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A B S T R A C T   

Background:  The study examines the effectiveness of both neurofeedback and motor-imagery brain-computer 
interface (BCI) training, which promotes self-regulation of brain activity, using low-cost electroencephalography 
(EEG)-based wearable neurotechnology outside a clinical setting, as a potential treatment for post-traumatic 
stress disorder (PTSD) in Rwanda. 
Methods:  Participants received training/treatment sessions along with a pre- and post- intervention clinical 
assessment, (N = 29; control n = 9, neurofeedback (NF, 7 sessions) n = 10, and motor-imagery (MI, 6 sessions) n 
= 10). Feedback was presented visually via a videogame. Participants were asked to regulate (NF) or inten-
tionally modulate (MI) brain activity to affect/control the game. 
Results:  The NF group demonstrated an increase in resting-state alpha 8–12 Hz bandpower following individual 
training sessions, termed alpha ‘rebound’ (Pz channel, p = 0.025, all channels, p = 0.024), consistent with 
previous research findings. This alpha ‘rebound’, unobserved in the MI group, produced a clinically relevant 
reduction in symptom severity in NF group, as revealed in three of seven clinical outcome measures: PCL-5 (p =
0.005), PTSD screen (p = 0.005), and HTQ (p = 0.005). 
Limitations:  Data collection took place in environments that posed difficulties in controlling environmental 
factors. Nevertheless, this limitation improves ecological validity, as neurotechnology treatments must be 
deployable outside controlled environments, to be a feasible technological treatment. 
Conclusions:  The study produced the first evidence to support a low-cost, neurotechnological solution for neu-
rofeedback as an effective treatment of PTSD for victims of acute trauma in conflict zones in a developing 
country.   

1. Introduction 

Dependent on factors relating to individual vulnerabilities, post- 
traumatic stress disorder (PTSD) develops as a consequence of an 
emotional and neurobiological response induced by a psychosocial 
stressor; a traumatic experience characterised as an emotionally over-
whelming event involving a threat to the persons physical being, or their 
personal integrity, i.e., experiencing danger of death, injury, or sexual 
violation. Prevalence statistics vary depending on time and geographic 
location. However, it is estimated that approximately one in ten people 
who experience such a trauma, develop symptoms of PTSD (Breslau 
et al., 1998; Kessler et al., 1995; Lewis et al., 2019; Menon, 2011; Olff 

et al., 2005; Resnick et al., 1993). Symptoms fall into four categories – 
re-experiencing, hyperarousal, cognitive and behavioural avoidance, 
and emotional numbing, resulting from an impaired ability to regulate 
processing of threat-related information (Kluetsch et al., 2014). In 1994, 
hundreds of thousands of Rwandese lost their lives in a genocide 
perpetrated against the Tutsi that lasted for one hundred days between 
April and June of that year (Des Forges, 1999; Schaal and Elbert, 2006). 
A survey by the Ministry of Local Administration, July 2000, stated the 
official number of victims stood at 1,074,017 (Bazivamo, 2004). 

More than two decades on from this horrific event, PTSD prevalence 
among the Rwandan population of over sixteens was recorded as 26.1%, 
increasing to 41% when restricted to female survivors (Munyandamutsa 
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et al., 2012; Rudahindwa et al., 2018). A recent meta-analysis finds 
PTSD prevalence of 15% in the general population, while PTSD pooled 
prevalence for genocide survivors is estimated at 37% (Musanabaganwa 
et al., 2020). Moreover, a review by Smigelsky et al. (2014) found entire 
communities in sub-Saharan Africa to be at risk for PTSD due to conflict 
(Smigelsky et al., 2014). The societal impact of PTSD is extremely heavy. 
The chronic nature of the disorder puts a strain on health care systems, 
household income, relationships, and parenting ability (Lambert et al., 
2014; Sareen, 2014; Sherman et al., 2016). According to a report on a 
survey by the World Health Organisation (2011) conducted in 24 
countries, two of which were South Africa and Nigeria, PTSD had the 
third largest impact on productivity due to missed workdays (Alonso 
et al., 2011; Smigelsky et al., 2014). Children with a parent suffering 
from PTSD are more likely to display conduct disorders, and poor 
attachment behaviours (Sherman et al., 2016). A meta-analysis con-
ducted in 2014 found a medium effect size (r =0.35) for the relation 
between emotional distress in a child, behavioural problems, and 
parental PTSD (Lambert et al., 2014). Suicidal behaviour is high among 
PTSD patients compared to patients with other mental health diagnoses 
(Sareen, 2014). Thus, there is a clear and apparent necessity for research 
into solutions for PTSD treatment in Africa, that are affordable and 
easily accessible to people in remote communities. 

Functional connectivity within large-scale neural networks in the 
brain precipitates and constrains cognitive processes. Hence, recent 
research has taken a network approach to the study of psychopathology, 
presenting a paradigm shift in the research methodologies employed. 
The findings that stem from this approach propose psychopathology, in 
general, arises from deficits in, or damage to, small-world networks (a 
cluster of nodes in the cortex connected either directly or via a small 
number of connections between other nodes within the cluster), cortical 
subsystems, or cortical hubs (information integration centres), leading 
to dysfunction within the local network and often propagating further to 
impact large-scale intrinsic networks (Alderson et al., 2018, 2020; 
Lanius et al., 2015; Menon, 2011). Higher cognitive function has been 
found to rely on the integrity of three core neurocognitive networks, i.e., 
having a distinct cognitive function; the default mode network (DMN), 
central executive network (CEN), and salience network (SN) (Greicius 
et al., 2003; Menon, 2011; Seeley et al., 2007). The DMN comprises an 
integrated system of brain areas, most notably (but not exclusively) the 
posterior cingulate cortex (PCC) and the medial/ventro-medial pre--
frontal cortex (M/VMPFC) – involved in self-referential mental pro-
cesses such as introspective, autobiographical, and social cognition. This 
large-scale network is necessarily deactivated to allow for the mental 
processing involved in most stimulus-driven cognitive tasks, which 
involve activation of the CEN – while the SN mediates the dynamic in-
teractions between the DMN and the CEN through on-going monitoring 
of the internal and external environments. The central executive system 
is critically responsible for many higher-order functions such as main-
tenance and manipulation of information in working memory (WM), 
problem-solving, decision-making, and goal-directed behaviour – all of 
which require focused and selective attention. All three networks are 
referred to as intrinsic connectivity networks (ICN’s) as they are part of a 
group of large-scale networks that connect interdependent brain regions 
even when the brain is effectively at rest (Lanius et al., 2015; Menon, 
2011; Seeley et al., 2007). Dysfunction and /or disorganisation of these 
three ICN’s has been associated with characteristic features of multiple 
psychiatric and neurological disorders (Menon, 2011). In particular, 
aberrant functioning within the SN hub located in the frontal insula 
cortex (FIC) plays an integral role in many psychopathologies through 
inappropriate tagging of stimuli as salient, leading to abnormal behav-
ioural responses (Abdallah et al., 2019; Allman et al., 2005; Bonnelle 
et al., 2012; Goulden et al., 2014; Menon, 2011; Seeley et al., 2007). 
Predictably, PTSD is linked to a heightened stress response causing the 
sufferer to remain in a constant state of vigilance (Abdallah et al., 2019; 
Bell et al., 2019; Goulden et al., 2014). Brain connectivity and dynamics 
can be positively impacted by directed self-regulation or intentional 

modulation of brain activity which can be facilitated by neurofeedback 
(Lanius et al., 2015) and potentially, through a brain-computer interface 
(BCI) (Alimardani et al., 2014). 

