
A Multi-Clause Dynamic Deduction Algorithm Based on
Standard Contradiction Separation Rule

Feng Cao1, 4, *, Yang Xu2, 4, Jun Liu3, 4, *, Shuwei Chen2, 4, and Jianbing Yi1

1. School of Information Engineering, Jiangxi University of Science and Technology

Ganzhou 341000, China

2. School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China

3. School of Computing, Ulster University, Northern Ireland, UK

4. National-Local Joint Engineering Laboratory of System Credibility Automatic Verification,

Southwest Jiaotong University, Chengdu 610031, China

Abstract: in the past decades, automated theorem proving (ATP) for first-order logic has made good

progress, in which binary resolution inference rule plays a crucial role. However, as shown in the latest

benchmark library of the ATP system, there are still many practical problems that have not been resolved

or cannot be effectively resolved. Recently, in order to overcome the limitations of ATP based on binary

resolution inference rules, a novel multi-clause dynamic standard contradiction separation (S-CS)

inference rule and its automated deduction theory have been proposed. Based on this theory, this paper

first clarifies the generality of this S-CS rule by comparing it with some well-known variants of the

binary resolution rule, and then focuses on how to design a specific and effective algorithm along with

search strategies to realize the S-CS based deductive theory with its implementation. Specifically, the

present work proposes a novel S-CS dynamic deduction algorithm (in short SDDA) based on different

strategies and summarizes its implementation procedures. In addition, we focus on evaluating whether

SDDA, as a novel perspective multi-clause dynamic automatic deduction algorithm, can be applied on

top of the current leading ATP system architectures to further improve their performances. Therefore,

SDDA is applied to the current leading first-order ATP systems, i.e., Vampire and E, respectively

forming two integrated APT systems, denoted as SDDA_V and SDDA_E. Then the capabilities of

SDDA_V and SDDA_E are evaluated on the latest benchmark database TPTP, such as the CASC-J9

problems (FOF division) as well as the hard problems with a rating of 1 in the TPTP benchmark database.

The experimental results show the effectiveness of SDDA: SDDA_V outperforms Vampire itself, and

SDDA_E, outperforms E itself, and the two improved ATP systems have solved a number of hard

problems with the rating of 1 in TPTP, that is, some problems in the latest benchmark database TPTP

which have not yet been solved by other current first-order ATP systems.

Keywords: automated theorem proving, first-order logic, binary resolution, standard contradiction

separation, S-CS dynamic deduction, ATP systems

* The corresponding authors.

E-mail addresses: j.liu@ulster.ac.uk (J. Liu), caofeng@my.swjtu.edu.cn (F. Cao).

1. Introduction

Automated theorem proving (ATP) for first-order logic has made good progress during the past

decades and has been successfully applied in many application areas [1, 2], including those

state-of-the-art ATPs, such as Vampire [3] and E [4], etc. However, there are still a lot of real

problems unsolved or not solved efficiently as illustrated in the latest released version (TPTP-

v7.4.0) of the TPTP (Thousands of Problems for Theorem Provers) benchmark library of ATP

systems [5]. In addition, from the development trend of ATPs in the past few years [6, 7], the

provers with resolution method as the inference core is the current mainstream of ATPs.

Therefore, improving the capability of ATPs from the perspective of the resolution method is

still an important research direction, and there is much space for further development.

The resolution inference [8] has been greatly developed and has promoted the rapid

development of automated reasoning for over five decades [9-11]. Many variants of resolution,

e.g., [12-16], redundancy elimination techniques, e.g., [17, 18], and heuristic strategies for

controlling proof search, e.g., [19, 20], have been studied from both analytical and empirical

perspectives. An important feature of those methods is that only two clauses involved in each

deduction step, and only one complementary pair from parent clauses is eliminated. Although

the simple and elegant resolution inference scheme has been successful to a great extent, the

question naturally raises of whether it can be improved, can we extend the resolution scheme

into a contradiction consists of more than two clauses? Accordingly, can we replace the separate

set of complementary pairs of literals in binary resolution by a larger set of literals from more

than two parent clauses which is called a contradiction?

The recent multi-clause standard contradiction separation (S-CS) calculus for first-order

logic [21] can be regarded as a critical initial step to answer this question. S-CS rule takes

multiple (two or more) clauses as parent clauses, and selects multiple literals (one or more)

from each parent to build a contradictory set of sub-clauses, then infers the clause formed from

the disjunction of the non-selected literals of the parent clauses. Especially, the constructed

contradiction is oriented to the choice of subsequent clauses, and it is synergistic to eliminate

the literals in the selected clause. The S-CS rule combines multiple resolution (full resolution,

not just binary) and factoring steps. Full and binary resolution are special cases of S-CS. Details

of the S-CS inference rule are provided in Section 2.

S-CS calculus for first-order logic in [21] was introduced to address the above question

from a purely proof-theoretical perspective and established a sound and complete multi-clause

dynamic automated deduction theory. The use of the S-CS inference rule allows automated

deduction to take “large steps" in the search space, which is normally desirable in a search for

a refutation. However, the necessary proof search algorithms and strategies to support this

theory and achieve the implementation for automation with detailed experiments and case

studies have not yet been discussed in [21]. The present work therefore serves for the purpose

on how this theory can be achieved through the development of specific and effective

algorithms and how it can be implemented on top of the existing architectures of first-order

theorem provers in order to improve further their performances and solve some hard problems.

Specifically, a multi-clause S-CS dynamic deduction algorithm (called SDDA) is proposed

based on different strategies and is then applied to the current leading first-order theorem

provers, i.e., Vampire and E, respectively forming two integrated provers, denoted as SDDA_V

and SDDA_E. SDDA_V (SDDA_E) runs SDDA and Vampire (E) first sequentially, and then

in a cooperative way. Both SDDA_V and SDDA_E are then evaluated on the latest TPTP

benchmark database in terms of its generality and capability, e.g., CASC-J9 problems (FOF

division) as well as some hard problems with the rating of 1 in the TPTP benchmark database.

The experimental results show that SDDA_V outperforms Vampire itself, and SDDA_E,

outperforms E itself, and both of the improved provers solve a number of hard problems with

rating of 1 in TPTP, i.e., the problems in the latest TPTP benchmark database which have not

yet been solved by any of other current provers.

The remainder of this paper is structured as follows. In Section 2, we briefly review some

preliminaries about the notations and terminologies, as well as provide an overview of the

contradiction separation-based deduction with some clarification of its relationship with some

popular variations of the binary resolution. Section 3 discusses the challenges to establish the

S-CS deduction algorithm along with the possible ways to address those challenges. In Section

4, the heuristic strategies are introduced which are related to the specific algorithm

implementation. Accordingly, multi-clause dynamic deduction framework for proof search is

proposed in Section 5 first, then a novel multi-clause dynamic deduction algorithm, called

SDDA, is introduced and detailed in Section 6. How can this algorithm be applied and

incorporated into the leading first-order theorem provers is discussed in Section 7. Section 8

provides the detailed experimental studies using the TPTP benchmark database to

comparatively illustrate the performance of leading provers and their improved ones using the

SDDA. The paper is concluded in Section 9 along with indication of planned future work.

2. Overview of Standard Contradiction Separation Rule in First-order Logic

Multi-clause dynamic deduction theory for first-order logic based on standard contradiction

separation rule (in short, S-CS deduction) was introduced in [21], this section firstly provides a

review of basic concepts and results, then clarifies its relationship with binary resolution, finally

summarizes the key features of S-CS deduction.

2.1 Preliminaries

In order to better introduce the multi-clause dynamic deduction algorithm, some definitions and

terminologies are reviewed in this section, the readers are referred to [21] for more details.

Definition 2.1 [21] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic, where

the following conditions hold:

(1) There does not exist the same variables among 𝐶1, 𝐶2, … , 𝐶𝑚 (if there exist the same

variables, a rename substitution can be applied to make them different);

(2) For each 𝐶𝑖 (𝑖 = 1,2, … , 𝑚), a substitution i can be applied to 𝐶𝑖 (i could be an

empty substitution) and the same literals merged after substitution, the resultant clause is

denoted 𝐶𝑖
𝜎𝑖 . Each 𝐶𝑖

𝜎𝑖 is partitioned into two sub-clauses 𝐶𝑖
𝜎𝑖−

 and 𝐶𝑖
𝜎𝑖+

 such that:

i) 𝐶𝑖
𝜎𝑖 = 𝐶𝑖

𝜎𝑖−
∨ 𝐶𝑖

𝜎𝑖+
, where 𝐶𝑖

𝜎𝑖−
 and 𝐶𝑖

𝜎𝑖+
 do not share the same literal, 𝐶𝑖

𝜎𝑖−
 is not

empty, 𝐶𝑖
𝜎𝑖+

 might be empty; moreover,

ii) For any (𝑥1, … , 𝑥𝑚) ∈ ∏ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 (m-fold Cartesian product, where each element is an

m-dimensional array, i.e., m-tuple), there exists at least one complementary pair among

{𝑥1, … , 𝑥𝑚} (where “complementary” has the usual meaning of “the negation of”). The

conjunction ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is called a Separated Standard Contradiction (S-SC);

iii) The resulting clause ∨𝑖=1
𝑚 𝐶𝑖

𝜎𝑖+
, denoted as C𝑚

𝑠𝜎
 (here “s” means “standard”, 𝜎 =

⋃𝑖=1
𝑚 𝜎𝑖), is called a Standard Contradiction Separation Clause (S-CSC) of S.

The inference rule that produces a new clause C𝑚
𝑠𝜎

 is called a Standard Contradiction

Separation rule in first-order logic, in short, an S-CS rule.

