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A B S T R A C T

Technical indicators have been widely applied to the financial trading market, often combined with machine
learning algorithms, to predict future stock market prices. The characteristics of energy market data are
comparable to financial trading data; hence this research derives eight price prediction technical indicators for
hourly electricity prices from the Irish Integrated Single Electricity Market. The proposed indicators consider
the three key types of price indicators: trend, oscillator, and momentum. Building the technical indicators
from raw electricity price data helps to capture market behaviours and find information to predict future
profitable prices. The electricity price data for the proposed indicators were collected from February 2019
until March 2020. Three machine learning regression algorithms were trained with the technical indicators:
Extreme Gradient Boosting, Gradient Boosting, and Random Forest. The results demonstrate that the price
prediction models perform much better when trained using the proposed technical indicators when compared
with baseline raw price data models.
. Introduction

Time series prediction models are trained using historical data to
nalyse patterns and to help with forecasts. Electricity prices exhibit
iffering characteristics leading to price fluctuations in response to
upply and demand, making energy prices quite challenging to predict
Mosbah & El-Hawary, 2016). Accurate prediction models would be
eneficial for energy traders to observe electricity price trends and
ver time reduce trading costs. In particular, machine learning could
e considered as these algorithms aim to create optimal models that
ry to reflect the market trend (Gao, Lo, & Fan, 2017). Short-term
orecasting models are preferable in energy trading to manage the
olatility which is present in the market (Amjady & Hemmati, 2006;
andey & Upadhyay, 2016). Technical indicators have been widely
sed in the financial trading market to help investors decide whether
o buy, sell or hold price units (Tanaka-Yamawaki & Tokuoka, 2007).
herefore, technical analysis would be an appropriate tool to consider
or electricity price forecasting to aid energy traders in making a
ecision on when to buy or sell electricity price units within the energy
arket.

The Integrated Single Electricity Market (ISEM) is a recent de-
elopment across Ireland which gives energy traders more control
nd greater flexibility. Given the popularity of technical indicators
n the financial market, there is a need to design original technical
ndicators for the energy market which is the main contribution of this
aper. These technical indicators observe market trends and support
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price forecasting decisions. Therefore, this paper examines day-ahead
electricity data with the goal of building a novel system to reduce
purchasing and trading costs within the ISEM. In Section 2 we present
related work on technical indicators in both the financial and energy
markets. The proposed eight electricity price technical indicators are
defined in Section 3. Section 4 describes the three machine learning
methodologies used with both the raw price data and the proposed
technical indicators. Section 5 presents and discusses the results, high-
lighting the accuracy of each approach. Finally, Section 6 outlines the
key findings and concludes with possible future work.

2. Related work

Fundamental (economic) and technical (derived from raw data)
indicators influence price forecasting (Pandey & Upadhyay, 2016).
Previous literature showed that technical indicators are desirable pre-
ferred tools for short-term prediction over fundamental approaches
(Shynkevich, 2016). In Teixeira and De Oliveira (2010) financial tech-
nical indicators were used as inputs with statistical approaches and
successfully forecast stock prices. Technical indicators are especially
common with stock trading, building them from raw stock price and
following the price movements over time to capture trends (Diego,
Ignacio, Francisco, & Jose, 2009). The financial technical indicators use
previous price information as inputs, often alongside machine learning
algorithms to find relationships and thus forecast stock prices to achieve
profitable returns (Gerlein, McGinnity, Belatreche, & Coleman, 2016).
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The three key types of price prediction indicators are (i) Trend, (ii)
Oscillator, and (iii) Momentum (Tanaka-Yamawaki & Tokuoka, 2007).
A similar approach of developing electricity price technical indicators
and using these for day-ahead prediction is a natural progression in the
advent of the energy trading market.

Fundamental indicators have been used as inputs into energy pre-
diction models and robust correlation was noted between data from
the same hour (Li, Arci, Reilly, Curran, & Belatreche, 2016). A study
using separate hourly models for forecasting with the Spanish energy
market demonstrated homogeneity was observed among hourly models
compared with a single 24-hour model (García-Martos, Rodríguez, &
Sánchez, 2007). Recently energy technical indicators have been cre-
ated for day-ahead energy market prediction (Demir, Mincev, Kok, &
Paterakis, 2020) using hourly models.

One of the difficulties with technical analysis is determining param-
eter optimisation. For example, a key feature to consider is the sliding
window size as this corresponds to the amount of historical data used
to calculate the technical indicators (Shynkevich, McGinnity, Coleman,
Belatreche, & Li, 2017) and this can influence overall accuracy. If
the prediction required is for day-ahead forecasting, generally the
window size is set to 24 h (García-Martos et al., 2007; Li et al., 2016).
Nonetheless, weekly or monthly forecasts could also be considered, and
if so, the window size would become 168 h or 720 h respectively (Mei,
He, Harley, Habetler, & Qu, 2014).

This paper presents eight novel electricity price technical indicators.
Building on the concept in Demir et al. (2020) we generate optimal
versions of our technical indicators for each hour. The newly devel-
oped indicators are included as inputs into three machine learning
algorithms to predict short-term electricity prices. Initially we create
one model that predicts for all 24 h and then we create 24 individual
1-hourly models. These are analysed to determine which approach is
most accurate for modelling market trends and price predictions. A
persistence model (baseline) forecasts prices on the assumption that the
conditions stay unchanged from the current to the future time (Pedro
& Coimbra, 2012). Hence, persistence machine learning models are
trained using only raw price data. For each of the different models,
performance and accuracy are evaluated and compared to determine
if the use of technical indicators enhances forecasting accuracy when
compared with raw price data.

3. Technical indicators

The proposed technical indicators are motivated by the standard fi-
nancial trading indicators. This paper focusses on price-based technical
indicators and as the ISEM requirement is day-ahead prediction, we
are interested in technical indicators that improve short-term prediction
accuracy. As discussed in Section 2, the main technical indicator classes
are trend, oscillator, and momentum. The trend indicators focus on
moving averages to indicate whether price movement is increasing or
decreasing, the oscillator price indicators represent periodic patterns
and the momentum indicator signifies market power and expectation
level (Tanaka-Yamawaki & Tokuoka, 2007).

The calculations used to derive each technical indicator for both
the 24-hour model and the hourly models are described here. For
the 24-hour model, any calculation that involves a moving average is
calculated using the previous 24 h (window size = 24) and does not
include the current hour value.