The term BCI describes a system that translates brain activity to send 
commands to computer systems for the purpose of control and 
communication and is often targeted at applications that support people 
with physical disabilities caused by disease or injury (Coyle et al., 2015; 
Prasad et al., 2010). Changes in the dynamics of brain rhythms 
(resulting from event related (de)synchronisation (ERS/ERD) of specific 
neuronal assemblies and networks (Pfurtscheller et al., 2006, 1997)) and 
brain potentials such as steady-state evoked potentials (SSEPs), evoked 
potentials (EPs) and event-related potentials (ERPs), are among the 
main brain signals used in an EEG-based BCI systems (non-invasive 
BCIs) (Millán et al., 2010; Pfurtscheller et al., 2010). The current 
research focuses on the use of BCI-based feedback training to improve 
alpha function, associated with a more relaxed state and reduced 
symptom severity (Kluetsch et al., 2014; Nicholson et al., 2016). Users of 
a BCI system intentionally modulate brain activity through mental tasks 
or focusing on stimuli to relay intent whilst machine learning is applied 
to maximise accuracy of detecting the user intent. Often more than one 
brain signal is employed in BCI. Motor-imagery is the mental execution 
of a movement without the actual movement of peripheral muscles, e.g., 
imaging a left/right arm movement (Emami and Chau, 2018; Mulder, 
2007). Mental rehearsal of movement in this way, can be classified from 
an EEG recording of the sensorimotor rhythms (SMRs) which are nor-
mally associated with an 8-13 Hz oscillation (mu rhythm), which is 
associated with motor cortex at rest and beta activity (13-30 Hz) 
reflecting activated motor cortex. Typically, the lateralised pattern of 
activity differences due to mu ERD and beta ERS over the motor cortex 
contralateral to the imagined movement, is used to enable a user to 
communicate intention e.g., a binary response (Pfurtscheller et al., 
2010). Mental-imagery paradigms are commonly used in BCI’s and may 
also influence the regulation of brain networks that impact PTSD 
symptoms – a hypothesis that is tested in this paper. 

Additionally, game-based neurofeedback to enable self-regulation of 
alpha bandpower (also 8-12 Hz and overlapping with mu) satisfies the 
definition of a BCI to a point (Pfurtscheller et al., 2010); the system 
records alpha activity directly from the brain, and the user can inten-
tionally modulate their alpha to provide the necessary input for the BCI 
to process the signal in real-time to communicate with the system and 
provide feedback to the user regarding the effectiveness of their efforts 
to up or down regulate alpha bandpower. The alpha rhythm is associated 
with calmness, and hypoactive resting-state alpha is an EEG marker for 
PTSD arousal symptoms (Huang et al., 2014; Jokić-begić and Begić, 
2003; Wahbeh and Oken, 2013). Normal alpha rhythms in the awake 
brain exhibit larger amplitudes over posterior regions (Nunez et al., 
2001). Therefore, neurofeedback as a treatment for PTSD, focuses on 
increasing resting-state alpha (Bell et al., 2019; Gapen et al., 2016; 
Kluetsch et al., 2014; Nicholson et al., 2018; Van Der Kolk et al., 2016) – 
with feedback driven by real-time measurement of posterior alpha 
power (Deiber et al., 2020; Kluetsch et al., 2014; Laufs et al., 2006). 
Recently increased resting-state alpha has been achieved using neuro-
feedback to reward alpha suppression while on task, as reduced alpha 
activity while focusing on a task has been found to increase resting-state 
alpha following feedback, compared to the baseline measure taken prior 
to feedback – referred to as the alpha ‘rebound’ effect (Kluetsch et al., 
2014; Lanius et al., 2015; Nicholson et al., 2016; Ros et al., 2014). 

An important difference between neurofeedback and mental imagery 
based BCI is the input (derived from the brain signal) does not directly 
control the behaviour of the character in the game but instead influences 
the characters behaviour. For example, alpha bandpower is measured in 
real-time and the game functions correctly whilst the user regulates the 
alpha power (in this case) below a specified threshold. In contrast the 
input from the motor-imagery paradigm directly influences the behav-
iour of the game character, i.e., a specific pattern of mu desynchroni-
zation/beta synchronisation over the left motor cortex, predetermined 
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using machine learning methods, moves the character, for example, to 
the right. Therefore, for the purposes of the current study, we refer to the 
training as a BCI based intervention, with each condition named ac-
cording to the level of control the particular brain signal exerts on the 
game behaviour: The neurofeedback (NF) condition uses alpha modu-
lation to indirectly influence the game character, while the motor- 
imagery (MI) BCI uses SMR activity that is maximally separable for 
two classes of movement (left vs right) to directly control the movement 
of the game character left or right accordingly. 

At present NF is recognised as an evidence-based treatment for PTSD 
in developed countries, supported by the findings of a substantial body 
of published research studies (Bell, 2018; Bell et al., 2019; Kluetsch 
et al., 2014; Lanius et al., 2015; Nicholson et al., 2016; Othmer and 
Othmer, 2009; Van Der Kolk et al., 2016). PTSD symptoms have been 
associated with the disruption of higher intrinsic brain function due to 
aberrant alpha oscillatory activity. The success of NF as a treatment for 
PTSD symptoms has thus been related to improving voluntary alpha 
regulation to restore efficient alpha synchronisation/desynchronisation 
within the ICN’s involved in the maintenance of the disorder - impacting 
DMN functioning, and the SN which allows the brain to switch between 
the DMN and the CEN (Bell et al., 2019; Kluetsch et al., 2014; Lanius 
et al., 2015; Nicholson et al., 2018; Reiter et al., 2016; Rusiniak et al., 
2014). Alpha and beta modulation over the sensorimotor cortex is 
associated with motor movement and motor imagery (Emami and Chau, 
2020, 2018; McFarland et al., 2000; Yuan and He, 2014). Recent 
research has found that task-irrelevant distractors result in increases in 
the ratio of parietal theta power to parietal alpha power, using a BCI 
motor imagery (MI) task (Emami and Chau, 2020). Thus, improvements 
in the ability to switch between the DMN and CEN could be measured as 
a reduction in the ratio of parietal theta power to parietal alpha power. 
MI was thus chosen as an alternative feedback as both feedback types 
provided changes in cortical oscillatory activity as an outcome measure 
(alpha for the NF group and the parietal theta-parietal alpha ratio index 
for the MI group). 

This study investigates whether multiple sessions of NF training 
(alpha down regulation to promote post-session alpha ‘rebound’) or MI 
training (to modulate mu and beta and associated brain networks) could 
impact PTSD symptom severity in a population within a developing 
country that has very little experience with neurotechnology in general, 
suffers from high PTSD prevalence rates, and where neither NF nor MI 
based treatment have been previously investigated for treatment of 
PTSD. To ensure the ecological validity of both BCI-based feedback in-
terventions as a viable treatment strategy in the context of a developing 
country such as Rwanda, low-cost wearable EEG is adopted, and the 
study was conducted in community settings with mobile experimental 
setups. 

2. Methods 

2.1. Procedure 

To examine the effect of neurofeedback training on PTSD symptom 
severity, the study design included three groups: Control (no training), 
NF (neurofeedback training – seven sessions), and MI (motor-imagery 
BCI training – six sessions). There were three project phases: phase 1 to 
evaluate symptom severity prior to BCI-based feedback training inter-
vention; phase 2 to deliver interventions; and phase 3 to evaluate 
changes in brain oscillatory patterns and/or symptom severity that 
could be attributed to the NF and/or MI training. The control group 
completed the clinical interview assessment in the same weeks as the NF 
and MI groups, before and after the training phase of the study. How-
ever, they did not undergo any experimental manipulation in between 
these interview dates. 

2.2. Participant selection 

Approval for the current study was granted by the Ulster University 
(UU) Research Governance Committee and by the University of Rwanda 
- College of Medicine and Health Sciences (UR-CMHS) Institutional 
Review Board. PTSD patients who had scored at the higher end of the 
spectrum for PTSD in a previous UR led study were invited to take part in 
this study, resulting in the recruitment of 29 participants, in three 
different localities: Kigali, Rwamagana, and Huye. All participants 
provided written informed consent. For practical reasons, participants 
were assigned to groups through a process of quasi-randomisation. To 
minimise logistical challenges associated with trialling the intervention 
over multiple session all seven participants in the Huye district were 
asked to participate in the control group, as it is a three-hour drive from 
Kigali. The Rwamagana group comprised fourteen participants, while 
the Kigali group formed the final eight participants. Given the larger size 
of the Rwamagana group, two were randomly assigned to the control 
group, and two were randomly assigned to the MI training group. The 
remaining ten participants were assigned to the NF group. All eight 
participants in the Kigali group were assigned to the MI group. The final 
groupings were as follows; control n = 9, NF n = 10, and MI n = 10, (N =
29, all female). Table 1 provides demographic and baseline psycholog-
ical assessment information. 