In this definition, every input clause is assumed to be split into two parts (denoted as

positive and negative, although the notation has nothing to do with the sign of the involved

literals) in such a form that the conjunction of the "negative" parts is a contradiction; then, the

disjunction of the "positive" parts of the clauses, i.e., S-CSC, is the intended output of the rule.

Example 2.1 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4} be a clause set in first-order logic, where 𝐶1 =

𝑃1(𝑓(𝑎)) ∨ 𝑃2(𝑏, 𝑏), 𝐶2 = 𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃2(𝑏, 𝑏), 𝐶3 = ~𝑃1(𝑓(𝑎)) ∨ 𝑃1(𝑏) ∨ ~𝑃2(𝑥1, 𝑥2) ∨

𝑃3(𝑥1, 𝑥3) , 𝐶4 = 𝑃1(𝑏) ∨ ~𝑃1(𝑥4) ∨ ~𝑃2(𝑓(𝑥5), 𝑏) ∨ ~𝑃3(𝑓(𝑏), 𝑥6) . Here a and b are

constants, 𝑓 is a function symbol, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 are variables, 𝑃1, 𝑃2, 𝑃3 are predicate

symbols.

Applying the S-CS rule to the 4 clauses 𝐶1, 𝐶2, 𝐶3, 𝐶4, let a variable substitution i and the

resultant clause 𝐶𝑖
𝜎𝑖 be:

i i 𝐶𝑖
𝜎𝑖

1 𝑃1(𝑓(𝑎)) ∨ 𝑃2(𝑏, 𝑏)

2 𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃2(𝑏, 𝑏)

3 𝑓(𝑏)/𝑥1, 𝑏/𝑥2 ~𝑃1(𝑓(𝑎)) ∨ 𝑃1(𝑏) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃3(𝑓(𝑏), 𝑥3)

4 𝑓(𝑎)/𝑥4, 𝑏/𝑥5, 𝑥3/𝑥6 𝑃1(𝑏) ∨ ~𝑃1(𝑓(𝑎)) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ ~𝑃3(𝑓(𝑏), 𝑥3)

Partition the 𝐶𝑖
𝜎𝑖 as follows:

i 𝐶𝑖
𝜎𝑖+

 𝐶𝑖
𝜎𝑖−

1 𝑃2(𝑏, 𝑏) 𝑃1(𝑓(𝑎))

2 𝑃2(𝑏, 𝑏) 𝑃2(𝑓(𝑏), 𝑏)

3 𝑃1(𝑏) ~𝑃1(𝑓(𝑎)) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃3(𝑓(𝑏), 𝑥3)

4 𝑃1(𝑏) ~𝑃1(𝑓(𝑎)) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ ~𝑃3(𝑓(𝑏), 𝑥3)

So, the S-SC is:

(𝑃1(𝑓(𝑎)))∧ (𝑃2(𝑓(𝑏), 𝑏))∧(~𝑃1(𝑓(𝑎)) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃3(𝑓(𝑏), 𝑥3)) ∧ (~𝑃1(𝑓(𝑎)) ∨

~𝑃2(𝑓(𝑏), 𝑏) ∨ ~𝑃3(𝑓(𝑏), 𝑥3)).

And the S-CSC involving the synergized deduction of 4 clauses is:

𝐶5= C4
𝑠 (𝐶1, 𝐶2, 𝐶3, 𝐶4)=𝑃1(𝑏) ∨ 𝑃2(𝑏, 𝑏).

Definition 2.2 [21] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic.

𝛷1, 𝛷2, … , 𝛷𝑡 is called a standard contradiction separation based dynamic deduction sequence

(S-CS deduction) from S to a clause 𝛷𝑡, denoted as 𝔇𝑠, if

 (1) 𝛷𝑖 ∈ 𝑆; or

(2) there exist 𝑟1, 𝑟2, , … , 𝑟𝑘𝑖
 𝑖, 𝛷𝑖 = C𝑘𝑖

𝑠𝜃𝑖 (𝛷𝑟1
, 𝛷𝑟2

, … , 𝛷𝑟𝑘𝑖
).

where 𝜃𝑖 = ⋃𝑗=1
𝑘𝑖 𝜎𝑗, 𝜎𝑗 is a substitution to 𝛷𝑟𝑗

, 𝑗 = 1,2, . . . , 𝑘𝑖, 𝑖 ∈ {1,2, . . . , 𝑡}.

The ki in (2) varies with the deduction process, which means that the number of clauses

involved in the contradiction separation in each deduction process could be different from each

other, i.e., not fixed. This reflects the meaning of “dynamic deduction”. Dynamic selection of

different numbers of clauses during the deduction process provides much flexibility which

provides an effective way to overcome the two-clause restriction to continue the proof search

using multiple paths, therefore enhances the adaptive behaviour of the automated deduction.

Clearly there are many choice points in the S-CS deduction that need to be determined and

controlled. This is the subject of Sections 4 and 5. The algorithm in Section 6 aims to achieve

this dynamic deduction and it is a core base to implement a theorem prover.

Theorem 2.1 (Soundness) [21] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order

logic. 𝛷1, 𝛷2, … , 𝛷𝑡 is an S-CS based dynamic deduction sequence from S to a clause 𝛷𝑡. If

𝛷𝑡 is an empty clause, then S is unsatisfiable.

Theorem 2.2 (Completeness) [21] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order

logic. If S is unsatisfiable, then there exists an S-CS based dynamic deduction sequence from S

to an empty clause.

2.2 Summary of distinct features of S-CS dynamic deduction

Some distinct features of S-CS dynamic deduction are illustrated and summarized here.

Example 2.2 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4} be a clause set in first-order logic, where

𝐶1 = 𝑃1(𝑎) ∨ 𝑃2(𝑐, 𝑥1), 𝐶2 = 𝑃2(𝑎, 𝑏) ∨ 𝑃2(𝑐, 𝑥2),

𝐶3 = ~𝑃1(𝑎) ∨ ~𝑃2(𝑥3, 𝑥4) ∨ 𝑃3(𝑥3, 𝑓(𝑎)) ∨ 𝑃4(𝑥4),

𝐶4 = ~𝑃2(𝑥6, 𝑥5) ∨ ~𝑃3(𝑎, 𝑓(𝑎)) ∨ 𝑃4(𝑥5).

Here a, b, c are constants, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 are variables, 𝑓 is a function symbol,

𝑃1, 𝑃2, 𝑃3, 𝑃4 are predicate symbols.

We have the variables substitutions (𝑎/𝑥3, 𝑏/𝑥4, 𝑏/𝑥5, 𝑎/𝑥6) and obtain an S-CSC

𝐶5 = C
4
𝑠𝜎(𝐶1, 𝐶2, 𝐶3, 𝐶4) = 𝑃4(𝑏) ∨ 𝑃2(𝑐, 𝑥1).

The process of S-CS rule deduction is shown in Table 2.1.

Table 2.1 S-CS deduction in Example 2.2

 𝐶2 𝐶3 𝐶1 𝐶4

𝐶𝑖
𝜎𝑖+

 𝑃2(𝑐, 𝑥2) 𝑃4(𝑏) 𝑃2(𝑐, 𝑥1) 𝑃4(𝑏)

𝐶𝑖
𝜎𝑖−

 𝑃2(a, b) ~𝑃1(𝑎)⋁𝑃3(𝑎, 𝑓(𝑎)) ∨ ~𝑃2(𝑎, 𝑏) 𝑃1(𝑎) ~𝑃3(𝑎, 𝑓(𝑎)) ∨ ~𝑃2(𝑎, 𝑏)

Different from binary resolution method as a static resolution, where only two clauses are

involved and a complementary pair of literals is eliminated in each deduction step, S-CS

deduction has the following distinguish features [21-23]:

(1) Multi-clause deduction. The number of input clauses can be more than two in each S-

CS deduction step, synergized deduction among clauses can be reflected, and generates an S-

CSC based on more literals elimination. In Example 2.2, C4
𝑠𝜎(𝐶1, 𝐶2, 𝐶3, 𝐶4) is a result from 4

clauses 𝐶1, 𝐶2, 𝐶3, 𝐶4. From Table 2.1, the S-CS deduction has four clauses involved, if we

select a subset of the literals from 𝐶1, 𝐶2, 𝐶3, 𝐶4 to build a standard contradiction, it will infer

the disjunction of the non-selected literals on the four involved clauses, it is a synergized

deduction method. From the perspective of literals elimination, one literal is eliminated in 𝐶1

and 𝐶2 respectively, three literals are eliminated in 𝐶3, and two literals are eliminated in 𝐶4,

therefore the S-CS deduction can achieve more literals elimination, thereby improving the

deduction efficiency.

(2) Dynamic deduction. Which input clauses, how many input clauses and which literals

from input clauses are selected to construct standard contradictions are controlled dynamically

in the process of the S-CS deduction during a search space.

(3) Flexible deduction. The input clauses are flexible in the process of the S-CS deduction.

From Table 2.1, there is no requirement about any literal relevance between C1 and C2, it does

not contain a complementary pair of literals, nor does it contain the same literal, and even

predicate symbols are allowed to be different between input clauses.

(4) Guided deduction. The input clauses can play a guiding role in the subsequent clause

selection. In Example 2.2, the clause C4 is selected according to the input clauses 𝐶1, 𝐶2, 𝐶3.

(5) S-CSCs usually have fewer literals. S-CS deduction separates a standard contradiction

which is a literal set from input clauses, and the S-CSCs are generated by the disjunction of the

non-selected literals of the input clauses can be controlled by heuristic strategy, so S-CSCs

usually have fewer literals, and a large proportion of them are unit clauses.

In order to provide a graphical and intuitive illustration on the essential features of the S-

CS deduction, as well as the essential difference from binary resolution deduction, we use the

funnel as an intuitive figure to show the automated deduction process from the input clause set..