1. Percentage Price Change Moving Average (PPCMA): A trend
energy market indicator in which we calculate price change as
the difference between the current price (𝑃𝑟𝑖𝑐𝑒𝑖) and the price
from the same time period in the previous day (𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔24) to
capture daily trend, all divided by 𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔24. For the 24-hour
model, the percentage price change moving average is calculated
using a rolling 24-hour window (𝑠 = 24). For the hourly models,
2

rolling windows from 1-hour to 150-hour (𝑠 = 1,…, 150) are
used. PPCMA is defined as follows:

𝑃𝑃𝐶𝑀𝐴𝑠 =
1
𝑠

𝑠
∑

𝑖=1
𝑃𝑃𝐶𝑖 (1)

where

𝑃𝑃𝐶𝑖 =
𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔24

𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔24
∗ 100 (2)

2. Moving Average Deviation (MAD): A trend energy market indi-
cator that uses Price Change Moving Average (PCMA) to cal-
culate the deviation rate of the current electricity price from
PCMA. For the 24-hour model, the moving average deviation is
calculated using a rolling 24-hour window (𝑠 = 24) and for the
hourly models, 𝑠 = 1,…, 150. MAD is defined as:

𝑀𝐴𝐷𝑠 =
𝑃𝑟𝑖𝑐𝑒𝑠 − 𝑃𝐶𝑀𝐴𝑠

𝑃𝐶𝑀𝐴𝑠
(3)

where

𝑃𝐶𝑀𝐴𝑠 =
1
𝑠

𝑠
∑

𝑖=1

𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔24
𝑃𝑟𝑖𝑐𝑒𝐿𝑎𝑔24

(4)

3. Percentage Range (PR): An oscillator energy market indicator
that finds a relationship between current electricity price and
the highest/lowest prices. This indicator oscillates between 0
and 100, with a value tending towards 100 signifying that the
current electricity price is closer to the lowest price and a value
towards 0 signifying that the current electricity price is tending
towards the highest price. For the 24-hour model, the percentage
range is calculated over a 24-hour window (𝑠 = 24). For the
hourly models, 𝑠 = 1,…, 150 is considered to calculate the
highest and lowest prices within a given window:

𝑃𝑅𝑠 =
[

𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃 𝑟𝑖𝑐𝑒𝑠 − 𝑃𝑟𝑖𝑐𝑒𝑖
𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃 𝑟𝑖𝑐𝑒𝑠 − 𝐿𝑜𝑤𝑒𝑠𝑡𝑃 𝑟𝑖𝑐𝑒𝑠

]

∗ 100 (5)

where 𝑃𝑟𝑖𝑐𝑒𝑖 is current price.
4. Average True Range (ATR): A trend energy market indicator

measuring price volatility. Over a 24-hour window, there are
three different values calculated: (a) highest price minus lowest
price; (b) highest price minus a lagged (n ) electricity price
denoted as 𝑃𝑟𝑖𝑐𝑒𝑛; and (c) lowest price minus a lagged (n)
electricity price (𝑃𝑟𝑖𝑐𝑒𝑛). The maximum of these three values is
selected for each trading hour and averaged over a rolling 24-
hour window (𝑠 = 24 and 𝑛 = 24). For the hourly models, a
rolling window of length 1-hour to 150-hour is used and n is set
to 24 to capture daily trend:

𝐴𝑇𝑅𝑠 =
1
𝑠

𝑠
∑

𝑖=1
𝑇𝑅𝑖 (6)

where

𝑇𝑅𝑖 = 𝑀𝐴𝑋{𝐴𝑠, 𝐵𝑠, 𝐶𝑠} (7)
and

𝐴𝑠 = 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃 𝑟𝑖𝑐𝑒𝑠 − 𝐿𝑜𝑤𝑒𝑠𝑡𝑃 𝑟𝑖𝑐𝑒𝑠 (8)

𝐵𝑠 = |𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃 𝑟𝑖𝑐𝑒𝑠 − 𝑃𝑟𝑖𝑐𝑒𝑛| (9)

𝐶𝑠 = |

|

𝐿𝑜𝑤𝑒𝑠𝑡𝑃 𝑟𝑖𝑐𝑒𝑠 − 𝑃𝑟𝑖𝑐𝑒𝑛|| (10)

5. Relative Strength Index (RSI): An oscillator energy market in-
dicator that compares recent price gains to recent price losses.
This indicator oscillates between 0 and 100, with a value close to
100 signifying that the majority of electricity price units within
the period are Price Up and a value close to 0 signifying that
the majority of electricity price units are Price Down. For the 24-
hour model (𝑠 = 24), Price Up is the average of the previous 24 h
when price difference increased, and Price Down is the average
of the previous 24 h when price difference decreased. For the
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hourly models, Price Up and Price Down were calculated from
the average of the previous s hours with 𝑠 = 1,…, 150 and n
was set to 24 to capture daily trend. Price Up and Price Down
were determined by a piecewise function: if price difference was
greater than 0 then Price Up, else Price Down:

𝑅𝑆𝐼𝑠 = 100 −
[

100
𝐷𝑠

]

(11)

where

𝐷𝑠 =
⎛

⎜

⎜

⎝

1 −
1
𝑠
∑𝑠

𝑖=1 𝑃𝑟𝑖𝑐𝑒𝑈𝑝
[

𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑟𝑖𝑐𝑒𝑛
]

1
𝑠
∑𝑠

𝑖=1 𝑃𝑟𝑖𝑐𝑒𝐷𝑜𝑤𝑛
[

𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑟𝑖𝑐𝑒𝑛
]

⎞

⎟

⎟

⎠

(12)

6. Average Directional Movement Index (ADX): A trend energy
market indicator measuring the strength of the trend, grouping
the two directional movement indexes depending on whether
price change, calculated as current electricity price minus either
previous 24-hour price (24-hour model) or previous s -hour price
(hourly models), is grouped as a Price Up (positive) change or
Price Down (negative) change. The two indexes are combined
and smoothed with a moving average. For the 24-hour model,
𝑠 = 24 and 𝑛 = 24. For the hourly models, (𝑠 = 1,…, 150) and
n=24:

𝐴𝐷𝑋𝑠 =
|𝐷𝑋𝑈𝑝𝑠 −𝐷𝑋𝐷𝑜𝑤𝑛𝑠|
|𝐷𝑋𝑈𝑝𝑠 +𝐷𝑋𝐷𝑜𝑤𝑛𝑠|

(13)

where

𝐷𝑋𝑈𝑝𝑠 =
1
𝑠
∑𝑠

𝑖=1 𝑃𝑟𝑖𝑐𝑒𝑈𝑝[𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑟𝑖𝑐𝑒𝑛]

𝐴𝑇𝑅𝑠
(14)

𝐷𝑋𝐷𝑜𝑤𝑛𝑠 =
1
𝑠
∑𝑠

𝑖=1 𝑃𝑟𝑖𝑐𝑒𝐷𝑜𝑤𝑛[𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑟𝑖𝑐𝑒𝑛]

