection BBox is simulated by adding
the zero-mean Gaussian noise of 1% ∼ 6% to the GT.

We compare methods of quadric initialization including (a)
Nicholson et al [6] denoted as Q-SLAM, (b) Rubino et al [1]
denoted as Conic-method, (c) the proposed method with only
decoupling of the quadric central translation, denoted as Tri,
and (d) the proposed initialization method denoted as Tri+Yaw.

Quantitative evaluation results of initialization methods with
different types of noise are visualized in Fig.3. The plots show
the trend of different evaluation criteria with the increase in
noise. It can be seen from Fig.3, the results for all methods
are consistent with the GT, demonstrating correctness of all
methods with zero noise. The performance of all methods
degrades when noise increases.

It is obvious that the Q-SLAM method is the most sensitive
to noise among all the techniques. When either the translation
noise reaches 15%, the rotation noise reaches 20%, or the
detection BBox noise reaches 2%, Q-SLAM fails to construct
ellipsoids.

Meanwhile, the Conic-method maintains relatively good re-
sults which show the robustness under the effect of translation
and rotation noise. On the other hand, it can be seen that
under the influence of detection BBox noise, the etrans and

eaxe of the Conic-method also increase rapidly. When the
detection BBox error exceeds 4%, the Conic-method fails to
initialize the ellipsoids, which indicates that the Conic-method
is also sensitive to detection noise. However, the performance
of the proposed method is stable as it can be seen that with
translation and rotation noise, the error remains stable with
the maximum axial error of 0.45m and maximum translation
error of 0.89m. These metrics are also influenced within a
small range by the detection BBox error with the maximum
axial error and translation error of 1.02m and 2.10m. These
results show that our proposed method significantly improves
the robustness of initialization with the minimal growth trend
of noise. The visualization results of quadric initialization are
shown in Fig.4, where the red ellipsoid is the GT, and green
ellipsoid is the estimation. Our proposed method outperforms
all compared methods.

B. Evaluation on KITTI Dataset

To evaluate the performance of the proposed method in
outdoor environments, we select the KITTI Raw Data dataset
[17] in particular the sequences -09, -22, -23, -36, -59, and
-93, which were recorded in urban and residential areas with
vehicles. The dataset provides GT for vehicles, including 3-
DoF object size and 6-DoF object pose. With the extrinsic
parameters of sensors, we can transform the object pose to
camera coordinates.

Table I shows the success rate of initialization and ellipsoid
construction by different methods using different sequences.
Tables II, III and IV show the experimental results of success-
fully constructed ellipsoids under different evaluation criteria.

From Table I, we can see that our method constructs
ellipsoids for 60.2% of the vehicles and reaches an increase of
62.6% (from 37.0% to 60.23%) and 99.2% (from 30.24% to
60.23%) in success rate compared with the Conic-method and
the Q-SLAM, respectively, thus confirming the effectiveness of
our initialization method. For the IoU2D metric, larger values
indicate better construction results. As can be seen from Table
II, our method outperforms the other existing methods with
respect to IoU2D in sequence -09 and -36, with the overall
best average of 73.03%. The compared methods give better
results for individual sequences because they discard some
detection results that fail to be initialized. For etrans and eaxe,
smaller values indicate better construction results. As can be
seen from Table III and Table IV, our method outperforms the
compared methods in all cases except for sequence-22, with
the average ellipsoid central translation error of 2.127m, nearly
52.2% reduction in error. In addition, our average axial length
error is 0.642 m, a 50.8% reduction in error, compared with
1.369 and 0.947 for the other techniques. These experimental
results show the robustness and effectiveness of the proposed
method for ellipsoid representations in outdoor scenes.

Finally, we show the constructed object maps in Fig.1. The
yellow ellipsoids in the map represent static vehicles and the
yellow quadrics illustrate the orientation and shape of the
estimated ellipsoids when projected onto the image frame. The
magenta lines show the center of the ellipsoids in previous



Fig. 3. The initialization performance of methods to different types of noise, the curves show the trend of different criteria with the increase of noise.

frames projected onto the current image frame, demonstrating
the accuracy of the ODA algorithm. The red BBox represents
the vehicles that are detected as dynamic objects and are not
contained in the map.

TABLE I
SUCCESS RATE COMPARISON IN KITTI RAW DATA DATASET.

Sequence Ours Conic [1] Q-SLAM [6]
09 0.6912 0.4468 0.2706
22 0.6512 0.3333 0.2923
23 0.6230 0.3949 0.2829
36 0.6047 0.4096 0.3514
59 0.5625 0.3556 0.2558
93 0.4815 0.2826 0.3617

Average 0.6023 0.3705 0.3024

TABLE II
IoU2D COMPARISON IN KITTI RAW DATA DATASET.

Sequence Ours Conic [1] Q-SLAM [6]
09 0.7335 0.7252 0.7031
22 0.7629 0.7791 0.7662
23 0.7509 0.7529 0.6959
36 0.7604 0.7558 0.7127
59 0.6508 0.6878 0.6500
93 0.7232 0.6751 0.7433

Average 0.7303 0.7293 0.7119

VII. CONCLUSION

In this work, a novel pipeline of real-time object-oriented
stereo visual SLAM with 3D quadric landmarks is presented.
A quadric initialization method based on the DQP algorithm
is proposed to improve the robustness and success rate of
ellipsoid construction. The data association is solved by the
ODA algorithm which ensures highly accurate object pose
estimation. Extensive experiments are conducted to show that
the proposed system is accurate and robust to observation noise

TABLE III
TRANSLATION ERROR COMPARISON IN KITTI RAW DATA DATASET.

Sequence Ours Conic [1] Q-SLAM [6]
09 2.5456 2.7819 3.6110
22 2.1769 1.9552 1.9651
23 2.3341 5.6605 8.7088
36 1.8594 2.7175 6.9814
59 1.3276 1.6883 1.3874
93 2.5226 5.4130 4.0654

Average 2.1277 3.3694 4.4532

TABLE IV
AXIAL LENGTH ERROR COMPARISON IN KITTI RAW DATA DATASET.

Sequence Ours Conic [1] Q-SLAM [6]
09 0.6271 1.2618 1.1400
22 0.5565 0.7233 0.8356
23 0.5494 1.7886 0.6837
36 0.7121 1.2797 0.8799
59 0.6706 1.8467 1.2908
93 0.7357 1.3156 0.8574

Average 0.6419 1.3693 0.9479

and significantly outperforms other methods in an outdoor
environment.

In further work, we will explore finding the semantic
relationships between object ellipsoids, and using the semantic
information of the object map to localize and perform re-
localization.
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