Fig. 2.1 and Fig. 2.2 [21] below show a graphical funnel view comparison between the binary

resolution deduction process and the S-CS based dynamic deduction process. The one coming

out from the exit of the funnel is the final output. Fig. 2.1 actually also illustrates some insights

why the pre-processing and simplification steps are essential in the binary resolution deduction,

even take the majority of the steps and time, and also why lots of work have been focused on

splitting and simplifying the clause set into the simpler ones just because the exit is too narrow.

Fig. 2.2 illustrates the dynamic and flexible nature of the S-CS based dynamic deduction. This

dynamic nature reflects non-determinism in terms of which clauses and how many of them

involved in each deduction and have its ability to arrive at outcomes using various routes. This

type of nondeterminism is especially beneficial for the problems in mathematical theorem

proving when there is a single outcome with multiple paths by which the outcome may be

discovered.

Fig. 2.1 The graphical funnel view of binary resolution deduction process

Static and binary restrict deduction

• Each ellipse represents one deduction step.

• The number of clauses used in each step is

fixed as two clauses.

…

…

Fig. 2.2 The graphical funnel view of S-CS based dynamic deduction process

2.2 Generality of S-CS rule compared with binary resolution and its variations

This section clarifies the generality of the S-SC rule by comparing it with some well-known

variants of the binary resolution used by some of the state-of-the-art provers.

The research of multi-clause deduction can be traced back to some resolution methods of

handling several clauses, such as linear resolution [24], unit resulting resolution [25], hyper-

resolution [12], which are briefly summarized below:

1) Linear resolution (LR) is a multi-step resolution process with a clause called a center

clause and another one called a side clause; each generated clause is used as the next central

clause. This method makes full use of generated clause to perform deduction and retains the

intermediate new generated clause in the process of deduction.

2) Unit resulting resolution (UR) is a binary tree structure whose one of leaf nodes must

be a unit clause (each deduction step requires a unit clause involved), and each path of the

binary tree must generate a unit clause or an empty clause. The deduction process starts from a

unit clause and ends to the final generation of a unit clause or an empty clause.

3) Hyper-resolution (HR) is also a multi-step deduction process. The clauses to be

resolved are divided two types: clauses with only positive literals (called as electrons) and other

clauses with one or more negative literals (called as nucleus). In the process of hyper-resolution,

…

Dynamic and flexible deduction

• Each ellipse represents one deduction

step.

• The number of clauses used in each step

can be different, can be guided and

adjust dynamically.

the nucleus is resolved with a series of electrons, and an electron is generated as the final

resultant clause where intermediate new generated clauses are discarded.

The above variants of binary resolution are used for handling multi-clauses, but each

deduction step only involves two clauses and eliminates a complementary pair of literal (two

literals), which are essentially a multi-step deduction of binary resolution and different from

the S-CS rule.

Remark 2.1 Binary resolution and its variations are restricted forms of S-CS.

The number of clauses involved in each S-CS inference can be more than two. When the

number of clauses is limited to two, the S-CS becomes a binary resolution. Variations of binary

resolution were proposed by restricting or specifying the resolution path, their essence are still

binary resolution in each deduction step, so the variations of binary resolution are also restricted

forms of the S-CS, such as semantic resolution [25, 26] and lock-resolution [27].

In the following, some variations of the S-CS are provided which help to clarify the

relationships between variants of the binary resolution and the S-CS.

Definition 2.3 In each S-CS deduction step, if it requires that: 1) the input clauses must

contain at least one unit clause; 2) the S-CSC is a unit clause or an empty clause, then this

deduction is called as a unit resulting resolution based on the S-CS rule (SCS-UR).

Example 2.3 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} be a clause set in first-order logic, where 𝐶1 =

~𝑃1(𝑥1) ∨ 𝑃2(𝑥1) ∨ ~𝑃3(𝑥2) , 𝐶2 = 𝑃1(𝑎) ∨ 𝑃1(𝑏) , 𝐶3 = ~𝑃2(𝑥3) , 𝐶4 = 𝑃3(𝑎) , 𝐶5 =

𝑃3(𝑓(𝑏)). Here a, b are constants, 𝑥1, 𝑥2, 𝑥3 are variables, 𝑓 is a function symbol, 𝑃1, 𝑃2, 𝑃3

are predicate symbols, the process of UR resolution is shown in Fig. 2.3.

Fig. 2.3 The process of UR resolution for Example 2.3

Corresponding to the UR resolution for Example 2.3, the processes of the SCS-UR

deduction are shown in Tables 2.2 and 2.3.

Table 2.2 The first SCS-UR deduction for Example 2.3

 𝐶2 𝐶4 𝐶1 𝐶3

𝐶𝑖
𝜎𝑖+

(= C6) 𝑃1(𝑏)

𝐶𝑖
𝜎𝑖−

 𝑃1(𝑎) 𝑃3(𝑎) ~𝑃1(𝑎/𝑥1)⋁𝑃2(𝑎/𝑥1)⋁~𝑃3(𝑎/𝑥2) ~𝑃2(𝑎/𝑥3)

Table 2.3 The second SCS-UR deduction for Example 2.3

 𝐶6 𝐶5 𝐶1 𝐶3

𝐶𝑖
𝜎𝑖+

𝐶𝑖
𝜎𝑖−

 𝑃1(𝑏) 𝑃3(𝑓(𝑏)) ~𝑃1(𝑏/𝑥1)⋁𝑃2(𝑏/𝑥1)⋁~𝑃3(𝑓(𝑏)/𝑥2) ~𝑃2(𝑏/𝑥3)

As shown in Tables 2.2 and 2.3, two unit clauses ~𝑃2(𝑥3) and 𝑃3(𝑎) are involved in

the first SCS-UR deduction, which eliminates three complementary pairs of literals in one

deduction step and the S-CSC is a unit clause. The final generated S-CSC is an empty clause in

the second SCS-UR deduction and also two unit-clauses are involved.

Definition 2.4 In each S-CS deduction step, if it requires that: 1) the input clauses is

unrestricted and can come from the original clause set in the first deduction step; 2) in addition

to the first deduction step, the input clauses must contain a clause which is an S-CSC generated

by the last deduction, then this deduction is called as a LR based on the S-CS rule (SCS-LR).

Example 2.4 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} be a clause set in first-order logic, where 𝐶1 =

𝑃1(𝑥1) ∨ ~𝑃2(𝑎) ∨ 𝑃4(𝑥1)，𝐶2 = ~𝑃1(𝑎) ∨ 𝑃4(𝑎)，𝐶3 = 𝑃2(𝑥2)，𝐶4 = 𝑃3(𝑥3) ∨ ~𝑃4(𝑎)，

𝐶5 = ~𝑃3(𝑓(𝑎)) ∨ ~𝑃4(𝑥4) . Here 𝑎 is a constant, 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 are variables, 𝑓 is a

function symbol, 𝑃1, 𝑃2, 𝑃3, 𝑃4 are predicate symbols, the process of LR is shown in Fig. 2.4.

Fig. 2.4 The process of LR for Example 2.4

Corresponding to the LR, the process of SCS-LR deduction for Example 2.4 is shown in

Tables 2.4 and 2.5:

Table 2.4 The first SCS-LR deduction for Example 2.4

 𝐶3 𝐶1 𝐶2

𝐶𝑖
𝜎𝑖+

(= 𝐶6) 𝑃4(𝑎/𝑥1) 𝑃4(𝑎)

𝐶𝑖
𝜎𝑖−

 𝑃2(𝑎/𝑥2) 𝑃1(𝑎/𝑥1) ∨ ~𝑃2(𝑎) ~𝑃1(𝑎)

Table 2.5 The second SCS-LR deduction for Example 2.4

 𝐶5 𝐶4 𝐶6

𝐶𝑖
𝜎𝑖+

𝐶𝑖
𝜎𝑖−

 ~𝑃3(𝑓(𝑎)) ∨ ~𝑃4(𝑎/𝑥4) ~𝑃4(𝑎) ∨ 𝑃3(𝑓(𝑎)/𝑥3) 𝑃4(𝑎)

As shown in Tables 2.4 and 2.5, the input clauses are all from the original clause set in the

first S-CS deduction, and the input clauses of the second S-CS deduction contain an S-CS clause

𝐶6 which is generated in the first S-CS deduction.

Definition 2.5 In each S-CS deduction step, if it requires that: 1) clauses in the clause set

are divided into two types: clauses with only positive literals (called as electrons) and other

clauses with one or more negative literals (called as nucleuses); 2) the input clauses only

contains a nucleus; 3) this S-CS deduction finally generates an electron; 4) the generated S-CS

clauses are discarded in the process of deduction. This deduction is called as a hyper-resolution

based on S-CS rule (SCS-HR).

Example 2.5 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} be a clause set in first-order logic, where 𝐶1 =

~𝑃1(𝑥1) ∨ ~𝑃2(𝑎) ∨ 𝑃4(𝑥1) ， 𝐶2 = 𝑃1(𝑎) ∨ 𝑃4(𝑎) ， 𝐶3 = 𝑃2(𝑥2) ， 𝐶4 = 𝑃3(𝑥3) ， 𝐶5 =

~𝑃3(𝑓(𝑎)) ∨ ~𝑃4(𝑥4). Here 𝑎 is a constant, 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 are variables, 𝑓 is a function

symbol, 𝑃1, 𝑃2, 𝑃3, 𝑃4 are predicate symbols, the process of HR is shown in Fig. 2.5.