𝐴𝑇𝑅𝑠
(15)

7. Moving Average Convergence/Divergence (MACD): An oscilla-
tor energy market indicator that takes into consideration the
strength, direction, and duration of the trend as well as price
momentum through moving averages of previous price values
with rolling window sizes of 𝑎 = 12 and 𝑏 = 24 for the 24-hour
model and rolling window sizes of 𝑎 = 168 and 𝑏 = 336 for the
hourly models:

𝑀𝐴𝐶𝐷 = 1
𝑎

𝑎
∑

𝑖=1
𝑃𝑟𝑖𝑐𝑒𝑎 −

1
𝑏

𝑏
∑

𝑖=1
𝑃𝑟𝑖𝑐𝑒𝑏 (16)

8. Price Momentum (PMOM): A momentum energy market indica-
tor that evaluates the power of the market by examining the
current electricity price with the previous trading value (1 h
before) for the 24-hour model (𝑛 = 1). For the hourly models
𝑠 = 1,…, 150 and the current electricity price is considered with
the previous trading value (n is equal to s minus the window
size):

𝑃𝑀𝑂𝑀𝑠 = 𝑃𝑟𝑖𝑐𝑒𝑠 − 𝑃𝑟𝑖𝑐𝑒𝑛 (17)

. Machine learning models

Machine learning models can be used to determine interesting
atterns among data and make future predictions (Gupta, Mohanta,
hakraborty, & Ghosh, 2017). For machine learning prediction to be
uccessful, a desirable model is one that avoids overfitting and provides
ransparency (Jansen, 2018). To predict the energy prices, the eight
ovel technical indicators (Section 3) were used as inputs to train three
odels using Gradient Boosting, Extreme Gradient Boosting (XGBoost),

nd Random Forest.
Boosting algorithms use sequential learning to create one strong

odel with a small error rate by combining many weak models (Gandhi,
018a). A Gradient Boosting algorithm builds a strong prediction model
y optimising a loss function with weak learner models (Dey, Kumar,
3

Fig. 1. Testing period actual electricity price data.

Saha, & Basak, 2016) to minimise the error residuals (Qin, Wang, Li, &
Ge, 2013). In this approach for predicting energy prices, a Gradient
Boosting algorithm is implemented with the parameters determined
to be 1000 trees, the minimum sample leaf set to 1, the minimum
sample split set to 2, and the learning rate set to 0.1. An XGBoost
regression algorithm is an advanced technique with extra features
due to its ability to train with large datasets and its speed (Pathak,
2019). It functions through ensemble learning with weighted predictors
(Dey et al., 2016). XGBoost is similar to Gradient Boosting, however
it applies Newton boosting for approximation which improves model
performance by applying an extra parameter for randomising to reduce
correlation (Gandhi, 2018b). This research implements an XGBoost
algorithm with 1000 trees, the fraction of column is set to 0.6, the
fraction of observations is set to 0.8, the maximum depth of a tree is
set to 4, and the learning rate is set to 0.05.

A Random Forest algorithm is another efficient ensemble regression
technique which is robust to outliers, is expandable thus avoiding
overfitting, adaptable, and is simple to tune (Mei et al., 2014). The
input data are split by a tuning parameter which decides recursively
when to generate new classifiers (Mulrennan, Donovan, Tormey, &
Macpherson, 2018). During the training stage, no single tree sees the
full training data as the training consists of bagging with multiple
decision trees each divided at the nodes (Khaidem, Saha, & Dey, 2016).
Feature importance is ranked from the inclusion of multiple trees and
the accuracy improves as more trees are added (Jansen, 2018). The
final prediction value is the average of the predictions from each of
the individual trees (Pórtoles, González, & Moguerza, 2018). Here the
parameters for the Random Forest algorithm are determined to be 1000
trees, the minimum sample leaf is set to 1, the minimum sample split
is set to 2, and no pruning is included.

When the models are split by hour and trained using the technical
indicators, each hourly model (0–23) has different parameters. The
method of selecting an optimal lag factor (n) and the span (s) is based
on the approach in Demir et al. (2020). In our approach, n is used
for five of the proposed technical indicators in Section 3 (ADX, ATR,
PMOM, PR, and RSI) and s is used for two of the proposed technical
indicators (MAD and PPCMA). To find the optimal hourly technical
indicators, a grid-search is applied with all the possible combinations
of hyperparameters n and s ranging from 1 to 150 for the respec-
tive technical indicators. The Random Forest algorithm was used to
determine the optimal n and s values for each individual hour. All
possible combinations of n and s were generated and ranked from
lowest to highest with respect to Root Mean Square Error (RMSE) which
is calculated as the difference between the actual and the predicted
electricity price. The n and s values that result in the smallest RMSE
during testing were chosen as the optimal values.
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Table 1
Summary results for 24-hour training models.

Model Algorithm EVS RMSE RMSLE MedAE

Baseline Gradient boosting 0.66 11.28 0.32 5.43
XGBoost 0.59 12.44 0.34 5.94
Random forest 0.83 8.07 0.27 3.45

Technical indicators Gradient boosting 0.99 1.76 0.091 1.12
XGBoost 0.99 2.21 0.093 1.30
Random forest 0.99 2.18 0.088 0.77

EVS = Explained Variance Score, RMSE = Root Mean Square Error, RMSLE = Root
Mean Square Log Error, MedAE = Median Absolute Error.

5. Results and discussion

The ISEM electricity price data used in the experiments were hourly
records ranging from 1st February 2019 to 31st March 2020 retrieved
from the Single Electricity Market Operator website SEMOpx. The
proposed technical indicators, outlined in Section 3, are utilised as
model inputs for the regression algorithms to predict electricity prices.
First, the technical indicators are calculated using data from every hour
and the window size is 24 h for each of the three machine learning
algorithms. The 24-hour models were trained using the eight technical
indicators with 85% of the data (9th September 2019 Hour 0 to 1st
March 2020 Hour 5) and tested using the technical indicators with the
remaining 15% of the data (1st March 2020 Hour 6 to 31st March
2020 Hour 23). The input variables are the technical indicators at
time 𝑇 and the target variable is the actual electricity price at time
T+24. For comparison, and to determine if technical indicators improve
prediction models, a persistence 24-hour model is trained as a baseline
with the same train/test split. The input variable in this case is actual
electricity price at time 𝑇 and the output variable is actual electricity
price at time T+24.