2.3. Clinical Interviews and subjective measures (pre- post- training 
questionnaires) 

Clinical interviews: To assess an effect of NF training and/or MI 
training on symptom severity, an interviewer recorded participant re-
sponses to the following series of standardised psychological assessment 
tests both prior to, and following, the NF and MI training phase of the 
study:  

1 PTSD Diagnostic and statistical manual of mental disorders (5th 
edition - DSM-5) check list (PCL-5, 20-item self-report measure, 
Blevins et al., 2015); to determine clinically relevant improvement 
due to treatment, a minimum threshold of a reduction in post 
treatment scores by 10 points is recommended.  

2 Harvard Trauma Questionnaire (HTQ, 40-item self-report measure, 
Tay et al., 2017)), found to have an optimally sensitive cut-off score 
of 2.2.  

3 Primary care PTSD screen for DSM-5 (5-item self-report PTSD 
Screen, (Prins et al., 2016)), which has an optimally sensitive cut-off 
score of 3, within the US population.  

4 Warwick-Edinburgh Mental Well-being Scale (WEMWBS, 14-item 
self-report measure, Tennant et al., 2007), which has an average 
population mean of 51 (Stewart-Brown and Janmohamed, 2008). 

Table 1 
Demographic and initial psychological assessment data.  

Measure Participants (PTSD Patients, N = 29), M ± SD 

Sex All female 
Age 53.72 ± 6.094 
PCL-5 37.62 ± 17.346 
HTQ 86.66 ± 20.801 
PC-PTSD 2.72 ± 1.509 
WEMWBS 42.28 ± 7.837 
CD-RISC 16.59 ± 5.877 
BRS 16.38 ± 5.913 
GSE 22.24 ± 4.976 

Abbreviations: PCL-5 = PTSD Diagnostic and statistical manual of mental 
disorders (5th edition - DSM-5) check list, HTQ = Harvard Trauma Question-
naire, PC-PTSD = Primary care PTSD screen for DSM-5, WEMWBS = Warwick- 
Edinburgh Mental Well-being Scale, CD-RISC = Connor-Davidson Resilience 
Scale, BRS = Resilience Scales, GSE = General Self-Efficacy Scale, N = number of 
participants, M = mean, and SD = standard deviation. 
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5 Connor-Davidson Resilience Scale (CD-RISC, 10-item self-report 
measure, Connor and Davidson, 2003) – scores range from 0 to 40, 
and higher scores imply higher resilience.  

6 Brief Resilience Scales (BRS, 6-item self-report measure, Smith et al., 
2008) – scores range from 1 to 5, and higher scores imply higher 
resilience.  

7 General Self-Efficacy Scale (GSE, 10-item self-report measure, 
Schwarzer and Jerusalem, 1995) – scores range from 10 to 40, and 
higher scores imply higher self-efficacy. 

The psychological assessment data is presented in Table 2. Given the 
small sample size, the Mann-Whitney U test was performed on the 
baseline measures for each questionnaire, to compare groups prior to 
intervention and the Wilcoxon signed-rank test (2-tailed) was conducted 
on the pre- post intervention measures for each questionnaire, depen-
dent on group assignment, i.e., control, NF, or MI groups. 

Subjective measure of mood and stress: To assess whether par-
ticipants perceived a difference in their mood and/or their level of stress, 
either from one training session to the next or directly following a 
training session compared to just before that session, all participants 
completed a pre- and post- self-report evaluation of both their perceived 
mood and stress level. Due to the small sample size of each group, and 
some missing values in the data, a Friedman test was conducted on pre- 
training self-report measures to evaluate changes in perceived mood and 
stress levels from one session to the next, followed by the Wilcoxon 
signed-rank test (2-tailed) on each combination. To evaluate perceived 
changes in both mood and stress levels following each training session, 
the Wilcoxon signed-rank test (2-tailed) was applied to each pre- post- 
dataset combination, for each group. 

2.4. FlexEEG headset 

On the first day of training, EEG was recorded from 32 channels 
using one g.Nautilus Pro and one g.Nautilus Ladybird, 32 channel active 
electrode wearable headset system (g.NAUTILUS RESEARCH | Wearable 
EEG Headset, 2020), for high-resolution EEG. The reference electrode 
was fixed on the right earlobe and the ground electrode was positioned 
over the AFz electrode location according to the international 10/20 
EEG standard. This setup was used for all training sessions for one 
participant in the NF group due to an incompatible fit with the FlexEEG 
headset. For all other participants, EEG was recorded using the low-cost 
FlexEEG 8-channel passive electrode EEG headset (NeuroCONCISE, 
2021), which has 3 bipolar channels and 5 unipolar channels – for 
montage see Fig. 1. 

For data acquisition, the reference electrode was fixed on the right 
earlobe and the ground electrode was positioned at the AFz electrode 
location, according to the international 10/20 EEG standard. A user 
datagram protocol (UDP) based communication was used to manage the 
communication between a Simulink (Mathworks, 2015) module, used 
for EEG data acquisition and online signal processing, and the experi-
mental protocol controller application developed in the Unity 3D Game 
Engine (Unity Technologies, 2020). 

2.5. Design of the BCI based feedback training intervention 

Neurofeedback paradigm: The neurofeedback paradigm was 
designed to train participants to down regulate their alpha brain rhythm 
(8-12 Hz) while on task, using the NeuroSensi games platform to cue the 
task (Bigirimana et al., 2020). The alpha signal used to modulate the 
feedback was measured from the Pz (located over the midline parietal 
cortex), in line with Kluetsch et al., (2014), as this area covers the PCC 
which is the main hub for the DMN (Kluetsch et al., 2014; Sridharan 
et al., 2008). Furthermore, measuring from one electrode, rather than 
the alpha signal averaged over multiple electrodes, avoids a mixing of 
local cortical dynamics in the signal (Kluetsch et al., 2014; Nicholson 
et al., 2016; Ros et al., 2013). 

The aim of the game was to keep an astronaut character on track, 
collecting rewards and avoiding hazards (Fig. 2). One session comprised 
a baseline relax period of 134 seconds (s) duration followed by 10 
feedback runs (games – each of ~134 s duration), with 9 breaks (up to 
15 s in duration while the next run loaded), finishing with a second 134 s 
relax period. The participants baseline (resting-state) alpha amplitude 
was computed from the Pz channel data during the 134 s relax period 
immediately before the feedback session – using a 500 ms sliding win-
dow, the EEG signal was band-pass filtered to extract alpha from each 
500 ms epoch. The mean alpha band power from the first relax period 
was then used as the initial threshold for the subsequent run in the 
feedback session (see section 0 for more details). The task required 
participants to supress real-time alpha (8-12 Hz), and the game char-
acter was correctly positioned on the track if the measured alpha level 
was below the threshold and deviated from the correct position other-
wise. The threshold was updated for the next game by setting it to the 
value smaller than approximately 60% of the alpha levels measured 
from the preceding game i.e., periodically adapting the threshold 
setting. It was anticipated that alpha suppression during the NF training 
session would result in increased resting-state alpha following the ses-
sion – termed alpha ‘rebound’, and that this improved alpha state would 
be supported by a reduction in symptom severity post intervention. 