Fig. 2.5 The process of HR for Example 2.5

Corresponding to the HR, the process of SCS-HR deduction for Example 2.5 is shown in

Tables 2.6 and 2.7:

Table 2.6 The first SCS-HR deduction for Example 2.5

 𝐶3 𝐶1 𝐶2

𝐶𝑖
𝜎𝑖+

(= 𝐶6) 𝑃4(𝑎/𝑥1) 𝑃4(𝑎)

𝐶𝑖
𝜎𝑖−

 𝑃2(𝑎/𝑥2) ~𝑃1(𝑎/𝑥1) ∨ ~𝑃2(𝑎) 𝑃1(𝑎)

Table 2.7 The second SCS-HR deduction for Example 2.5

 𝐶5 𝐶4 𝐶6

𝐶𝑖
𝜎𝑖+

𝐶𝑖
𝜎𝑖−

 ~𝑃3(𝑓(𝑎)) ∨ ~𝑃4(𝑎/𝑥4) 𝑃3(𝑓(𝑎)/𝑥3) 𝑃4(𝑎)

As shown in Tables 2.6 and 2.7, the input clauses only contains a nucleus, but contains

two electrons, and finally generate an electron in the first S-CS deduction, and the input clauses

of the second S-CS deduction only contains a nucleus, but contains two electrons, and finally

generate an empty clause.

Following the similar way as Theorem 2.1, we can prove the following theorems:

Theorem 2.3 (Soundness) Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic.

𝛷1, 𝛷2, … , 𝛷𝑡 is an SCS-UR based dynamic deduction sequence from S to a clause 𝛷𝑡. If 𝛷𝑡

is an empty clause, then S is unsatisfiable.

Theorem 2.4 (Soundness) Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic.

𝛷1, 𝛷2, … , 𝛷𝑡 is an SCS-LR based dynamic deduction sequence from S to a clause 𝛷𝑡. If 𝛷𝑡

is an empty clause, then S is unsatisfiable.

Theorem 2.5 (Soundness) Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic.

𝛷1, 𝛷2, … , 𝛷𝑡 is an SCS-HR based dynamic deduction sequence from S to a clause 𝛷𝑡. If 𝛷𝑡

is an empty clause, then S is unsatisfiable.

In summary, the S-CS is a generic inference method and a further development of binary

resolution principle. Its good characteristics place the important theoretical guarantee for the

deduction and proof search design and implementation, which are the key contributions of the

present work, and will be detailed in Sections 4, 5 and 6.

3. Multi-clause Dynamic Deduction Algorithm: Challenges and Solutions

This established S-CS based automated deduction theory in [21, 23, 28-32] is just a first step

towards the development of a proof search procedure that could be implemented as an effective

S-CS based theorem prover. The ability and efficiency of proof search is the most critical part

of the performance of the first-order logic automated theorem provers [3, 4, 33-36]. Practical

implementation of the S-CS based automated deduction further hinges on specific algorithms

and strategies making the “right” single S-CS step including the “suitable selection” or “full

use” of input clauses to be involved in each deduction process useful for proof search.

The static binary resolution adopts the saturation algorithm [37-39] to achieve the proof

search, which is clear and easy to implement. Compared with the binary resolution, the

proposed S-CS deduction offers more chances or new windows of algorithms and

implementations development for proof search, this multi-clause synergized S-CS deduction

however also increases the difficulty of proof searching due to multiple clauses involvement in

the search process, the strict saturation algorithm is apparently not feasible anymore. To

establish this kind of S-CS based proof search algorithms or strategies and implementation is

challenging, but it does not mean it is impossible. That is the motivation and major focus of the

present work. The main challenges are summarized below along with the possible solutions

proposed respectively. One specific algorithm is then proposed and implemented (as detailed

in Sections 5 and 6) as one potential solution and evaluated through the benchmark in Sections

7 and 8.

Challenge 1: how to effectively control the number of clauses involved in each multi-

clause dynamic deduction? In principle, due to the multi-clause and dynamic nature, there is no

restriction given on how many clauses can be selected for each deduction. It may become rather

difficult and time consuming for the large-scale clause set. It may lead to another question, that

is, how to effectively control when each deduction will stop based on the number of clauses

involved?

Possible solutions: 1) set a threshold for the number of input clauses for each multi-clause

dynamic deduction, i.e., specifying how many clauses can be involved in each deduction

process. For example, assume the threshold is 200, if 200 clauses are involved in the S-CS

dynamic deduction, then this multi-clause dynamic deduction will stop and get the S-CSCs. It

is a static control method; 2) control the input clauses by setting the constraints of S-CSC,

including the threshold of the maximum number of literals or the maximum term depth. The

feasible method is to make the generation of S-CSC a slowly increasing process in terms of the

number of literals and the maximal term depth. When an S-CSC has reached either of the

thresholds, this multi-clause dynamic deduction will stop and get the S-CSCs. It is a dynamic

control method.

Our further theoretical analysis and practice show that the more input clauses involved in

each S-CS deduction step the better the inference efficiency. The reason behind is that it can

separate a more flexible and large standard contradiction from a large number of input clauses.

Challenge: 2: how to avoid getting stuck in certain proof search when the input clauses

and their selected order are the same after some S-CS deductions?

The S-CS dynamic deduction generates an S-CSC by selecting input clauses and then

separating a standard contradiction with literals from the input clauses. The deduction algorithm

generally selects the input clause through clause selecting strategy, and the literal is selected by

literal selecting strategy. Different from the binary resolution using the saturation algorithm,

the S-CS deduction is controlled dynamically, and it is possible to undergo the repetitive proof

search, which leads to the S-CS clause which has been generated before.

Possible solutions: This is a difficult part of the S-CS dynamic deduction algorithm

implementation, which can be handled in the following ways: 1) in order to avoid getting stuck

in certain proof search effectively, it is necessary to portray some information about each S-CS

deduction. In each S-CS deduction step, some information about whether an input clause and

the involved literals participate in deduction is an acceptable proof search or an unacceptable

proof search. The S-CS deduction history are recorded by deduction weight of clause and literal.

Because the deduction weight is changed dynamically in each deduction step, the deduction

algorithm can select clause and literal according the changed deduction weight; 2) change

clause selection strategy and literal selection strategy dynamically after a period of the S-CS

deduction. Feasible practice is that multiple strategies are used one by one in equal time slices

for the total set time during the problem proving, the previously generated S-CSC used the

previous strategies can be allowed to use for next dynamic deduction with the next strategy.

Using different strategies provide different clause selection strategy and literal selection

methods, which can avoid getting stuck in certain proof search.

Challenge 3: Intuitively, when there are m numbers of input clauses (m>2), it may takes

more time to generate an S-CSC than binary resolution which just only two clauses involved,

this can result in slower proof search speed during a problem proving. In addition, m numbers

of input clauses participating in deduction only generate one S-CSC, some proof search may be

lost. Therefore, how to handle this challenge to improve the efficiency of the S-CS dynamic

deduction?

Possible solutions: Actually, according to the definition of S-CS rule (Definition 2.1), it

can be seen that m input clauses participated in deduction, and the previous deduction of m-1

input clauses also satisfies the requirements of the S-CS rule. In order to improve S-CS

deduction’s efficiency and prevent possible proof search lost, feasible practice is that the

generated S-CSCs can be reserved in the process of S-CS dynamic deduction, that is to say, the

S-CS deduction of m input clauses, which can generate a S-CSC set by separating different

contradictions, including the S-CSCs such as (C2
𝑠𝜎(𝐶1, 𝐶2)), (C3

𝑠𝜎(𝐶1, 𝐶2, 𝐶3)),…,

(C𝑚−1
𝑠𝜎 (𝐶1, 𝐶2, … , 𝐶𝑚−1)).

Challenge 4: The state of the art first-order logic automated theorem provers adopts the

saturation method, and the proof search is very clear. The S-CS rule is a multi-clause deduction

method, so how to plan the proof search according to certain rules based on the S-CS dynamic

deduction?

Possible solutions: This is another major challenge for the S-CS dynamic deduction. In

general, it is difficult to find a certain deduction scheme for multi-clause. The difficulty is

reflected in how to effectively perform the next deduction after the completion of an S-CS

dynamic deduction. Feasible practice is that that S-CS deduction can be an iteration deduction

method based on the first input clause (called as iteration deduction), and the input clauses and

literals used to construct standard contradictions can be selected by deduction weight. As the

clause set continues to increase, when all the selectable clauses are completed the iteration

deduction as the first input clause, the completed clauses can be restarted iteration deduction as

the first input clause under a new clause set (called as sheave deduction).

The above summary of challenges and possible solutions place a good motivation and

basis for the following proposed strategies and algorithms.

4. Heuristic Strategies

In the process of theorem proving, heuristic strategies are used frequently to perform optimal

proof search, including some machine learning methods [40-43], which are useful for finding

refutation, thus improve the performance of a prover. In the last decade, most state-of-the art

provers have developed and implemented mature heuristic strategies [19, 20, 39, 44-46], and

achieved good results.

In general, different inference mechanisms have large differences in the way of proof

search, so their supporting heuristic strategies are also different. As the first multi-clause

dynamic deduction method, the heuristic strategies for the S-CS dynamic deduction are quite

different from the methods utilized in those famous provers. In order to implement a multi-

clause dynamic deduction algorithm effectively, some basic heuristic strategies according to

the different selection angle of the input clauses and literals are utilized to construct a standard

contradiction. This section introduces these basic clause/literal selection strategies along with

the strategies for setting some global thresholds, which are closely related to the multi-clause

dynamic deduction algorithm introduced in Section 6.

4.1 Clause selection strategy

The heuristic control of S-CS dynamic deduction is based on various measures of each literal

and clause. Clause selection strategy refers to the method of selecting an input clause to perform

S-CS dynamic deduction, and it is implemented based on the combined uses of several clause

attribute measures. Those clause attribute measures mainly include:

(1) Acceptable deduction (AD) weight of a clause [22, 32]. This measure is based on two

concepts: deduction weight of a clause and acceptable deduction. The former represents the

number of times a clause has been used in an S-CS dynamic deduction during a theorem proving.