Fig. 1 displays the actual electricity price we are aiming to predict
for the complete testing stage (738 h). The summary results are col-
lected for both the training and testing stages. Well-known summary
metrics are used to evaluate model performance. These are Explained
Variance Score (EVS) where a score of 1 indicates the best possible
outcome (Pedregosa et al., 2011), Root Mean Squared Error (RMSE)
which is ideally close to zero, Root Mean Squared Log Error (RMSLE)
a value closer to zero indicates improved performance, and Median
Absolute Error (MedAE) which removes extreme values and reduces
bias and should tend towards zero. The RMSLE metric was selected
as one of the performance metrics as it applies relative error, includes
a large penalty for underestimating, and is robust to outliers (Saxena,
2019). The EVS metric (Pedregosa et al., 2011) is calculated as follows:

𝐸𝑉 𝑆 = 1 −
[

𝑉 𝑎𝑟 (𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
𝑉 𝑎𝑟 (𝐴𝑐𝑡𝑢𝑎𝑙)

]

(18)

with values close to 1 indicating excellent model fit and lower values,
in particular negative values, indicating that the model is overfitting.
The RMSE metric (Saxena, 2019) is calculated as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
)2 (19)

with a small RMSE value signifying that the predicted values on average
match the actual values. The RMSLE metric (Saxena, 2019) is calculated
as follows:

𝑅𝑀𝑆𝐿𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

log
(

𝐴𝑐𝑡𝑢𝑎𝑙𝑖 + 1
)

− log
(

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 + 1
))2 (20)

with a RMSLE value close to zero indicating robustness and an excellent
model fit. The MedAE metric (Pedregosa et al., 2011) is calculated as
follows:

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛
(

|𝐴 − 𝑃 | ,… , |𝐴 − 𝑃 |

)

(21)

| 1 1| | 𝑛 𝑛|

4

Fig. 2. 24-hour testing model gradient boosting.

Table 2
Summary results for 24-hour testing models.

Model Algorithm EVS RMSE RMSLE MedAE

Baseline Gradient boosting 0.03 13.39 0.39 7.90
XGBoost 0.10 12.89 0.37 7.53
Random forest −0.29 15.43 0.41 9.85

Technical indicators Gradient boosting 0.87 5.02 0.17 2.97
XGBoost 0.84 5.59 0.19 3.24
Random forest 0.82 6.17 0.20 3.30

EVS = Explained Variance Score, RMSE = Root Mean Square Error, RMSLE = Root
Mean Square Log Error, MedAE = Median Absolute Error.

where A=Actual Price and P=Predicted Price. The lower the MedAE
value, the less bias among the actual and predicted values, and the
better the model fit.

Table 1 presents the results for both the baseline and technical
indicator 24-hour models during the training stage for Gradient Boost-
ing, XGBoost, and Random Forest. The EVS values for training ranged
from 0.59 to 0.83 for the baseline models and was 0.99 for each of
the technical indicator models. The baseline Random Forest model had
the lowest RMSE value of 8.07 and the technical indicators Gradient
Boosting model had the lowest RMSE value of 1.76. The Random Forest
algorithm outputted the lowest RMSLE and MedAE values for both
models (baseline and technical indicators). Observing both the baseline
and technical indicator models, Random Forest performed the best
overall.

Table 2 presents the results for both the baseline and technical in-
dicator 24-hour models during testing for Gradient Boosting, XGBoost,
and Random Forest. The testing EVS ranged from −0.29 to 0.10 for
the baseline models and from 0.82 to 0.87 for the technical indicator
models. Observing the baseline models, XGBoost performed the best
with a RMSE value of 12.89, a RMSLE of 0.37, and a MedAE value
of 7.53. When comparing the technical indicator models, Gradient
Boosting performed the best with a RMSE value of 5.02, a RMSLE
of 0.17, and a MedAE value of 2.97. Both the training and testing
results indicate that including technical indicators as model inputs
significantly improves forecasting performance.

Figs. 2, 3, and 4 illustrate the actual price values plotted against the
baseline predicted price and technical indicators predicted price values
in the first week of the testing period (168 h) for Gradient Boosting,
XGBoost, and Random Forest respectively. Each of the figures shows
how the technical indicators perform better than the baseline models
with their values generally following the same trend as the actual price
values and displaying a very close fit overall.

The next set of experiments involves the data being split by hour to
enable individual hourly models to be trained using the three regres-
sion algorithms. To select optimal technical indicators for each hour,



C. McHugh, S. Coleman and D. Kerr Machine Learning with Applications 6 (2021) 100182

m

Fig. 3. 24-hour testing model XGBoost.

Fig. 4. 24-hour testing model random forest.

ultiple versions of each indicator with varying n and s values are
considered using a grid-search and calculated using data from February
2019 to March 2020. The optimal n and s, which are chosen using
the Random Forest algorithm and by selecting the values that provided
the lowest RMSE for each of the hourly technical indicator models, are
displayed in Table 3.

For example, the optimal n is 24 and s is 91 for Hour 0 which
means the derived technical indicators outlined in Section 3 (PPCMAs,
MADs, PRn, ATRn, RSIn, ADXn, MACD, and PMOMn) are now PPCMA91,
MAD91, PR24, ATR24, RSI24, ADX24, MACD, and PMOM24 for Hour 0.
As seen in the 24-hour models, no matter which regression algorithm
is used, the technical indicator models still outperform the baseline
models, therefore the optimal n and s chosen from the Random Forest
algorithm are used for all hourly technical indicator experiments.

Similar to the 24-hour models, the hourly technical indicator models
are trained with the eight technical indicators calculated using 85% of
the data (9th September 2019 Hour 0 to 1st March 2020 Hour 5) and
tested with the technical indicators using the remaining 15% of the
data (1st March 2020 Hour 6 to 31st March 2020 Hour 23). The input
variables are the technical indicators at time 𝑇 and the target variable
was the electricity price at time T+i. For comparison, hourly baseline
models are trained with the same train/test split. This time for each
hour, the actual electricity price at time 𝑇 is the input and the actual
electricity price at time T+24 is the output.

Tables 4, 5, and 6 present the testing results for Gradient Boosting,

XGBoost, and Random Forest respectively for both the hourly baseline

5

Table 3
Optimal N and S values.