Motor Imagery paradigm: The motor-imagery paradigm was 
designed to train participants to consciously activate areas of their 
cortex that are unconsciously activated during movement preparation 
and execution (Lotze and Cohen, 2006; Mulder, 2007), using the Neu-
roSensi games platform to cue the task (Bigirimana et al., 2020). The 
game display has a representation of an axon on both sides of the 
interface (see Fig. 3). One trial is 8 s in duration. Three seconds from the 
beginning of a trial, a light (representing an action potential, or neural 
spike) appears at the far end of one of the axons to cue the participant to 
begin the motor-imagery task for the corresponding hand. The light 
takes 5 s to travel down the ‘axon’. At the beginning of the first feedback 
session, the task was explained to the participant – they were instructed 
to avoid eye-blinks and other movements during the task, and to ima-
gine lifting a mug (without tensing muscles) using the hand indicated by 

Fig. 1. FlexEEG 8-channel montage: Illustration of the positions of EEG and 
ground electrodes for the FlexEEG 8-channel setup. Yellow: BIAS electrode 
(zero volt driven), Red: 3-channel Motor Imagery electrodes (Bi-polar, each pair 
(FC3-CP3, FCZ-CPZ, and FC4-CP4) referenced from each other), Green: 5-chan-
nel Visual area electrodes (uni-polar, each electrode referenced from the left 
earlobe), Purple: Ear reference for visual electrodes (ear clip). 
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the cue. During the task period, continuous feedback is given to the 
participant in the form of a horizontally moving neuron (cell body and 
dendrites) character. The neuron character moves left or right based on 
the trained classifier model output (see section 2.7 for details) and the 
aim of the game is to collect as many spikes traversing the axons as 
possible (points are given for proximity to spike when each reaches the 
end of the axon and when the neuron character is moving in the correct 
direction towards the axon containing the spike). 

The MI participant group were all BCI novices – a term used to 
categorise people who have not had any previous experience with BCI 
systems. Furthermore, as with the NF participants, the MI participant 
group similarly did not have any experience of current western tech-
nologies in their daily lives. Given this low-level of tech-engagement 
coupled with the substantial number of BCI users reported to be un-
able to successfully modulate the sensory motor rhythms (SMR’s) 
necessary to control a motor imagery BCI (Ahn et al., 2013; Sannelli 
et al., 2019), participants were allowed to practice before the first ses-
sion, until they were happy to begin. It was hypothesised that partici-
pants would show a reduction in the ratio of parietal theta power to 
parietal alpha power across feedback sessions, as they learned to regu-
late their SMR activity, thus stabilising the functional brain rhythms sub 
serving the CEN, DMN, and SN, resulting in a reduction of symptom 
severity. 

2.6. Neurofeedback EEG: Signal processing and data analysis methods 

EEG channel selection: The quality of the eight acquired EEG 
channels was inspected manually offline after each session, and EEG 
channels with high-level noise (>200 µV) were removed from further 
processing. Frequency filtering: Alpha (8-12 Hz) was extracted from 
the recorded signals by band-pass filtering with Simulink (Mathworks, 
2015) using high-pass and low-pass FIR filter modules (band-pass 

attenuation 0dB, band-stop attenuation 60 dB). The preprocessed EEG 
dataset was downsampled from 250Hz to 125Hz to reduce the size of the 
EEG dataset. Epochs: The frequency filtered EEG data for baseline 
resting-state and resting-state following the training session were 
epoched separately, applying an interval of 134 s to each epoch. 
Furthermore, EEG data for each run of the game were epoched using 
intervals of 134 s per epoch. Bandpower calculation: The bandpower 
within an epoch was calculated by averaging the square values of the 
band-pass filtered EEG potentials recoded within the epoch as described 
in Eq. (1) (Korik et al., 2019). 

Bn =

∑M
m=1(P(m)n)

2

M
(1)  

where Bn is the bandpower value calculated from EEG channel n, within 
an epoch. M is the number of samples within the epoch and P(m)n is the 
mth band-pass filtered sample within the epoch. 

Neurofeedback data analysis methods: An initial assessment of 
the data found the distribution to have a significant positive skew 
(>0.5). The results of a Shapiro-Wilk test found the distribution to be 
significantly non-normal (global (all channels): baseline resting-state; W 
(53) =0.887, p <0.01, NF session data; W(53) =0.848, p <0.01, and 
resting-state following the NF session; W(53) =0.855, p <0.01, and 
Local (Pz electrode only): baseline resting-state; W(53) =0.903, p <0.01, 
NF session data; W(53) =0.898, p <0.01, and resting-state following NF 
session; W(53) =0.847, p <0.01). Therefore, data for the baseline period 
before training (resting-state, RS 1), the training period, and the relax 
period following training (RS 2) were normalised for the statistical an-
alyses, using a log10 transform in the Statistical Package for Social Sci-
ences (IBM SPSS statistics 25). To determine whether participants had 
significantly suppressed their absolute alpha amplitude during neuro-
feedback training, the alpha amplitude values averaged over a neuro-
feedback session (all runs) were compared to resting-state alpha 

Fig. 2. (a) The game display for the neurofeedback brain-computer interface (BCI) using the NeuroSensi games platform (Bigirimana et al., 2020). (b) Breakdown of 
the NF training session. 
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amplitude values, averaged over the baseline period, using a two-tailed 
Wilcoxon signed-ranked tests (the non-parametric related samples 
comparison test was chosen in place of paired t-tests due to the small 
sample size). Moreover, to evaluate plastic changes in absolute alpha 
amplitude as a consequence of neurofeedback training, absolute alpha 
amplitude values averaged over the baseline resting-state period for 
each session were compared to the averaged values over the resting- 
state period following the neurofeedback period, again using Wilcoxon 
signed-rank tests. The methodology employed in previous neurofeed-
back research using this neurofeedback approach normalised alpha 
desynchronisation values against the baseline resting-state alpha power, 
to provide an estimate of the percentage signal change between condi-
tions (for details, see Kluetsch et al., 2014; Nicholson et al., 2016). 
However, as the present data were normalised prior to making the 
estimated percentage signal change calculations, this technique was not 
necessary. The estimated percentage signal change between baseline 
resting-state alpha amplitude and alpha amplitude under feedback 
conditions, is referred to as ‘training alpha change’, calculated by sub-
tracting the averaged baseline resting-state alpha from the alpha 
amplitude averaged across feedback runs for each session. Similarly, the 
difference between baseline and post-neurofeedback resting-state alpha 
amplitude is referred to as ‘resting alpha change’ and is calculated by 
subtracting the averaged resting-state alpha following a neurofeedback 
session from the corresponding averaged baseline resting-state alpha 
(Kluetsch et al., 2014). Thus, both are normalised alpha amplitude 
values that represent change scores. Importantly, a relative percent in-
crease in alpha amplitude is represented by alpha amplitude values >
0 and conversely, values < 0 denote a relative percent decrease in alpha 
amplitude, i.e., a negative training alpha change value indicates suc-
cessful alpha amplitude suppression during the run under feedback 
conditions, while a positive resting alpha amplitude value signifies an 

increase in absolute resting-state alpha amplitude following feedback – 
termed alpha ‘rebound’ (Kluetsch et al., 2014; Nicholson et al., 2016). A 
Pearson product moment correlation was computed between the 
training alpha change scores and the baseline resting-state alpha 
amplitude values, and also between the resting alpha change scores and 
the baseline resting-state alpha amplitude values, to examine the in-
fluence of baseline resting-state alpha on subsequent alpha change. 
Furthermore, to ascertain whether training alpha change predicted 
resting alpha change, a partial correlation was assessed between these 
change scores while controlling for baseline resting-state alpha ampli-
tude. The alpha amplitude values were derived separately from both the 
EEG data recorded from the Pz electrode, used to modulate the feedback, 
and also the recorded EEG from all channels, to assess whether quali-
tative differences existed between the local (Pz) measure and the global 
(all channels) measure. 

2.7. Motor Imagery EEG: Signal processing and data analysis methods 

Offline signal processing: The signal processing framework 
involved filter-bank common spatial patterns (Ang et al., 2012) and 
mutual information (FBCSP-MI) –based features selection (Pohjalainen 
et al., 2015). This framework was calibrated on the no-feedback EEG 
data on the first occasion, and on the final feedback run of the previous 
session for subsequent MI training sessions. FBCSP applied along with an 
Linear discriminant analysis (LDA) classifier is a commonly used EEG 
classification framework for discriminating imagined movements 
(Korik et al., 2019). 