The latter means an S-CS dynamic deduction that generates an S-CSC which is either not

redundant or satisfies the set global threshold (e.g., the global threshold of the number of literals

or the maximum term depth etc.) (in other words, is acceptable). Correspondingly, this

generated S-CSC is called an acceptable clause. Therefore, AD weight of a clause is the number

of times that a clause has participated in an acceptable S-CS dynamic deduction during a

theorem proving. A clause used in an acceptable deduction once, its AD weight is increased by

1.

Accordingly, a clause with the smaller AD weight is selected preferentially to perform the

S-CS dynamic deduction, because this clause may be seldom selected or most of the generated

S-CSCs due to this clause’s involvement are rarely acceptable, therefore, excessive frequent

use of certain clauses is avoided. To avoid falling into the local optimum, the AD weight of a

clause is updated dynamically when the set global threshold is reached. The AD weight of a

clause Ci is updated as follows:

ADW(Ci)K+1= ADW(Ci)K/Avg(ADW(C1)K,…, ADW(Cm)K), i=1, 2,…, m; K=0, 1, …. (1)

In Eq. (1), ADW stands for the AD weight, Avg means average, and K counts the times of

the AD weight of a clause being updated.

(2) Unacceptable deduction (UD) weight of a clause [22, 32]. UD weight is the number of

times that a clause has participated in an unacceptable S-CS dynamic deduction during a

theorem proving. An unacceptable S-CS dynamic deduction means an S-CS dynamic deduction

that generates an S-CSC which is either redundant or does not satisfy the set global threshold

(i.e., unacceptable). Correspondingly, this generated S-CSC is called an unacceptable clause. A

clause participated in an unacceptable deduction once, its UD weight is increased by 1.

Accordingly, a clause with the smaller UD weight is selected preferentially to perform the

S-CS dynamic deduction, because this clause may be seldom selected or most of the generated

S-CSCs due to this clause’s involvement are acceptable, therefore excessive frequent use of

certain clauses is avoided. To avoid falling into the local optimum, the UD weight of a clause

is updated dynamically when the set global threshold is reached. The UD weight of a clause Ci

is updated as follows:

UDW(Ci)K+1= UDW(Ci)K/Avg(UDW(C1)K,…, UDW(Cm)K), i=1, 2,…, m; K=0, 1, …; (2)

In Eq. (2), UDW stands for unacceptable deduction weight, Avg means average, and K

counts the times of the UD weight of a clause being updated.

(3) Clause complexity (CC). The unified substitution may cause the structure of a clause

more complicated, especially for the multi-clause deduction because the variables in an input

clause can be substituted many times in the deduction process. This may lead to rather

complicated structure for the generated clause and affect the deduction efficiency. Because only

the function symbols in a clause have different depths, so the complexity of a clause is measured

by the complexity of function symbols included, which is measured by the depth of function

symbols as follows:

CC(Ci)=Σ(FO(Tf)), i=1, 2,…, m; (3)

FO(Tf)=Dep(Tf)+Σ(FO(SubTf)). (4)

In Eqs. (3) and (4), CC stands for clause complexity, Tf means the terms included in the

clause Ci, FO stands for the function symbol complexity, Dep stands for the depth of function

symbol, SubTf is a sub-function symbol of Tf.

Example 2.6 Let C1=P(f(f(f(a))))+P(b). Here a and b are constants, f is a function symbol.

According to Eqs. (3) and (4), we have:

Dep(f(f(f(a))))=3, Dep(f(f(a)))=2, Dep(f(a))=1,

∑(FO(f(f(a))))=Dep(f(f(a)))+Σ(FO(f(a)))=2+Dep(f(a))=3,

CC(C1)=Dep(f(f(f(a))))+Σ(FO(f(f(a))))=6.

(4) The number of literals. The number of literals included in a clause is an important

indicator of clause evaluation. The resolvent of binary resolution usually contains many literals,

but the S-CS rule can eliminate multiple literals by separating a standard contradiction (a literal

set), so the generated S-CSC usually contains less literals. The number of literals in an input

clause can reflect the number of literals in the generated S-CSC to certain extent [22], which is

used to control the number of literals in an S-CSC, thus improving the deduction efficiency.

4.2 Literal selection strategy

Literal selection strategy refers to the method of selecting a literal from the input clause to

construct a standard contradiction, and it is implemented based on the combined uses of several

literal attribute measures. Those literal attribute measures mainly include:

(1) Deduction weight of a literal. Deduction weight of a literal is the number of times that a

literal has been used in the S-CS dynamic deduction for constructing standard contradiction,

and the generated S-CSC is unacceptable. It effectively controls the order in which a literal is

selected in an involved clause for deduction. In the process of the S-CS dynamic deduction, if

a literal is used to construct a standard contradiction once, and the generated S-CSC is

unacceptable, then the deduction weight of this literal is increased by 1.

A literal with the smaller deduction weight is selected preferentially to construct standard

contradiction, because this literal may be seldom selected or most of the generated S-CSCs due

to this literal’s involvement are acceptable, and excessive frequent use of certain literals is

avoided effectively. To avoid falling into the local optimum, deduction weight of a literal is

updated dynamically when the set global threshold is reached. The deduction weight of a literal

Pi from clause C is updated as follows:

 DW(Pi)K+1= DW(Pi)K/Avg(DW(P1)K,…, DW(Pm)K), i=1, 2,…, m; K=0, 1, …. (5)

In Eq. (5), DW stands for deduction weight, Avg means average, and K counts the times of

the deduction weight of a literal being updated.

(2) Literal complexity. We describe literal complexity by its function symbols included, and

it can be measured as follows:

 LC(Pi)=Σ(FO(Tf)), i=1, 2,…, m. (6)

In Eq. (6), LC stands for literal complexity, FO stands for function symbol complexity (its

computing method is the same as Eq. (3)), i is the serial literal number of a clause, m is the

number of literals in the clause.

(3) The number of variables. Because the S-CS rule is a multi-clause deduction, and is a

process of constructing standard contradictions dynamically, the literals that have participated

in the construction of a standard contradiction can continue to construct the subsequent new

standard contradictions. In general, in the process of the S-CS dynamic deduction, literals with

more variables are more flexible than the literals which only contains constants or fewer

variables.

(4) Literal weight. Literal weight is used to characterize the statistics of symbols in a literal,

it is the number of symbols (predicates, functions, constants, and variable occurrences) in a

literal (the initial value of literal weight is 1).

4.3 Global threshold setting strategy

Global thresholds are the parameters required in the design of the S-CS dynamic deduction

algorithm; their values are set in advance through the global thresholds set strategy. The global

thresholds used are listed as follows:

(1) Global threshold of AD weight of a clause. According to our empirical experience via

experiments, the default setting is 500.

(2) Global threshold of UD weight of a clause. According to our empirical experience, the

default setting is 1000.

(3) Global threshold of deduction weight of a literal. According to our empirical experience,

the default setting is 1000.

(4) Global threshold of the maximum number of literals in a generated S-CSC. According

to our empirical experience, the default setting is 6. If the number of literals in the generated S-

CSC exceeds this threshold, this S-CS dynamic deduction is regarded as an unacceptable

deduction.

(5) Global threshold of the maximum literal term depth in a generated S-CSC (literal term

depth is the maximum depth of function nesting in a term in a literal). According to our

empirical experience, the default setting is 15. If the maximum term depth of the generated S-

CSC exceeds this threshold, this S-CS dynamic deduction is regarded as an unacceptable

deduction.

(6) Global threshold of iteration deduction times. According to our empirical experience,

the default setting is 500.

(7) Global threshold of sheave deduction times. According to our empirical experience, the

default setting is 1000.

(8) Global threshold of the maximum number of input clauses in an S-CS deduction.

According to our empirical experience, the default setting is 2000.

(9) Global threshold of the runtime for each problem proving. According to the standard

runtime from the TSTP (Thousands of Solutions from Theorem Provers), the default setting is

300 seconds.

(10) Global threshold of the remaining memory for each problem proving. According to

our empirical experience, the default setting is 200 megabytes.

In order to solve different problems effectively, an alternative method is used to set some

relevant thresholds according to the attribute values of the original clause set parsed in the pre-

processing stage, such as setting the S-CSC thresholds of the maximum number of literals and

the maximum literal term depth.

5. S-CS Dynamic Deduction Framework for Proof Search

In general, the first-order logic theorem proving is considered to be an infinite search space

problem, and it is impossible in general to perform all possible proof search within a limited

runtime. In order to improve the ability of the first-order logic automated theorem prover, it is

important to perform proof search effectively. Saturation method can plan proof search

effectively for the saturation-based provers, which use binary resolution, but it does not suit for

multi-clause dynamic deduction because it is rather complicated to handle multi-clause

synergize deduction. S-CS dynamic deduction framework for proof search is proposed in this

section which is used to describe the scheme and guideline on how to select different input

clauses to apply the S-CS rule iteratively, and generate different S-CSCs during the process of

theorem proving. The S-CS dynamic deduction framework for proof search considers the

comprehensiveness and efficiency, and performs proof search in the following ways:

(1) Iteration deduction. It refers to the deduction process in which an appointed input clause

(denoted as C) repeats M (a global threshold) times as the first input clause of the S-CS dynamic

deduction algorithm (i.e., SDDA introduced in Section 6). This is called M-iteration deduction

based on the appointed input clause C, so that the input clause C can be used to perform the S-

CS dynamic deduction and proof search as preferred. The S-CS dynamic deduction plans proof

search of iteration deduction based on an appointed input clause in this way: in order to give

full play to the diversity of an S-CS dynamic deduction and generate more S-CSCs, each

iteration deduction based on the first input clause also includes the proof search based on

another appointed input clause in the selected input clauses, such as selecting the second input

clause to continue to perform iteration deduction. Therefore, an S-CS dynamic deduction can

perform more proof search and improve deduction efficiency effectively.