Hour Optimal N Optimal S

0 24 91
1 12 71
2 14 35
3 55 1
4 47 32
5 19 78
6 47 97
7 15 15
8 41 63
9 12 77
10 73 69
11 81 64
12 69 63
13 80 14
14 110 3
15 96 67
16 99 92
17 89 95
18 91 62
19 84 37
20 37 82
21 9 5
22 62 138
23 12 42

and hourly technical indicator models. In Table 4, the testing EVS
ranges from −4.20 to −0.30 for Gradient Boosting persistence model
and ranged from 0.49 to 0.99 for the technical indicator models.
The RMSLE metric is robust to outliers and examines relative error
introducing large penalties if the model underestimates, therefore it is
also chosen to determine hour model performance. Hour 10 provides
the best model performance out of the baseline models with a RMSLE
value of 0.042. Hour 19 provides the best performance for the technical
indicator models with a RMSLE value of 0.013. In Table 5, the testing
EVS for XGBoost ranges from −2.61 to −0.30 in the baseline models
and ranged from 0.64 to 0.96 in the technical indicator models. Hour
21 provides the best model performance out of the baseline models
with a RMSLE value of 0.095. Hour 19 provides the best performance
for the technical indicator models with a RMSLE value of 0.023. In
Table 6 the testing EVS for Random Forest ranges from −2.16 to −0.22
for the baseline models and ranges from 0.83 to 0.99 for the technical
indicator models. Hour 21 provides the best model performance out of
the baseline models with a RMSLE value of 0.090. Hour 20 provides
the best out of the technical indicator models with a RMSLE value of
0.010.

Reviewing Tables 4–6, the use of technical indicators significantly
improves the price prediction performance compared with using the
raw price data. Random Forest is the top performing machine learning
algorithm, but all three regression algorithms perform well with the
inclusion of technical indicators as inputs. This is noted with EVS
changing from negative values for each of the best baseline models to
values close to 1 for the best technical indicator models. Each of the
four summary metrics (EVS, RMSE, RMSLE, and MedAE) also improves
with the inclusion of technical indicators. Each of the tables demon-
strates promising results and highlights that hourly models improve
performance during electricity price forecasting.

Figs. 5, 6, and 7 illustrate the actual prices plotted against the pre-
dicted prices for each of the top performing hourly technical indicator
models using the RMSLE during the testing period. Fig. 5 displays Hour
19 using Gradient Boosting, Fig. 6 displays Hour 19 using XGBoost,
and Fig. 7 displays Hour 20 using Random Forest. Each plot displays
the same hour of the day through the testing period. The figures
show excellent similarity between the actual and predicted values. In
particular, the Random Forest (Fig. 7) illustrates how well electricity
prices can be predicted when using individual hourly models.
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Table 4
Gradient boosting optimal testing models summary results.

Baseline Technical indicators

Hour EVS RMSE RMSLE MedAE EVS RMSE RMSLE MedAE

0 −1.37 17.35 0.50 9.71 0.98 2.70 0.049 1.68
1 −1.20 17.20 0.49 12.46 0.98 2.74 0.083 2.67
2 −1.03 17.02 0.71 8.12 0.99 1.75 0.08 1.30
3 −0.78 16.26 0.81 7.69 0.99 1.49 0.24 0.96
4 −0.89 17.31 0.71 9.79 0.99 1.40 0.12 0.75
5 −0.49 15.75 0.64 7.78 0.97 2.24 0.27 1.25
6 −1.38 20.46 1.02 12.90 0.97 2.43 0.60 0.99
7 −1.12 20.65 0.64 15.83 0.87 5.38 0.44 4.31
8 −1.77 22.60 0.44 15.67 0.96 2.72 0.067 1.80
9 −0.30 14.43 0.22 9.60 0.89 4.38 0.052 2.30
10 −0.68 13.54 0.042 8.90 0.95 3.50 0.042 2.22
11 −1.08 13.91 0.17 8.78 0.88 3.41 0.055 2.89
12 −1.71 14.69 0.18 10.97 0.91 2.72 0.037 1.12
13 −1.81 13.86 0.17 7.14 0.89 2.86 0.041 2.01
14 −3.49 17.04 0.29 10.55 0.93 2.01 0.076 0.70
15 −4.20 18.79 0.21 8.88 0.95 1.63 0.027 1.01
16 −1.22 12.42 0.16 7.28 0.94 3.15 0.047 2.70
17 −1.49 20.63 0.20 16.14 0.94 3.40 0.041 2.78
18 −0.88 29.02 0.19 13.61 0.99 2.06 0.019 1.44
19 −1.81 22.36 0.18 11.03 0.98 2.04 0.013 0.76
20 −1.52 13.39 0.14 8.31 0.98 1.30 0.014 1.16
21 −3.38 10.53 0.11 4.71 0.49 3.26 0.042 1.70
22 −1.65 8.45 0.15 5.48 0.97 1.04 0.017 0.72
23 −1.55 14.19 0.25 12.13 0.89 3.12 0.048 1.71

EVS = Explained Variance Score, RMSE = Root Mean Square Error, RMSLE = Root Mean Square Log Error,
MedAE = Median Absolute Error.
Table 5
XG boost optimal testing models summary results.

Baseline Technical indicators

Hour EVS RMSE RMSLE MedAE EVS RMSE RMSLE MedAE

0 −0.82 15.14 0.35 8.53 0.89 4.01 0.23 2.23
1 −0.95 16.09 0.46 9.30 0.94 2.98 0.055 1.42
2 −0.40 14.13 0.54 5.88 0.93 3.12 0.11 1.86
3 −0.58 15.28 0.70 8.17 0.94 3.21 0.35 1.19
4 −0.33 14.54 0.60 9.81 0.94 3.01 0.23 1.01
5 −0.30 14.70 0.81 5.83 0.96 2.59 0.046 1.21
6 −0.86 18.16 0.93 9.83 0.95 3.91 0.57 3.49
7 −0.66 18.23 0.52 15.42 0.79 6.53 0.31 4.25
8 −1.28 20.55 0.29 11.26 0.91 4.23 0.051 2.51
9 −0.35 14.73 0.18 9.23 0.85 5.17 0.070 2.73
10 −0.30 11.96 0.14 6.63 0.93 3.79 0.040 2.36
11 −0.42 12.03 0.15 8.96 0.88 3.28 0.048 1.55
12 −1.01 13.07 0.16 7.54 0.93 2.19 0.029 1.15
13 −0.94 12.12 0.15 7.69 0.91 2.31 0.037 1.30
14 −2.18 14.97 0.21 9.80 0.83 3.35 0.037 1.46
15 −2.61 16.44 0.19 9.78 0.89 2.41 0.037 0.88
16 −0.59 10.99 0.14 6.51 0.83 3.89 0.054 3.05
17 −0.84 18.98 0.19 17.03 0.91 4.75 0.057 3.51
18 −0.56 26.70 0.18 12.24 0.96 4.63 0.030 2.74
19 −1.22 19.95 0.16 9.04 0.94 3.26 0.023 1.55
20 −0.72 11.15 0.11 6.99 0.95 2.15 0.024 0.95
21 −1.88 8.67 0.095 5.50 0.64 2.71 0.036 1.86
22 −0.88 7.08 0.12 4.45 0.94 2.28 0.041 1.78
23 −0.82 12.03 0.19 9.05 0.84 3.52 0.062 2.84

EVS = Explained Variance Score, RMSE = Root Mean Square Error, RMSLE = Root Mean Square Log Error,
MedAE = Median Absolute Error.
Finally, sensitivity analysis was performed on the Hour 20 Random
orest model to explore the significance of each of the technical indica-
ors. Sensitivity analysis examines robustness and model performance
o determine which input parameters have the most influence (Kim,
im, & Srebric, 2020). This analysis involved removing one technical

ndicator at a time from the model inputs and evaluating the model
erformance using the four summary metrics. This technique is known
s parametric bootstrap as the factors are removed and the model re-
valuated after each replacement (Saltelli, 2002). The summary results
or each technical indicator removed are displayed in Table 7.