EEG channel selection: The quality of the eight acquired EEG 
channels was inspected manually, and EEG channels with high-level 
noise (>200 µV) were removed from further processing. Frequency 
filtering: Band-pass filters in four non-overlapped standard EEG’s 

Fig. 3. (a) Illustration of a cue (left) and feedback (right) presentation for the motor-imagery BCI using the NeuroSensi games platform (Bigirimana et al., 2020). (b) 
Breakdown of the MI training session. 
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frequency bands (8-12Hz (alpha), 12-18Hz (low beta), 18-28Hz (high 
beta), and 28-40Hz (low gamma)) were applied to the EEG signals in 
Simulink (Mathworks, 2015) using high-pass and low-pass FIR filter 
modules (band-pass attenuation 0dB, band-stop attenuation 60 dB). 
Using these four bands (alpha, low beta, high beta, and low gamma) in 
the FBCSP-MI framework has been shown to result in a more stable and 
higher decoding accuracy (DA) rate in the classification of imagined 
movement performed with the left versus right hands (Korik et al., 
2019). Therefore, the delta and theta bands were not applied to the main 
analysis. The pre-processed EEG dataset was downsampled from 250Hz 
to 125Hz to reduce the size of the EEG dataset. Trials: The filtered 
dataset was epoched for each EEG channel separately, to include 
task-relevant time intervals (between 3s prior to, and 5s after, the onset 
of the motor imagery task). There were 30 trials per class in a run (60 
trials in total per run). Maximum of three runs per participant in all the 
MI sessions were removed from further analyses due to noise, mostly 
resulting from movement of participant’s or poor electrode connectivity 
due to hair density. Spatial filtering: In each frequency band, common 
spatial patterns (CSP) filter was applied to maximise the discriminability 
of two classes by learning spatial filters that maximise the variance of 
band-pass filtered EEG signals from one class while minimising the 
variance of signals in the other classes (Lotte and Guan, 2011). Trans-
formation values in a CSP filter are weights of the linear transformation 
matrix that convert the pre-processed EEG signals into a new vector 
space defined by the CSP filters. The number of selected CSP filter pairs 
for each frequency band was set to three. Feature extraction: The 
analysis was performed using the time-varying log-variance of the CSP 
filtered EEG – calculated using a 1s sliding window, with 200 ms gap 
between two consecutive windows. In each window, six features were 
extracted for every frequency band resulting in 24 features for all the 
frequency bands. Feature selection: The mutual information between 
features and associated target class using a quantised feature space, was 
estimated to identify a subset of features that optimise the decoding 
accuracy (Pohjalainen et al., 2015). The number of the features selected 
by the mutual information module was set in a range from four to 
fourteen. For each participant in the analysed run, the peak decoding 
accuracy (DA) values resulting from using different feature number 
options were compared to find the optimal mutual information module 
configuration for the dataset acquired for that participant in the ana-
lysed run. Two-class classification: Linear discriminant analysis (LDA) 
uses a hyperplane to separate features obtained from two classes where 
the class assigned to an unseen feature vector depends on the polarity of 
the classifier output, determined by position with respect to the hyper-
plane (Lotte et al., 2007). A regularised LDA (RLDA) algorithm (from the 

RCSP toolbox (Lotte and Guan, 2011)) was applied to classify the 
extracted features i.e., either the left or right hand movement imagery. 
The time-varying DA was calculated using the time-varying average and 
standard deviation of participant-specific DA obtained using a six-fold 
cross-validation (CV) setup. 

The offline FBCSP-MI configuration was repeated for a 2 s sliding 
window (instead of the 1 s) to find the optimum participant-specific 
classification window. The configuration that yielded a higher DA 
peak in the task period was selected for the online analysis setup. The 
task period was marked as 0 ms to 5000 ms post task-cue onset while the 
reference (baseline) period was marked as -1000 ms to 0 ms pre-task cue 
onset. 

Online signal processing: Optimised configuration from the offline 
analysis of the motor imagery training run, through the FBCSP-MI 
framework, was deployed in a MATLAB© Simulink learning model for 
online processing. This learning model implements the FBCSP-MI online 
setup to decode (or classify) the SMR activations and drive the feedback. 
During the online processing, the classifier’s output is translated into the 
game character’s movement presented to the participant in the feedback 
run. At each sample point, the classifier’s output is a distance computed 
from the classifier’s learned weights vector; this distance is often 
referred to as time-varying signed distance (TSD) (Pfurtscheller et al., 
2000; Schlögl et al., 2002). The TSD’s sign indicates the classifier’s 
output label (left or right) and its magnitude measures the classification 
confidence. The magnitude of the TSD indicates how far the character 
moves, and the sign indicates the direction of the character’s movement 
(moving to the right or to the left). 

Offline Motor Imagery data analysis methods: To determine 
whether DA peaks obtained in the task periods were significantly higher 
(p < 0.05) than DA peaks obtained in the corresponding reference 
baseline periods, calculated in test folds of the six-fold CV for the cor-
responding run, one-tailed Wilcoxon’s signed-rank test was performed 
on these data. According to Emami and Chau (2020), parietal theta 
power to parietal alpha power ratios provide an index by which objec-
tive cognitive load can be measured, particularly in relation to inter-
ference control. Thus, it was anticipated that MI training would improve 
spontaneous alpha oscillatory activity, resulting in a reduction of these 
index values across training sessions. Therefore, to examine whether MI 
resulted in reduced parietal theta power to parietal alpha power ratios, 
the ratios were determined as follows. The time-varying bandpower of 
the theta (4-8Hz) and alpha (8-12Hz) EEG oscillations were calculated 
by averaging the square values of the band-pass filtered EEG potentials 
as described in Eq. (1) (see Korik et al., 2018, for details). Next, for each 
frequency band, the bandpower for the task period was normalised 

Fig. 4. Illustration of the FBCSP based multi-class classification method using mutual information selection (FBCSP-MI) and the regularized linear discriminant 
analysis (RLDA) based 2-class classifier. For the main analysis, four standard EEG bands were applied (i.e., bands 3-6: alpha, low-beta, high-beta, low-gamma). 
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against the bandpower of the corresponding baseline period and then 
the ratio of parietal theta to parietal alpha was computed for each run. A 
Friedman test was performed to examine whether there was an overall 
reduction in parietal theta to parietal alpha ratios across runs, followed 
by Wilcoxon signed-rank tests to look at paired comparisons. 

3. Results 

3.1. Clinical Interviews and pre- post- training questionnaires 

At the time of testing for the current study, 79% of the total patient 
group had scores above the threshold on at least two of the measures of 
trauma (PCL-5, PC-PTSD, and HTQ). With reference to the DSM-IV PTSD 
measures, i.e., the PCL-5 and the PC-PTSD, a breakdown of the group 
percentages above the recommended thresholds at baseline, is as fol-
lows; control group = 66%, MI group = 80%, and NF group = 90%. The 
diagnostic rule for the PCL-5 requires a score for at least one question 
from category B items (questions 1-5), one from category C item 
(questions 6-7), two from category D items (questions 8-14), and two 
from category E items (questions 15-20) – and the typical cut-off score is 
30. 

Baseline group comparison: Analysis of the clinical interview data 
at baseline found a significant difference between the MI and NF groups 
on WEMWBS scores, due to a higher score for the NF group (U = 22.5, p 
= 0.037, d = - 0.956). 