In addition, in order to reduce repetitive proof search, when iteration deduction based on an

appointed input clause are performed, if an acceptable S-CSC cannot be obtained, this iteration

deduction will stop, and a new iteration deduction base on a next appointed input clause starts.

(2) Sheave deduction. After an S-CS iteration deduction, the whole clause set is changed,

and the proof search is also changed. In order to make the proof search more comprehensive,

when all input clauses in the clause set have completed M times of iteration deduction, it is

necessary to restart a new S-CS iteration deduction based on those completed and appointed

input clauses and continue to find refutation under the new clause set (called a sheave

deduction). The restarting time is set as N (a global threshold). By this way, the iteration

deduction based on an appointed input clause restarts time after time under the new clause set

to ensure the comprehensiveness of proof search.

Next, we demonstrate the S-CS dynamic deduction framework including the above two

deduction schemes through an example below.

Example 2.7 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} be a clause set in first-order logic, where 𝐶1 =

~𝑃1(𝑥1) ∨ ~𝑃2(𝑎) ∨ 𝑃4(𝑥1)，𝐶2 = 𝑃1(𝑓(𝑎)) ∨ 𝑃4(𝑎)，𝐶3 = 𝑃2(𝑥2)，𝐶4 = 𝑃3(𝑥3)，𝐶5 =

~𝑃3(𝑓(𝑏)) ∨ ~𝑃4(𝑥4) ， 𝐶6 = 𝑃1(𝑥1) ∨ ~𝑃2(𝑎) ∨ 𝑃3(𝑐) . Here 𝑎, 𝑏, 𝑐 are constants,

𝑥1, 𝑥2, 𝑥3, 𝑥4 are variables, 𝑓 is a function symbol, 𝑃1, 𝑃2, 𝑃3, 𝑃4 are predicate symbols.

Assume the times of Iteration deduction is 3. Now using 𝐶3 as the first input clause, we

have the variables substitutions (𝑎/𝑥1, 𝑎/𝑥2, 𝑓(𝑏)/𝑥3, 𝑎/𝑥4) and obtain an S-CSC 𝐶7 =

 C5
𝑠𝜎(𝐶3, 𝐶1, 𝐶2, 𝐶4, 𝐶5) = ~𝑃1(𝑎).

Continue to use 𝐶3 as the first input clause, we have the variables substitutions

(𝑓(𝑎)/𝑥1, 𝑎/𝑥2, 𝑓(𝑏)/𝑥3, 𝑎/𝑥4) and obtain an S-CSC 𝐶8 = C
5
𝑠𝜎(𝐶3, 𝐶1, 𝐶2, 𝐶4, 𝐶5) =

𝑃4(𝑓(𝑎)).

Continue to use 𝐶3 as the first input clause, we have the variables substitutions

(𝑎/𝑥1, 𝑎/𝑥2) and obtain an S-CSC 𝐶9 = C
4
𝑠𝜎(𝐶3, 𝐶6, 𝐶7, 𝐶8) = 𝑃3(𝑐).

The Iteration deduction using 𝐶3 now ended.

Next using 𝐶4 as the first input clause, we have the variables substitutions

(𝑓(𝑏)/𝑥3, 𝑓(𝑎)/𝑥4) and obtain an S-CSC 𝐶10 = C
4
𝑠𝜎(𝐶4, 𝐶5, 𝐶7, 𝐶8) = ∅.

If the deduction does not generate empty clause, then continue to use 𝐶4 as the first input

clause to apply the S-CS rule and generate a new S-CSC. After 3 times of Iteration deduction

using 𝐶4, another clause in clause set is selected as the first input clause for new Iteration

deduction. When all clauses in clause set are selected for Iteration deduction, it is called a

Sheave deduction. Repeat the above steps to start a new Iteration deduction.

In contrast to saturation method for planning proof search by binary resolution, S-CS

dynamic deduction uses iteration deduction and sheave deduction to plan its deduction proof

search. In order to balance the inference ability and efficiency, the deduction selects an optimal

input clause by clause selection strategy to perform iteration deduction and selects an optimal

literal by literal selection strategy to be used in each S-CS deduction step, which is able to

improve proof search efficiency.

6. A Novel S-CS Dynamic Deduction Algorithm

Based on the definition of the S-CS rule, the established S-CS dynamic deduction theory, and

heuristic strategies proposed in Section 4, a novel and effective S-CS Dynamic Deduction

Algorithm, in short SDDA, is designed and detailed in this section. This algorithm can make

full use of input clauses, the S-CSCs are generated with a slowly increasing process in terms of

the number of literals and the maximum literal term depth for generating unit S-CSCs

effectively.

The basic flow of the SDDA firstly selects an input clause through clause selection strategy

and fixes this first input clause for iteration deduction. Literal selection strategy selects a literal

in the input clause and searches for a clause list in the whole clause set, where the clauses in

the list should contain some literals that can construct standard contradictions along with the

selected literal. Iteratively traverse this clause list as the new input clause, perform the S-CS

rule and generate an S-CSC. When the generated S-CSC is an unacceptable clause, try to

construct another standard contradiction with the selected input clauses, until an acceptable S-

CSC is generated. Make full use of the current input clause (if it is completed, select another

input clause), the deduction is repeated until an exit condition is satisfied, so the S-CS dynamic

deduction is performed one time, and finally a S-CSC set is obtained.

In more specific details, SDDA is described in the following steps:

Step 1: If it is an iteration deduction, select the clause which is the first input clause in last

S-CS deduction; otherwise, select a clause according to clause selection strategy, and mark it

as the first labeled input clause C for iteration deduction.

Step 2: According to literal selection strategy, select a literal in the input clause to search

a clause list (called Q) from the whole clause set in which can construct a standard contradiction.

Reorder the clause list Q according to clause combined sorting method of acceptable deduction

weight from small to large, unacceptable deduction weight from small to large, and the number

of literals.

Step 3: Sequentially traverse the clause in Q and search an optimal input clause. The search

process is summarized: sequentially traverse clause Ci in Q, apply the S-CS rule with the input

clauses, separate a standard contradiction (there are many different forms of contradictions

which need to be tried one by one), then generate an S-CSC. If the S-CSC is an empty clause,

exit the traversal, and go to Step 7. Record the number of literals and the maximum term depth

of the S-CSC. When the traversal is complete, an optimal input clause is obtained. Otherwise,

if the number of literals in S-CSC exceeds the global threshold, mark the next selected clause

as the new labeled input clause C, perform backtracking operations and go to Step 2. Here again,

the searched optimal clauses that have tried different contradiction construction will no longer

be searched.

Step 4: The S-CSC is checked whether it is an acceptable clause. Considering the following

two conditions:

1) If an S-CSC is a tautology, then it is an unacceptable clause.

2) If an S-CSC is a redundant clause by forward simplification, then it is an unacceptable

clause.

If one of the above two conditions is satisfied, backtracking operations is performed, and

go to Step 3.

Backtracking operations are described as follows:

1) Clear the record of proof search by the current input clause participating in the deduction

and remove literals in the S-CSC and the constructed standard contradiction, which come from

the current input clause.

2) Clear substitutions which are caused by the current input clause participating in the

deduction.

3) Unacceptable deduction weight of the current input clause is increased by 1.

4) Deduction weight of the literals in the current input clause which are used for

constructing a standard contradiction is increased by 1.

Step 5: If the generated S-CSC is an acceptable clause, the acceptable deduction weight of

the current input clause is increased by 1. Add this generated S-CSC into a temporary clause

set (the initial set is empty, called R).

Step 6: The algorithm exit conditions is checked: if it is satisfied, go to Step 7. Make full

use of the current input clause Ci according to whether Ci contains substitutions. If yes,

reconstruct clause Ci, go to Step 3; otherwise, go to Step 3.

Step 7: Exit this S-CS dynamic deduction. The exit conditions include:

1) If the S-CSC is an empty clause, then the unsatisfiable conclusion is obtained.

2) The number of input clauses has exceeded the set global threshold.

3) The clause in the whole clause set has used up.

4) The runtime has reached the set global threshold.

5) The remaining memory has reached the set global threshold.

6) If the generated S-CSC set R does not contain an empty clause, an internal simplification

is performed on R, then apply forward simplification on R using the clause in the whole clause

set, and apply backward simplification on the whole clause set using the clause in R, then each

S-CS clause in R is added in the whole clause set.

This algorithm will be executed iteratively following the deduction framework for proof as

introduced in Section 5 until the refutation found, or the set thresholds of runtime and the

remaining memory are reached.

The pseudo-code for SDDA is described below.

SDDA: S-CS Dynamic Deduction Algorithm

Input: a given clause set (S); selected clauses are denoted as g, c; a selected literal is denoted as p;

two empty clause sets are denoted as 𝐷, 𝑄.

Output: a generated S-CS clause set 𝑅.