Observing these results, PR was the most significant technical in-
icator as once removed the model accuracy significantly decreased
6

(EVS=0.72, RMSE=4.40, RMSLE=0.047, MedAE=2.76). RSI was the
least significant parameter as once removed the model accuracy re-
mained similar to the original (EVS=0.99, RMSE=0.99, RMSLE=0.010,
MedAE=0.61). PMOM also has low significance, although the RMSE
has improved, the overall profile of the results is still not quite as
good as using all the technical indicators. These findings suggest that
Percentage Range is a strong technical indicator for electricity price
forecasting.

6. Conclusion

This research presented eight novel energy technical indicators
(PPCMA, MAD, PR, ATR, RSI, ADX, MACD, and PMOM) calculated from
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Table 6
Random forest optimal testing models summary results.

Baseline Technical indicators

Hour EVS RMSE RMSLE MedAE EVS RMSE RMSLE MedAE

0 −0.72 14.68 0.38 7.33 0.96 2.30 0.053 1.88
1 −0.92 15.97 0.46 9.44 0.97 1.91 0.14 1.38
2 −0.32 13.76 0.47 5.51 0.98 1.72 0.049 0.91
3 −0.30 13.84 0.71 7.79 0.99 1.45 0.21 0.99
4 −0.37 14.85 0.64 9.55 0.91 1.38 0.17 0.91
5 −0.23 14.32 0.69 7.51 0.99 1.43 0.19 0.84
6 −0.66 17.27 0.91 9.73 0.98 2.47 0.53 1.28
7 −0.61 17.97 0.49 13.99 0.90 4.60 0.24 3.02
8 −0.93 18.79 0.26 10.42 0.95 3.32 0.052 1.90
9 −0.32 14.57 0.17 10.22 0.92 3.62 0.050 1.95
10 −0.32 12.14 0.15 8.32 0.92 4.47 0.051 3.28
11 −0.39 11.81 0.15 8.60 0.84 3.79 0.050 2.72
12 −0.93 12.76 0.16 9.73 0.93 2.68 0.040 1.66
13 −0.86 12.22 0.15 6.29 0.92 2.07 0.033 1.39
14 −2.16 14.91 0.21 8.42 0.97 1.85 0.032 1.15
15 −1.76 14.4 0.18 9.60 0.96 1.44 0.023 0.84
16 −0.70 11.18 0.15 6.31 0.91 3.15 0.049 2.67
17 −0.60 19.16 0.19 16.04 0.92 3.80 0.045 3.42
18 −0.22 23.86 0.17 14.26 0.99 2.32 0.023 1.24
19 −0.81 18.04 0.15 10.19 0.99 1.71 0.014 1.17
20 −0.77 11.40 0.12 7.15 0.99 0.98 0.010 0.56
21 −1.18 7.73 0.090 5.99 0.83 2.26 0.029 1.46
22 −0.78 6.90 0.11 4.04 0.97 0.90 0.017 0.57
23 −0.81 11.98 0.18 9.11 0.89 2.96 0.044 2.03

EVS = Explained Variance Score, RMSE = Root Mean Square Error, RMSLE = Root Mean Square Log Error,
MedAE = Median Absolute Error.
Fig. 5. Hour 19 testing model gradient boosting.

Fig. 6. Hour 19 testing model XGBoost.

aw electricity price data and were used as inputs into three regression
lgorithms (Gradient Boosting, XGBoost, and Random Forest) to predict
7

Fig. 7. Hour 20 testing model random forest.

Table 7
Random forest hour 20 sensitivity analysis.

Parameter
removed

EVS RMSE RMSLE MedAE

None 0.99 0.98 0.010 0.56
PPCMA 0.98 1.23 0.012 0.85
MAD 0.97 1.80 0.016 0.77
PR 0.72 4.40 0.047 2.76
ATR 0.98 1.02 0.010 0.69
RSI 0.99 0.99 0.010 0.61
ADX 0.99 1.03 0.010 0.68
MACD 0.99 1.03 0.010 0.72
PMOM 0.99 0.81 0.012 0.60

EVS = Explained Variance Score, RMSE = Root Mean Square Error,
RMSLE = Root Mean Square Log Error, MedAE = Median Absolute
Error.

electricity prices. The first set of experiments considered a 24-hour
model approach and the second set of experiments focussed on hourly
models to develop an optimal price prediction model. Both approaches
were compared with baseline models which included only raw price
data as input.
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In the 24-hour approach, the three regression models EVS ranged
between 0.59 to 0.83 for the baseline models and was 0.99 for each of
the technical indicator models. The Random Forest training algorithm
for both baseline and technical indicator models outputted the lowest
RMSLE and MedAE values. The algorithms testing model EVS ranged
between −0.29 to 0.10 for the baseline models and ranged between
0.82 to 0.87 for the technical indicator models. The XG Boost baseline
testing model provided the lowest RMSE value of 12.89, the lowest
RMSLE of 0.37, and the lowest MedAE value of 7.53. The Gradient
Boosting technical indicators testing model provided the lowest RMSE
value of 5.02, the lowest RMSLE of 0.17, and the lowest MedAE value of
2.97. The results concluded that including technical indicators as inputs
significantly improves model performance. This was also confirmed in
Figs. 2, 3, and 4 in which the predicted prices generally followed the
same trend as the actual electricity price.

In the second approach, where each hour was modelled, the optimal
n and s were selected for each hour during the testing period. The
testing model EVS for each of the three regression algorithms ranged
between −4.20 to −0.22 for the baseline hourly models and ranged
between 0.49 to 0.99 for the technical indicator hourly models. Figs. 5,
6, and 7 illustrated excellent fits between actual and predicted electric-
ity price values. These promising results highlight that hourly models
do improve electricity prediction performance and therefore that they
would be helpful in energy market trading. In particular, Percentage
Range is an important technical indicator to include in an electricity
price prediction model.