Pre- Post- measures comparison for each group: Analysis of the 
pre- and post- training clinical interview data revealed a reduction in 
symptom severity post training for the NF group only, on four out of 
seven measures (see Table 2); the PCL-5 (Z = -2.81, p =0.005, d = 2.24), 
the PC-PTSD for DSM-5 (Z = -2.83, p =0.005, d = 3.1), the Harvard 

Trauma questionnaire (Z = -2.8, p =0.005, d = 2.41), and the 10-item 
CD-RISC (Z = -2.04, p =0.041, d = - 0.4). The effect size for the in-
crease in the score for resilience, on the CD-RISC scale was medium (d =
- 0.4), with 70% of participants demonstrating an increase in scores on 
the post-intervention CD-RISC measure. While there was a significant 
reduction in post-intervention HTQ scores for the NF group, with a large 
effect size (d = 2.41), only two participants had met the > 3-point cut-off 
on the pre-intervention measure. However, the reduction in symptom 
severity scores for the majority of the NF group following the inter-
vention period, on both DSM-IV measures of trauma, i.e., the PCL-5, the 
PC-PTSD for DSM-5, was evidenced by large effect sizes (d = 2.24 and d 
= 3.1, respectively). Notably, the NF group’s post-training scores indi-
cate clinically meaningful reductions in PTSD symptom severity. Sixty 
percent had scores equal to or above the cut-off of 30 points on the pre- 
intervention PCL-5 measure, all of whom met the ≥ 10-point reduction 
threshold on the post-intervention PCL-5 measure (M = 11, SD = 5.52). 
Furthermore, all participants in the NF group demonstrated a reduction 
in symptom severity scores on the post-intervention measure, 90% of 
whom had scores which were reduced by ≥ 10 points. Seventy percent of 
the NF group participants had scores equal to or above the cut-off of 3 on 
the pre-intervention PC-PTSD for DSM-5 measure, all of whom had 
scores below this cut-off on the post-intervention measure (M = 0.3, SD 
= 0.67), with all NF group participants showing a reduction in symptom 

Table 2 
Pre- post- psychological assessment data per group.  

Group Measure Pre-training score Post-training score   

M±SD Range M±SD Range  

PCL-5 34.44±23.84 5-71 28.66±20.08 2-53  
PC-PTSD 3±1.73 1-5 2.44±2.01 0-5 

Control HTQ 2.07±0.71 1.2-3.33 1.86±0.61 1.1-2.7 
n = 9 WEMWBS 38.89±9.61 30-57 37±10.7 23-56  

CD-RISC 17.56±9.26 4-35 16.33±5.83 8-27  
BRS 2.65±1.28 1-4.83 2.63±1.23 1-4.33  
GSE 20.33±6.29 10-30 20.33±6.23 12-30  
PCL-5 39.2±11.71 17-55 35.3±14.45 7-54  
PC-PTSD 2±1.49 0-4 1.1±1.2 0-3 

MI HTQ 2.24±0.38 1.65-2.85 2.03±0.43 1.2-2.78 
n = 10 WEMWBS 40.9±4.77 31-46 37.4±5.74 31-49  

CD-RISC 15.6±3.03 12-28 15.9±4.04 7-21  
BRS 2.68±0.63 2-3.67 2.8±1.01 1.83-4  
GSE 23.9±4.99 17-32 23.3±5.23 15-32  
PCL-5 38.9±16.7 9-61 11±5.52+** 4-22  
PC-PTSD 3.2± 1.14 1-4 0.3±0.68^** 0-2 

NF HTQ 2.18±0.48 1.55-3.05 1.28±0.21+** 1-1.8 
n = 10 WEMWBS 46.7±7.13+ 33-56 42.6±6.99 25-50  

CD-RISC 16.7±4.47 7-22 18.3±3.13* 10-20  
BRS 2.85±1.07 1.33-4 3.4±0.97 2-4  
GSE 22.3±3.2 17-28 24.3±5.23 12-30 

Abbreviations: PCL-5 = PTSD Diagnostic and statistical manual of mental 
disorders (5th edition - DSM-5) check list, PC-PTSD = Primary care PTSD screen 
for DSM-5, HTQ = Harvard Trauma Questionnaire, WEMWBS = Warwick- 
Edinburgh Mental Well-being Scale, CD-RISC = Connor-Davidson Resilience 
Scale, BRS = Brief Resilience Scales, GSE = General Self-Efficacy Scale, n =
number of participants in the corresponding group, M = mean, and SD = stan-
dard deviation. All participants were female. * = p value <0.05, ** = p value less 
than 0.01, ^ = significant difference between NF group compared to control 
group, and + = significant difference between NF group compared to MI group. 
Note: A reduced score on the PCL-5, PC-PTSD, and HTQ measures post- training 
indicates reduced symptom severity (better outcome), while an increased score 
on the WEMWBS, CD-RISC, BRS, and GSE measures post- training indicates a 
better outcome for these variables. 

Fig. 5. Representation of the alpha ‘rebound’ effect (a term coined by Kluetsch 
et al., 2014), as computed (a) from the local Pz electrode channel data and (b) 
from the global all channels data. The log10 normalised mean alpha band (8-12 
Hz) amplitude is presented on the y-axis. The boxplots present the data for the 
baseline resting-state (RS 1; blue), the NF training session (NF session; orange), 
and the resting-state period following training (RS 2; green). Increased local 
and global alpha amplitude following training (RS 2), compared to the baseline 
(RS 1), was found to be significant (depicted by the continuous black line with 
the asterisk (p <0.05). 
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severity scores, post-intervention. 
Post-intervention group comparison: Analysis of the post- 

intervention clinical interview data found a significant difference be-
tween the NF and MI groups on both the PCL-5 (U = 8, p = 0.001, d =
2.22) and HTQ (U = 7.5, p = 0.001, d = 2.19) measures, due to a greater 
reduction in scores for the NF group. The difference between the NF 
group and the control group was significant for scores on the PC-PTSD 
(U = 18.5, p = 0.016, d = 1.43) – also due to a greater reduction in 
scores for the NF group. 

3.2. Subjective mood and stress levels 

The brief pre- and post- training (self-report) questionnaires were 
analysed to assess whether NF and/or MI training improved participants 
perceived mood and/or level of stress. Overall, evidence of an increase 
in perceived mood and a decrease in perceived stress was not observed 
for either group conclusively. Support for improvement in perceived 
mood was observed for the NF group (X2(6) = 12.66, p =0.049), how-
ever, this was not significant when controlling for multiple comparisons 
(p >0.008). 

3.3. Neurofeedback EEG spectral analysis 

Wilcoxon signed-rank tests to evaluate changes in alpha amplitude 
during and following neurofeedback training, compared to baseline, 
demonstrated both a local (Pz) and a global (all channels) increase in 
resting-state absolute alpha amplitude following training compared to 
the baseline resting-state absolute alpha amplitude (local: Z = -2.235, p 
= 0.025, r = -0.31, and global: Z = -2.253, p = 0.024, r = -0.31), as 
illustrated in Fig. 5. While a slight decrease in alpha amplitude during 
feedback sessions, suggestive of successful alpha suppression, was 

observed – the decrease was not found to be significant either locally or 
globally (p >.05). 

However, a Pearson product moment analysis found a negative 
correlation between baseline resting-state absolute alpha amplitude and 
training alpha change, both for local and global analyses (local; R2 

=0.221, r = -.47, p <0.001, and global; R2 =0.253, r = -.503, p <0.001 – 
see Fig. 6). The suggestion is that higher amplitude alpha during base-
line resting-state was associated with better alpha suppression during 
the feedback session (see Fig. 6). 

Regression analyses to examine the influence of training alpha 
change on resting alpha change when controlling for baseline resting- 
state alpha amplitude, as recorded from the Pz sensor (local alpha 
measurements), found a significant partial correlation, suggesting less 
alpha suppression (during the NF training) predicted greater alpha in-
crease following training (‘rebound’) (local; R2 =0.088, rpartial =0.315, p 
=0.023, and global; R2 =0.056, rpartial =0.179, p =0.204). Previously, 
this relationship has been found to be negative, i.e., greater training 
alpha change predicted greater resting alpha change (Kluetsch et al., 
2014; Nicholson et al., 2016). 

3.4. Motor-imagery BCI EEG spectral analysis 

In forty-one runs (out of ninety, performed over multiple sessions), 
the participants achieved an accuracy rate that was significantly higher 
during the task period compared to the peak DA obtained for the 
reference baseline period (p <0.05). DA values obtained from task 
(Fig. 8 (a)) versus reference baseline periods (Fig. 8 (b)) for these forty- 
one runs, are illustrated in Fig. 8 below. 

The outcome of the Friedman test to determine whether MI training 
resulted in a reduction of participants parietal theta to parietal alpha 
ratio index, during the task period (using data for both classes), was not 

Fig. 6. Representation of the relationship between the mean normalised alpha amplitudes as computed (a) from the local Pz electrode channel data and (b) from the 
global all channels data, and the training alpha change. Values < 0 on the x-axis imply greater training alpha change. Thus, higher absolute alpha amplitude at 
baseline (y-axis) resulted in greater training alpha change. 
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Fig. 7. Illustration of the relationship between training alpha change (<0 reflects greater alpha suppression during NF training) and resting alpha change (>0 implies 
greater alpha increase in resting period following training). Thus, for these data, less alpha suppression during the NF training period predicted greater increase in 
resting alpha following training. 