1: g = selectFirstClause(S)

2: D = 𝐷 ∪ g

3: p = selectLiteral(g)

4: Q = selectCandidateClauseSet(p,S)

5: c = TraversalClauseSet(Q)

6: While c ≠ null begin

7: r = extendedSplitContradiction(c, D)

8: if r ==

9: return “Unsat”

10: else if checkInvalid(r, S)

11: Backtracking(c)

12: goto 5

13: else

14: R = 𝑅 ∪ r

15: D = 𝐷 ∪ c

16: if checkExitConditions()

17: goto 25

18: if checkFullUse(c)

19: c = reconstructClause(c)

20: goto 5

21: else

22: goto 5

23: end

24: end

25: innerSimplification(R)

26: foreach c ∈ 𝑅

27: backwardSimplification(S, c)

28: S = 𝑆 ∪ R

The functions in the above pseudo-code are explained as follows:

selectFirstClause(S): Select a clause as the first input clause in S-CS deduction.

selectLiteral(g): Select a literal in the clause g according to literal selection strategy, which

is used to construct contradictions.

selectCandidateClauseSet(p, S): Select a clause set in the clause set S, which at least

contains a unified complementary literal with the literal p.

TraversalClauseSet(Q): Sequentially traverse the clause set Q and return a clause

according to the given search conditions.

extendedSplitContradiction(c, D): Apply the S-CS rule with the current input clause c and

the input clauses D that has participated in the deduction.

checkInvalid(r, S): Check whether the generated S-CS clause r is an acceptable clause

under the clause set S.

Backtracking(c): It is used to return to the last S-CS deduction step.

checkExitConditions(): Check whether one of the deduction exit conditions is satisfied, and

the exit conditions are described in the algorithm description.

checkFullUse(c): Check whether the clause C needs to be fully used, and the condition of

full use are described in the algorithm description.

reconstructClause(c): reconstruct a new clause which does not contain any substitutions

according to the clause c.

innerSimplification(R): Apply forward simplification in the S-CS clause set R.

backwardSimplification(S, c): Check whether the clauses in the clause set S are redundant

clauses using the clause c.

SDDA implements a sequence of steps, aiming at finding a proof of a first-order problem

in the TPTP FOF syntax [47].

1) E is used to convert the problem to clause normal form (in the TPTP CNF syntax).

2) The CNF is parsed and stored in a binary-tree based structure, with sharing of nodes for

variables and constants.

3) A strategy is set, with control parameter values that are either specified by the user, or

automatically computed from the input clauses. The strategy parameterizes the clause selection

and literal selection, as well as those global thresholds set, described in Section 4.

4) The deduction framework for proof search described in Section 5 is invoked with the

strategy and the SDDA algorithm above, to search for a refutation.

5) If a refutation is found, a proof is output. Proof checking is available by verifying the S-

CS inference using the (trusted) Prover9 system [48].

SDDA has an option to do strategy scheduling, using multiple strategies. In this case each

strategy is given an allocated CPU time limit. The clause storage (clause set) is retained

throughout, so that clauses inferred using one strategy are passed on when SDDA switches to

the next strategy. SDDA is implemented mainly in C++.

7. Combination of SDDA with Leading First-Order Theorem Provers

The leading first-order automated theorem provers Vampire [3] and E [4] have won the first

and the second places of the CADE ATP System Competition (CASC) respectively for several

years since 2002 [49]. It is worth noting that although the proposed S-CS-based SDDA

algorithm offers a new window of algorithms and implementations development for improving

proof search, has not yet included some important rules or strategies as those leading provers,

such as superposition (to handle equality effectively), many effective heuristic strategies, as

well as many pre-processing or simplification procedures etc. So, it does not make sense or

even impossible to compete with those two leading provers. Now that those two provers have

been very well developed, therefore the SDDA evaluation in terms of its effectiveness,

applicability and generality, is focused on applying SDDA on top of the existing architectures

of ATP systems to see if it can enhance further their performances. Therefore, SDDA is applied

to Vampire 4.1 1 (released in the CASC-26) and leads to a combined prover called SDDA_V;

SDDA is also applied to E 2.3 2 and leads to a combined prover called SDDA_E.

SDDA_V (SDDA_E) runs SDDA and Vampire (E) first sequentially, and then in a

cooperative way. The combination scheme is summarized below: SDDA_V (SDDA_E) first

tries to solve the given problem with Vampire (E), and if unsuccessful it tries with SDDA. If

neither solves the problem, then selected clauses inferred by SDDA are combined with the

original problem's clauses to form a new problem for Vampire (E). Experiential experiences

show that the initial run of Vampire (E) solves many problems, and the subsequent run of

SDDA solves some problems that cannot be solved by Vampire (E). However, the unique

strength of SDDA_V (SDDA_E) in the third step, as the inferred clauses passed from SDDA

allow Vampire (E) to solve some further problems that neither SDDA nor Vampire (E) can

solve alone.

8. Experimental and Performance Analysis

8.1 Experimental setup

1 http:/tptp.cs.miami.edu/CASC/
2 https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

For a comprehensive evaluation purpose, SDDA_V (the given version number is 0.1) and

SDDA_E (the given version number is 0.1) are tested on the CADE ATP competition CASC-

J9 FOF division problems respectively. We also test SDDA_V and SDDA_E on some hard

problems with rating of 1 (no current prover can solve them according to the latest benchmark

database TSTP solutions library 3) by setting strategies interactively. The experiments are

carried on a PC with 3.6GHz Inter(R) Core (TM) i7-4790 processor and 16GB memory, OS

Ubuntu15.04 64-bit, with the standard CPU time limit of 300s. In order to check the correctness

of proof procedure by SDDA, the well-known ATP Prover9 [48] is used to check each

deduction step, which is useful for finding refutation. For experimental comparisons, Vampire

4.1 and E 2.3 are tested under the same hardware environment.

8.2 Experiment results overview and analysis

8.2.1 Performance analysis of SDDA_V 0.1 for CASC-J9 FOF division problems

In order to evaluate if SDDA is able to enhance the performance of Vampire, SDDA_V 0.1 and

Vampire 4.1 are tested on the CASC-J9 FOF division problems respectively in the same

hardware environment. Fig 8.1 shows the comparison on solved problems by SDDA_V 0.1 and

Vampire 4.1.

0 50 100 150 200 250 300 350 400 450

0

30

60

90

120

150

180

210

240

270

300
 Vampire4.1

 SDDA_V0.1

T
im

e
 (

S
e
c
o
n

d
s
)

Solved numbers

Fig. 8.1 Comparison on solved problems by SDDA_V 0.1 and Vampire 4.1

From Fig. 8.1, SDDA_V 0.1 has solved 435 problems with 8 more than Vampire 4.1 which

has solved 427 problems. The average time spent for 427 problems by Vampire 4.1 is 18.9

seconds, and 21.35 seconds spent for 435 problems by SDDA_V 0.1. In particular, the average

3 http://www.tptp.org/TSTP/

time spent for 427 problems by SDDA_V0.1 is 17.02 seconds, 1.88 seconds less than that of

Vampire 4.1. Therefore, SDDA_V0.1 has better time efficiency than Vampire 4.1 when solving

the same number of problems.

According to the CPU time spent, the number of solved problems by SDDA_V 0.1 and

Vampire 4.1 are almost within the half of standard runtime (300 seconds). From the 150 seconds

point onwards, SDDA_V 0.1 outperforms Vampire 4.1. Within 200 seconds, SDDA_V 0.1 has

solved 422 problems with 8 more than Vampire 4.1. Within 250 seconds, SDDA_V 0.1 has

solved 430 problems with 13 more than Vampire 4.1. Within 300 seconds, SDDA_V 0.1 has

solved 435 problems with 8 more than Vampire 4.1. Experimental results show that SDDA_V

0.1 outperformed Vampire 4.1 in terms of the ability and time efficiency.

In addition, for those 73 problems unsolved by Vampire 4.1, SDDA_V 0.1 solved 14

problems accounting for 19.2% of the total, with the average CPU time 223.8 seconds. Table

8.3 lists those 14 problems solved by SDDA_V 0.1 but not by Vampire 4.1. 1 of 14 problems

were solved by SDDA alone, and 13 solved by Vampire 4.1 with clauses added from the SDDA.

For those 14 solved problems, there are 5 problems with rating greater than 0.9; 10 problems

with rating greater than 0.8, accounting for 35.7.6% and 71.4% of the total (listed in Table 8.1)

respectively. The average TPTP difficulty rating of these problems is 0.84.

Table 8.1 List of problems solved by SDDA_V 0.1 but not by Vampire 4.1

Theorem

Name
Rating

Number of

formulae

Maximum

formula depth

Number of

variables

Maximum

term depth

CPU time

(seconds)

COM132+1 0.75 67 23 362 5 248.61

GEO324+1 0.94 181 46 816 3 244.16

GRA009+1 0.72 18 13 71 3 199.64

GRA009+2 0.69 18 13 71 3 190.77

GRP746+1 0.62 9 6 16 4 254.33

LCL468+1 0.94 43 6 65 5 198.53

LCL474+1 0.94 43 6 65 5 199.32

LCL552+1 0.84 77 6 110 5 253.68

LCL553+1 0.84 77 6 110 5 259.15

LCL558+1 0.88 77 6 110 5 251.91

LCL680+1.005 0.86 3 104 187 1 235.25

NUN056+1 0.95 19 13 62 1 191.92

SWW264+1 0.97 1288 13 2686 12 173.50

SWW384+1 0.81 5250 22 16634 19 232.5

Specially, from Table 8.1, those solved problems with high rating mostly contain a large

maximum formulae depth or a large number of literals (e.g., SWW264+1 and SWW384+1).

Experimental results show that SDDA_V 0.1 indeed enhances the performance of Vampire 4.1

alone, it can solve some hard problems which cannot be solved by Vampire 4.1, and multi-

clause dynamic deduction can eliminate more literals, fully use the input clauses contains lots

of variables during the deduction process and has the advantage of dealing with clauses with a

large number of literals.

8.2.2 Performance analysis of SDDA_E 0.1 for CASC-J9 FOF division problems

In order to further evaluate if SDDA is able to enhance the performance of E, SDDA_E 0.1 and

E 2.3 are also test on the CASC-J9 FOF division problems respectively in the same hardware

environment. Fig. 8.2 shows the comparison on solved problems by SDDA_E 0.1 and E 2.3.