To conclude, energy technical indicators should be considered by
energy traders to aid in capturing market trends and reducing costs.
This will also benefit consumers in terms of savings because if energy
traders can accurately predict electricity prices this can keep costs
low in the retail market. A key foundation of the ISEM is the Day-
Ahead market, thus both energy traders and consumers would profit
from accurate price predictions (Mirakyan, Meyer-Renschhausen, &
Koch, 2017). Possible future work will explore including other energy
related factors such as wind generation or demand and developing
associated technical indicators to determine if model performance can
be improved further.

CRediT authorship contribution statement

Catherine McHugh: Conceptualisation, Methodology, Validation,
Writing – original draft. Sonya Coleman: Conceptualisation, Super-
vision, Writing – review & editing. Dermot Kerr: Conceptualisation,
Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

This research was funded by DfE CAST scholarship in collaboration
with Click Energy.

References

Amjady, N., & Hemmati, M. (2006). Energy price forecasting: Problems and proposals
for such predictions. IEEE Power and Energy Magazine, 4, 20–29. http://dx.doi.org/
10.1109/MPAE.2006.1597990.

Demir, S., Mincev, K., Kok, K., & Paterakis, N. G. (2020). Introducing technical
indicators to electricity price forecasting: A feature engineering study for linear,
ensemble, and deep machine learning models. Applied Sciences, 10(1), 255. http:
//dx.doi.org/10.3390/app10010255.

Dey, S., Kumar, Y., Saha, S., & Basak, S. (2016). Forecasting to classification: Predicting
the direction of stock market price using xtreme gradient boosting. (pp. 1–10).

http://dx.doi.org/10.13140/RG.2.2.15294.48968.

8

Diego, J., Ignacio, J., Francisco, J., & Jose, L. (2009). Multiobjective optimization of
technical market indicators. In Proceedings of the 11th annual conference companion
on genetic and evolutionary computation conference (pp. 1999–2004). http://dx.doi.
org/10.1145/1570256.1570266.

Gandhi, R. (2018a). Boosting algorithms: AdaBoost, gradient boosting and XGBoost.
https://hackernoon.com/boosting-algorithms-adaboost-gradient-boosting-and-
xgboost-f74991cad38c. (Retrieved 6 January 2020).

Gandhi, R. (2018b). Gradient boosting and XGBoost. https://medium.com/hackernoon/
gradient-boosting-and-xgboost-90862daa6c77. (Retrieved 6 January 2020).

Gao, G., Lo, K., & Fan, F. (2017). Comparison of ARIMA and ANN models used in
electricity price forecasting for power market. Energy and Power Engineering, 09(04),
120–126. http://dx.doi.org/10.4236/epe.2017.94B015.

García-Martos, C., Rodríguez, J., & Sánchez, M. J. (2007). Mixed models for short-
run forecasting of electricity prices: Application for the Spanish market. IEEE
Transactions on Power Systems, 22(2), 544–552. http://dx.doi.org/10.1109/TPWRS.
2007.894857.

Gerlein, E. A., McGinnity, M., Belatreche, A., & Coleman, S. (2016). Evaluating machine
learning classification for financial trading: An empirical approach. Expert Systems
with Applications, 54, 193–207. http://dx.doi.org/10.1016/j.eswa.2016.01.018.

Gupta, S., Mohanta, S., Chakraborty, M., & Ghosh, S. (2017). Quantum machine
learning-using quantum computation in artificial intelligence and deep neural
networks: Quantum computation and machine learning in artificial intelligence. In
8th annual automation and electromechanical engineering conference (pp. 268–274).
http://dx.doi.org/10.1109/IEMECON.2017.8079602.

Jansen, S. (2018). Hands-on machine learning for algorithmic trading (pp. 309–358). Packt
Publishing Ltd.

Khaidem, L., Saha, S., & Dey, S. R. (2016). Predicting the direction of stock market
prices using random forest. (pp. 1–20). Retrieved from http://arxiv.org/abs/1605.
00003.

Kim, M. K., Kim, Y. S., & Srebric, J. (2020). Predictions of electricity consumption
in a campus building using occupant rates and weather elements with sensitivity
analysis: Artificial neural network vs. linear regression. Sustainable Cities and Society,
62(June), Article 102385. http://dx.doi.org/10.1016/j.scs.2020.102385.

Li, P., Arci, F., Reilly, J., Curran, K., & Belatreche, A. (2016). Using artificial neural
networks to predict short-term wholesale prices on the irish single electricity
market. In 2016 27th Irish signals and systems conference (pp. 1–10). http://dx.doi.
org/10.1109/ISSC.2017.7983623.

Mei, J., He, D., Harley, R., Habetler, T., & Qu, G. (2014). A random forest method for
real-time price forecasting in New York electricity market. In IEEE power and energy
society general meeting, (pp. 1–5). http://dx.doi.org/10.1109/PESGM.2014.6939932.

Mirakyan, A., Meyer-Renschhausen, M., & Koch, A. (2017). Composite forecasting
approach, application for next-day electricity price forecasting. Energy Economics,
66, 228–237. http://dx.doi.org/10.1016/j.eneco.2017.06.020.

Mosbah, H., & El-Hawary, M. (2016). Hourly electricity price forecasting for the next
month using multilayer neural network. Canadian Journal of Electrical and Computer
Engineering, 39, 283–291. http://dx.doi.org/10.1109/CJECE.2016.2586939.

Mulrennan, K., Donovan, J., Tormey, D., & Macpherson, R. (2018). A data science
approach to modelling a manufacturing facility’s electrical energy profile from
plant production data. In Proceedings - 2018 IEEE 5th international conference on
data science and advanced analytics (pp. 387–391). http://dx.doi.org/10.1109/DSAA.
2018.00050.

Pandey, N., & Upadhyay, K. G. (2016). Different price forecasting techniques and
their application in deregulated electricity market: A comprehensive study. In
International conference on emerging trends in electrical, electronics and sustainable
energy systems (pp. 1–4). http://dx.doi.org/10.1109/ICETEESES.2016.7581342.

Pathak, M. (2019). Using XGBoost in Python. https://www.datacamp.com/community/
tutorials/xgboost-in-python. (Retrieved 6 January 2020).

Pedregosa, et al. (2011). Metrics and scoring: quantifying the quality of predictions.
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics.
(Retrieved 5 November 2020).

Pedro, H. T. C., & Coimbra, C. F. M. (2012). Assessment of forecasting techniques for
solar power production with no exogenous inputs. Solar Energy, 86(7), 2017–2028.
http://dx.doi.org/10.1016/j.solener.2012.04.004.