Fig. 8. Presentation of the Decoding Accuracy (DA) rates from runs where peak DA during the task periods (a) was significantly higher (one-tailed Wilcoxon 
signed-rank test, p < 0.05) compared to peak DA obtained in the corresponding reference baseline periods (b). Colour code indicates results calculated using a 1s 
(blue legend; proc 1) width and 2s width (red legend; proc 2) classification window. Thick solid lines and the shaded areas indicate the mean values and standard 
deviation of peak DA values obtained in six-fold CV, respectively. 
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found to be significant (X2 (5) = 6.619, p =0.251). 
Nevertheless, a reduction in the ratio index was observed across 

sessions (see Fig. 9). A post-hoc analysis using Wilcoxon signed-rank 
tests found that differences between session 3 – 4 (Z = -1.988, p 
=0.047) and session 3 – 6 (Z = -2.2, p =0.028) were significant at an 
alpha level of 0.05. Whilst these differences were determined to be non- 
significant after the application of a Bonferroni correction (adjusted 
alpha = 0.008) for multiple comparisons, the results are indicative of a 
tendency towards a positive effect resulting from the BCI training. 

4. Discussion 

The current study has examined the effectiveness of NF training 
using low-cost wearable EEG-based neurotechnology, as a potential 
treatment for PTSD patients in Rwanda. To evaluate the success of 
neurofeedback training in the amelioration of PTSD symptoms, pre- and 
post- clinical interviews assessed participants psychological assessment 
scores on validated PTSD questionnaire-based measures and also their 
scores on measures of well-being, resilience and self-efficacy – to pro-
vide a thorough assessment of general mental health. EEG spectral an-
alyses of the data from training sessions for both the NF and the MI 
group were performed to determine whether training resulted in im-
provements on indices related to alpha power, and to test the efficacy of 
both types of feedback. 

Importantly, the results from the psychological assessment data ob-
tained pre- and post- training, for the complete cohort (N = 29), infer NF 
training resulted in significant effects which are considered clinically 
relevant, given 90% of the participants in this group demonstrated a 
reduction in post-intervention PCL-5 scores of more than 10-points, and 
70% who registered above the 3-point threshold on the PC-PTSD pre- 
intervention measure fell below this threshold post-intervention. 
Response to treatment is generally evaluated based on the patient’s 
measure of symptom severity on the PCL-5 falling below the cut-off 
score and furthermore, decreasing greater than 10 points compared to 
pre-treatment (Hinton et al., 2020; Varker et al., 2020). However, cut-off 
scores are known to vary as a function of the base-rate prevalence within 
a given population as well as due to characteristics of the target popu-
lation (Blevins et al., 2015). Furthermore, research suggests that 
sub-Saharan populations with PTSD related disability often remain 
below the threshold on DSM-IV and DSM-V measures, possibly due to an 
increased propensity to express suffering in terms of somatic symptoms 
(Hiar et al., 2016; Sacchetti et al., 2020). Therefore, among the Rwandan 
population, a reduction in symptom severity scores exceeding 10 points, 

has been posited as a more reliable indicator. Similarly when adminis-
tering the PC-PTSD, while a score ≥ 3 has been established as an opti-
mally sensitive threshold for a diagnosis of PTSD, it has also been noted 
that population characteristics vary and should be considered when 
interpreting scores (Prins et al., 2016; Prins and Ouimette, 2004). 
Moreover, the clinical importance of the improvement in PTSD symp-
toms was substantiated by large effect sizes for the post-training results 
on the PTSD measures. The effectiveness of the NF training as a treat-
ment for PTSD symptoms was further supported by the EEG spectral 
analyses, which found a significant increase in resting-state absolute 
alpha amplitude after training, compared to the baseline period – a 
finding that is consistent with previous research, and has been termed 
the ‘alpha rebound effect’ (Kluetsch et al., 2014; Nicholson et al., 2018). 
Although the sample size for the current study is small, the effect size for 
the increase in resting-state alpha amplitude, as measured both globally 
and locally, is bordering on medium. 

Alpha oscillations (8 – 12 Hz) are the dominant EEG brain rhythm 
associated with relaxed wakefulness (Jann et al., 2009; Laufs et al., 
2003; Nunez et al., 2001). Alpha and slow beta are the only cortical 
frequencies to display event-related synchronisation (ERS) and 
event-related desynchronisation (ERD) in response to sensory stimuli 
and/or cognitive demands. Under certain conditions requiring the 
controlled execution of a response, the former (i.e., ERS) reflects 
inhibition/constraint of the response and the latter (i.e., ERD) a release 
from that inhibition/constraint (Klimesch, 2012). Thus, the usual 
assumption that the magnitude of an oscillation is proportional to its 
functional impact, does not hold for these brain rhythms – however, it is 
this characteristic of alpha and beta that allows for the cognitive flexi-
bility necessary for tasks such as attention switching and motor plan-
ning/execution (Klimesch, 2012; Neuper et al., 2006; Ros et al., 2014). 
PTSD, when it develops, results from the impact of a trauma on the CEN, 
DMN, and SN, and these three intrinsic neural networks are subse-
quently involved in the maintenance of the disorder (Bell et al., 2019; 
Lanius et al., 2015; Nicholson et al., 2018). Moreover, each network has 
been demonstrated to be associated with specific PTSD symptom clus-
ters – CEN with cognitive impairments, DMN with an altered sense of 
self, and SN with hypervigilance and interoception (Lanius et al., 2015). 
The evidence from recent research suggests that NF training induces 
plastic changes in the functioning of the CEN, DMN, and SN and the 
associated network hubs through the restoration of a homeostatic alpha 
power range that is necessary to ensure the optimum balance between 
inherent flexibility and stability within these networks and brain regions 
(Bell, 2018; Bell et al., 2019; Kluetsch et al., 2014; Lanius et al., 2015; 

Fig. 9. Illustration of changes in the parietal theta per parietal alpha ratio index, calculated for both classes during the task period, for analysed participants 
(coloured lines) across all six sessions (x-axis). The trend is represented by the black line. For sessions where there is no value, either the participant was unable to 
attend, or there was an issue with the dataset (e.g., not enough trials for analysis). 
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Ros et al., 2014, 2013). Alpha hypoactivity resulting in reduced func-
tional inhibition has been associated with PTSD (Huang et al., 2014), 
while down regulation of alpha amplitude during NF training has been 
associated with a subsequent increase ‘rebound’ in resting-state alpha 
power following training (Kluetsch et al., 2014; Nicholson et al., 2016). 
The significance of this return to homeostasis of alpha power, in the 
healing of the PTSD brain, is supported by the reported reduction in 
symptom severity, and improvements in functional connectivity within 
the CEN, DMN, and SN (Bell, 2018; Bell et al., 2019; Gapen et al., 2016; 
Kluetsch et al., 2014; Lanius et al., 2015; Nicholson et al., 2018). 

The findings presented here suggest that NF training significantly 
reduced PTSD symptoms. Moreover, a significant post-training reduc-
tion in PTSD symptom severity was not found for the MI group – thus 
raising the question, whether MI can provide a practical method of 
treatment for PTSD symptoms? There are a couple of considerations to 
be addressed when making this appraisal. Importantly, when users of a 
BCI fail to become proficient, as determined by the level of accuracy 
they achieve within a standard training period, this is termed “BCI il-
literacy” (Ahn and Jun, 2015). However, it has been argued that this 
concept presumes, incorrectly, that performance norms are static across 
BCI systems and users (Thompson, 2019). With this in mind, consider-
ation should be given to the fact that the cohort for this study were not 
only BCI novices, furthermore, they had very limited experience with 
technology – for many a feature mobile phone (as opposed to a smart 
phone) was the most advanced technology they had engaged with, prior 
to undergoing feedback training. While time was spent on describing the 
process and allowing for practice on the first occasion, six sessions was 
very restrictive given the level of engagement the participants had with 
technology to that point. Nevertheless, of note also is the finding that 
people who have difficulty reaching expected performance levels 
demonstrate higher amplitude theta and low amplitude alpha brain 
rhythms compared to those who do not have difficulty. Furthermore, 
these differences in amplitude persist during differing mental states, i.e., 
during motor-imagery, prior to the beginning of the task – and during 
resting-state (Ahn et al., 2013). Therefore, it is likely that hypoactive 
alpha associated with PTSD will add to the challenge of successfully 
operating a BCI using motor-imagery. 

Overall, the findings of this project suggest NF training provides an 
effective, clinically relevant, treatment for the amelioration of the 
symptoms of PTSD within a Rwandan population. Neurotechnology 
represents a rapidly growing area of research, contributing to medical 
applications from prevention to neural rehabilitation. One of the major 
challenges for neurotechnological solutions in developing countries lies 
in establishing the usability of these hi-teach applications to address 
health problems in countries with a struggling economy, given the high 
cost associated with the technology (Valdes-Sosa, 2012), and the unfa-
miliarity that exists within the general populations of these countries in 
relation to computer technologies. The findings presented here lift the 
lid on erroneous presuppositions that EEG and BCI based treatments will 
not be accepted in Rwanda, and by inference, other developing countries 
in Africa. Moreover, the current research has demonstrated the efficacy 
of the FlexEEG 8-channel wearable EEG, which is a low-cost, unobtru-
sive, and an ergonomic EEG headset, in the application of NF training 
within a developing country – and the effectiveness of NF training using 
this headset in the reduction of PTSD symptom severity. Health service 
access in Rwanda depends on the subdivision of income/capacity cate-
gories. The first two categories get support from the government in most 
of their health and regular expenses and include members of the 

population who struggle to put food on the table (~ 16% of the popu-
lation), up to people who have part time small jobs and either own cheap 
houses or are able to pay rent (~ 29.8% of the population). Nevertheless, 
despite important efforts from the Rwandan government, including 
decentralised mental health care availability at district hospital level, 
the treatment gap for mental health is still large. According to a recent 
report (2019), an estimated 599 trained clinical psychologists were in 
practice in Rwanda (Kalisa et al., 2019). However, given PTSD was 
found to occur in 27% of genocide survivors, and 3.6% of the general 
population of Rwanda in 2019 (Never again Rwanda 2019) , the ratio of 
clinical psychologists to PTSD patients alone during 2019 was approx-
imately 1:721. Prevalence rates have been re-examined more recently 
which estimate a 37% prevalence of PTSD among genocide survivors 
and 15% among the general population (Musanabaganwa et al., 2020). 
Thus, the scale of the problem is vast. Furthermore, the logistics 
involved in extending services to people in remote regions pose yet 
another challenge due to a lack of infrastructure. Moreover, a large 
portion of the population of Rwanda cannot afford to lose a day’s wages. 
The OECD has raised concerns regarding the economic, social and 
welfare costs imposed on developing countries due to untreated mental 
health conditions and have thus prioritised treatment strategies at the 
highest national and international policy levels (OECD, 2019). Novel 
neurotechnology, that is low-cost, has the potential to disrupt current 
treatment practices, overcoming the inherent limitations by offering an 
effective treatment solution that can be delivered where it is needed, at 
scale, and by trained health workers rather than clinical psychologists. 
Given effective NF treatment can be provided by a single EEG channel, 
Pz, as demonstrated here, there is the potential to simplify and minimise 
the costs of the neurotechnology for treatment delivery at scale. 

4.1. Limitations 

The study findings presented here should be considered hypothesis 
generating and provide important information for future studies. 
However, care should be taken with interpretation, mainly due to two 
key limitations, which were sample size and the sparse coverage of the 
scalp with the FlexEEG montage. While the latter was necessary to test 
the efficacy of the FlexEEG, which a is a low-cost wearable headset, 
the limited surface coverage increases the probability of false negative 
results as it is difficult to find changes in uncovered regions. 
Furthermore, the ability to compare results from specific channels or 
adjust based on global baselines/trends, is restricted due to sparse 
coverage. 

Regarding the sample, in the interests of efficiency, given the logis-
tical challenges of the project, participants were recruited from a cohort 
of PTSD patients who had previously engaged in a study investigating 
the transgenerational transmission of PTSD, conducted at the University 
of Rwanda (UR), as the PTSD patient group (for details see Rudahindwa 
et al., 2018). For this previous study the experiment group were 
necessarily all female (they had been pregnant at the time of the geno-
cide). Furthermore, the sample size was small – ideally, to reach 80% 
power, the sample would require 34 – 40 participants per group. Of 
further consequence, is that while all participants had a pre-existing 
diagnosis of PTSD, the diagnosis had been received approximately 
one-year prior to the onset of this study. Again, given the tight timeline 
for data-collection, clinical interviews for all three groups, were con-
ducted within four days of the first intervention session, and within four 
days following the final intervention session. On analysis of the clinical 
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interview data, it was noted that three control, two MI group, and one 
NF group participant(s) did not meet the threshold for a diagnosis of 
PTSD at baseline. However, cultural variability in cut off scores has been 
documented in the literature (Blevins et al., 2015; Hiar et al., 2016; 
Prins et al., 2016; Prins and Ouimette, 2004; Sacchetti et al., 2020), and 
parameters have not yet been established for the Rwandan population. 

All data collection for this study took place in public buildings, and it 
was difficult to eliminate noise from the environment. While the envi-
ronment was therefore not an optimal experiment setting, in terms of 
adding ecological validity to the outcome of the process, this limitation 
can be considered a strength. The principal aim of the research was both, 
to determine whether the FlexEEG neurotechnology could effectively 
deliver NF to PTSD patients in Rwanda, and to establish what the impact 
of NF training provided in this way would have on subjective symptom 
severity. Therefore, it was necessary to assess the outcome of the 
training within the context, and under the conditions, that will be 
prevalent for the future use of the neurotechnology. To establish the 
efficacy of NF as a treatment for PTSD within African populations, more 
research is needed that includes a larger sample, of both genders; that 
looks at different causes of trauma; and studies participants from 
different cultures/geographical locations. 

5. Conclusion 

This research has demonstrated a clinically important effect of NF 
training on symptom severity for PTSD patients within a group of 
genocide survivors in Rwanda – representing the first evidence of a 
neurotechnological solution for the treatment of PTSD in Rwanda. 
Reduced symptom severity in PTSD patients through training self- 
regulation of alpha power has been shown previously, and is consid-
ered to be related to improved functional connectivity of intrinsic neural 
networks (Kluetsch et al., 2014), which facilitate fundamental processes 
that are not reliant on external stimulation (Thomann et al., 2017). In 
line with the findings of Kluetsch et al., 2014, the results presented here 
infer that the NF participants successfully achieved alpha ‘rebound’, or 
an increase in resting-state alpha following each training session, which 
has been associated with reduced anxiety (Kluetsch et al., 2014). While 
the findings for the MI group were not found to be significant, there was 
an observed decrease in the ratio index of parietal theta power to pari-
etal alpha power for participants across BCI sessions, becoming more 
pronounced across the latter three (of six) sessions. Focus on task 
irrelevant information results in an increased parietal theta/alpha 
power ratio, therefore, a decrease across sessions supports improved 
CEN function and network switching (Emami and Chau, 2020). Impor-
tantly, the success of the NF training using the wearable, low-cost 
electroencephalography, within uncontrolled experimental conditions 
outside the laboratory, present evidence of a potential treatment for 
PTSD in Rwanda and other developing countries. Affordability and 
accessibility rank very high on the list of priorities when considering a 
treatment in the African context, as the most vulnerable are those who 
live in remote communities, where there are limited healthcare systems 
and poor transport infrastructures in place. This initial study will un-
derpin the next stage of the research to conduct a large-scale randomised 
controlled trial that considers gender, patient groups and countries, with 
the goal of evidencing the efficacy of NF and/or MI treatment, to be 
promoted as a public health solution in developing countries – 

particularly in developing post-conflict countries. 
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