Pórtoles, J., González, C., & Moguerza, J. M. (2018). Electricity price forecasting with
dynamic trees: A benchmark against the random forest approach. Energies, 11(6),
1588. http://dx.doi.org/10.3390/en11061588.

in, Q., Wang, Q.-G., Li, J., & Ge, S. S. (2013). Linear and nonlinear trading models
with gradient boosted random forests and application to Singapore stock market.
Journal of Intelligent Learning Systems and Applications, 05(01), 1–10. http://dx.doi.
org/10.4236/jilsa.2013.51001.

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Analysis, 22(3),
579–590. http://dx.doi.org/10.1111/0272-4332.00040.

axena, S. (2019). What’s the difference between RMSE and RMSLE? https://medium.
com/analytics-vidhya/root-mean-square-log-error-rmse-vs-rmlse-935c6cc1802a.
(Retrieved 8 July 2020).

EMOpx (2020). Day-ahead electricity price. https://www.semopx.com/market-data/
market-results/. (Retrieved 2 November 2020).

hynkevich, Y. (2016). Computational intelligence techniques for forecasting stock price

movements from news articles and technical indicators (Thesis), Ulster University.

http://dx.doi.org/10.1109/MPAE.2006.1597990
http://dx.doi.org/10.1109/MPAE.2006.1597990
http://dx.doi.org/10.1109/MPAE.2006.1597990
http://dx.doi.org/10.3390/app10010255
http://dx.doi.org/10.3390/app10010255
http://dx.doi.org/10.3390/app10010255
http://dx.doi.org/10.13140/RG.2.2.15294.48968
http://dx.doi.org/10.1145/1570256.1570266
http://dx.doi.org/10.1145/1570256.1570266
http://dx.doi.org/10.1145/1570256.1570266
https://hackernoon.com/boosting-algorithms-adaboost-gradient-boosting-and-xgboost-f74991cad38c
https://hackernoon.com/boosting-algorithms-adaboost-gradient-boosting-and-xgboost-f74991cad38c
https://hackernoon.com/boosting-algorithms-adaboost-gradient-boosting-and-xgboost-f74991cad38c
https://medium.com/hackernoon/gradient-boosting-and-xgboost-90862daa6c77
https://medium.com/hackernoon/gradient-boosting-and-xgboost-90862daa6c77
https://medium.com/hackernoon/gradient-boosting-and-xgboost-90862daa6c77
http://dx.doi.org/10.4236/epe.2017.94B015
http://dx.doi.org/10.1109/TPWRS.2007.894857
http://dx.doi.org/10.1109/TPWRS.2007.894857
http://dx.doi.org/10.1109/TPWRS.2007.894857
http://dx.doi.org/10.1016/j.eswa.2016.01.018
http://dx.doi.org/10.1109/IEMECON.2017.8079602
http://refhub.elsevier.com/S2666-8270(21)00091-8/sb11
http://refhub.elsevier.com/S2666-8270(21)00091-8/sb11
http://refhub.elsevier.com/S2666-8270(21)00091-8/sb11
http://arxiv.org/abs/1605.00003
http://arxiv.org/abs/1605.00003
http://arxiv.org/abs/1605.00003
http://dx.doi.org/10.1016/j.scs.2020.102385
http://dx.doi.org/10.1109/ISSC.2017.7983623
http://dx.doi.org/10.1109/ISSC.2017.7983623
http://dx.doi.org/10.1109/ISSC.2017.7983623
http://dx.doi.org/10.1109/PESGM.2014.6939932
http://dx.doi.org/10.1016/j.eneco.2017.06.020
http://dx.doi.org/10.1109/CJECE.2016.2586939
http://dx.doi.org/10.1109/DSAA.2018.00050
http://dx.doi.org/10.1109/DSAA.2018.00050
http://dx.doi.org/10.1109/DSAA.2018.00050
http://dx.doi.org/10.1109/ICETEESES.2016.7581342
https://www.datacamp.com/community/tutorials/xgboost-in-python
https://www.datacamp.com/community/tutorials/xgboost-in-python
https://www.datacamp.com/community/tutorials/xgboost-in-python
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
http://dx.doi.org/10.1016/j.solener.2012.04.004
http://dx.doi.org/10.3390/en11061588
http://dx.doi.org/10.4236/jilsa.2013.51001
http://dx.doi.org/10.4236/jilsa.2013.51001
http://dx.doi.org/10.4236/jilsa.2013.51001
http://dx.doi.org/10.1111/0272-4332.00040
https://medium.com/analytics-vidhya/root-mean-square-log-error-rmse-vs-rmlse-935c6cc1802a
https://medium.com/analytics-vidhya/root-mean-square-log-error-rmse-vs-rmlse-935c6cc1802a
https://medium.com/analytics-vidhya/root-mean-square-log-error-rmse-vs-rmlse-935c6cc1802a
https://www.semopx.com/market-data/market-results/
https://www.semopx.com/market-data/market-results/
https://www.semopx.com/market-data/market-results/
http://refhub.elsevier.com/S2666-8270(21)00091-8/sb28
http://refhub.elsevier.com/S2666-8270(21)00091-8/sb28
http://refhub.elsevier.com/S2666-8270(21)00091-8/sb28


C. McHugh, S. Coleman and D. Kerr Machine Learning with Applications 6 (2021) 100182
Shynkevich, Y., McGinnity, T. M., Coleman, S. A., Belatreche, A., & Li, Y. (2017).
Forecasting price movements using technical indicators: Investigating the impact
of varying input window length. Neurocomputing, 264, 71–88. http://dx.doi.org/
10.1016/j.neucom.2016.11.095.
9

Tanaka-Yamawaki, M., & Tokuoka, S. (2007). Adaptive use of technical indicators for
the prediction of intra-day stock prices. Statistical Mechanics and Its Applications,
383, 125–133. http://dx.doi.org/10.1016/j.physa.2007.04.126.

Teixeira, L. A., & De Oliveira, A. L. I. (2010). A method for automatic stock trading
combining technical analysis and nearest neighbor classification. Expert Systems with
Applications, 37(10), 6885–6890. http://dx.doi.org/10.1016/j.eswa.2010.03.033.

http://dx.doi.org/10.1016/j.neucom.2016.11.095
http://dx.doi.org/10.1016/j.neucom.2016.11.095
http://dx.doi.org/10.1016/j.neucom.2016.11.095
http://dx.doi.org/10.1016/j.physa.2007.04.126
http://dx.doi.org/10.1016/j.eswa.2010.03.033

	Technical indicators for energy market trading
	Introduction
	Related work
	Technical indicators
	Machine learning models
	Results and discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