0 50 100 150 200 250 300 350 400

0

30

60

90

120

150

180

210

240

270

300
 Eprover 2.3

 SDDA_E0.1

T
im

e
 (

S
e

c
o

n
d

s
)

Solved numbers

Fig. 8.2 Comparison on solved problems by SDDA_E0.1 and E 2.3

From Fig. 8.2, SDDA_E 0.1 has solved 369 problems with 7 more than E 2.3 which has

solved 362 problems. The average time spent for the 362 solved problems by E 2.3 is 20.14

seconds, and 22.54 seconds spent for the 369 solved problems by SDDA_E 0.1. In particular,

the average time spent for 362 problems solved by SDDA_E 0.1 is 17.65 seconds, 2.49 seconds

less than that of E 2.3. Therefore, SDDA_E 0.1 also has better time efficiency than E 2.3 when

solving the same number of problems.

According to the CPU spent time, the number of solved problems by SDDA_E 0.1 and E

2.3 are almost within 260 seconds. From the 260 seconds point onwards, the performance of

SDDA_E 0.1 outperforms E 2.3. Within 270 seconds, SDDA_E 0.1 has solved 364 problems

with 2 more than E 2.3. Within 280 seconds, SDDA_E 0.1 has solved 367 problems with 5

more than E 2.3. Within 300 seconds, SDDA_E 0.1 has solved 369 problems with 7 more than

E 2.3. Experimental results show that SDDA_E 0.1 outperformed E 2.3 in terms of the ability

and time efficiency.

In addition, for those 138 problems unsolved by E 2.3, SDDA_E 0.1 solved 14 problems

accounting for 10.1% of the total, with the average CPU time 228.73 seconds. Table 8.2 lists

those 14 problems solved by SDDA_E 0.1 but not by E 2.3. 7 of 14 problems were solved by

SDDA alone, and 7 solved by E 2.3 with clauses added from the SDDA. For those 14 solved

problems, there are 2 problems with the rating greater than 0.9, 11 problems with rating greater

than 0.8, accounting for 14.3% and 78.6% of the total (listed in Table 8.2) respectively. The

average TPTP difficulty rating of these problems is 0.83. SDDA_E 0.1 solved one problem,

GEO506+1, that was not solved by any other system in CASC-J9. The clauses in these problems

usually contain many literals, which SDDA is able to deal with effectively with the S-CS

inference rule, inferring new clauses with fewer literals. Experimental results show that

SDDA_E 0.1 also can solve some hard problems which cannot be solved by E 2.3.

Table 8.2 List of problems solved by SDDA_E0.1 but not by E 2.3

Theorem

Name
Rating

Number of

formulae

Maximum

formula depth

Number of

variables

Maximum

term depth

CPU time

(seconds)

AGT018+1 0.69 556 8 71 5 206.37

AGT022+1 0.81 556 8 72 5 286.61

AGT022+2 0.72 923 8 72 5 274.12

BOO109+1 0.81 3 6 9 6 226.81

GEO506+1 0.91 143 22 564 3 280.01

GEO511+1 0.84 162 22 650 3 188.1

LCL466+1 0.91 43 6 65 5 262.03

SWB016+1 0.72 559 27 973 2 193

SWB022+1 0.84 560 27 981 2 249.15

SWB027+1 0.88 560 27 976 2 176.3

SWB082+1 0.88 560 27 973 2 193.39

SWB094+1 0.88 560 27 973 2 193.42

SWB098+1 0.84 560 27 973 2 194.50

SWW189+1 0.88 1150 14 3058 9 278.39

8.2.3 Performance analysis of SDDA_V and SDDA_E for hard problems with rating of 1

In this section, the ability of SDDA_V and SDDA_E is further evaluated on the problems with

rating of 1 within FOF division from TPTP. Table 8.3 lists the total 40 problems with rating of

1 solved by SDDA_V and SDDA_E, 27 of which by SDDA_V and 13 of which by SDDA_E,

and the rating of these problems are acquired from TSTP by the time of this paper submission.

From Table 8.3, the average CPU time for each problem is 218.9 seconds. It is rather

promising performance considering the number of problem and the average time spent because

the problems with rating of 1 are the most difficult, that means, no current state-of-the-art ATP

can solve them based on the claim from the latest benchmark database TPTP. That also means

the leading provers Vampire and E cannot solve them by themselves, it is indeed the SDDA

plays the crucial role in the combined SDDA_V and SDDA_E in solving those problems.

Table 8.3 The list of 40 problems with rating of 1 solved by SDDA_V and SDDA_E

The above comparison analysis shows that SDDA_V (SDDA_E) is able to effectively

improve Vampire (E) in terms of capability and time efficiency, and the S-CS dynamic

No Problem category Time(s) Prover No Problem category Time(s) Prover

1 ANA005-4 Rating=1 231.7 SDDA_V 21 NUM522+1 Rating=1 292.2 SDDA_V

2 GEO508+1 Rating=1 260.5 SDDA_E 22 NUM522+3 Rating=1 295.3 SDDA_V

3 GEO516+1 Rating=1 293.6 SDDA_V 23 NUM553+3 Rating=1 288.8 SDDA_V

4 GEO326+1 Rating=1 250.2 SDDA_V 24 SET133-6 Rating=1 65 SDDA_V

5 KLE165+1 Rating=1 287.8 SDDA_E 25 SET177-6 Rating=1 192.4 SDDA_E

6 LAT077-1 Rating=1 272.5 SDDA_E 26 SET180-6 Rating=1 122 SDDA_V

7 LCL450+1 Rating=1 169.2 SDDA_V 27 SET182-6 Rating=1 274 SDDA_E

8 LCL450+2 Rating=1 209.3 SDDA_V 28 SET279-6 Rating=1 259.9 SDDA_E

9 LCL471+1 Rating=1 283.8 SDDA_V 29 SET289-6 Rating=1 299 SDDA_V

10 LCL478+1 Rating=1 265.5 SDDA_V 30 SET290-6 Rating=1 156.5 SDDA_E

11 LCL479+1 Rating=1 248.7 SDDA_V 31 SET305-6 Rating=1 166 SDDA_V

12 LCL554+1 Rating=1 263.7 SDDA_V 32 SET345-6 Rating=1 138 SDDA_E

13 LCL560+1 Rating=1 298 SDDA_V 33 SET348-6 Rating=1 128.4 SDDA_V

14 NUM054-1 Rating=1 96 SDDA_V 34 SET368-6 Rating=1 172.1 SDDA_V

15 NUM057-1 Rating=1 267.9 SDDA_V 35 SEU372+2 Rating=1 158.8 SDDA_V

16 NUM076-1 Rating=1 152.7 SDDA_E 36 SEU410+3 Rating=1 167.9 SDDA_E

17 NUM090-1 Rating=1 155.5 SDDA_V 37 SWC186+1 Rating=1 270.5 SDDA_E

18 NUM136-1 Rating=1 155.7 SDDA_V 38 SWC199-1 Rating=1 185 SDDA_V

19 NUM428+1 Rating=1 272.1 SDDA_V 39 SWC199+1 Rating=1 277 SDDA_V

20 NUM486+1 Rating=1 115.6 SDDA_E 40 SWV276-1 Rating=1 298 SDDA_E

deduction can be effectively applied to first-order logic automated theorem prover. The possible

reasons can be: 1) the multi-clause dynamic deduction can fully exert the synergized deduction

of more than two clauses, and the ability of multi-clause dynamic deduction to proof search is

not equivalent to the binary deduction by saturation under heuristic strategies; 2) the multi-

clause and dynamic nature of S-CS deduction, which reflects non-determinism in terms of

which clauses, how many of them involved in each deduction, and select which clauses from

the input clauses to construct contradictions, so the S-CS deduction has the ability to arrive at

various proof search by handling multi-clause. This type of non-determinism is maybe

beneficial for the hard problems in mathematical theorem proving. Compared with binary

resolution method, the S-CS deduction offers more chances or new windows of algorithms and

implementations development for proof search. Experimental results show that multi-clause

dynamic deduction is an effective complement to binary resolution method, which can arrive

at the proof search that current state-of-the-art provers cannot reach, as illustrated in Table 8.3.

9. Conclusions and Future Work

Multi-clause standard contradiction separation (S-CS) calculus for first-order logic is a new

deduction theory and method for automated reasoning based on the S-CS rule [21]. The present

work focused on how this theory can be achieved through the development of specific and

effective algorithms and how it can be implemented on top of the existing architectures of the

leading first-order theorem provers in order to further improve their performances and solve

some hard problems. For effective implementation, the proposed multi-clause dynamic

deduction algorithm SDDA can make full use of input clauses and give full play to the ability

of synergized deduction with more than two clauses. Under the proposed heuristic strategies,

the input clauses can eliminate more literals through standard contradiction separating, make

most of the S-CS clauses are unit clauses or contains fewer literals.

SDDA was applied to the leading provers Vampire 4.1 and E 2.3 and formed the combined

provers SDDA_V and SDDA_E respectively. The experimental results have shown that

SDDA_V 0.1 outperforms Vampire 4.1 and SDDA_E 0.1 outperforms E 2.3 to a certain extent

so indeed enhance their performance. Especially, SDDA_V and SDDA_E have solved some

hard problems with rating of 1 that are unsolved by the state-of-the-art ATP system, indicating

that the S-CS rule is an effective method for theorem proving and an important extension of the

binary resolution method, and the proposed deduction algorithm can effectively improve the

ability of the state-of-the-art provers.

Although SDDA has proposed different kinds of heuristic strategies, and the proposed

deduction algorithm can effectively perform the optimal proof search, there is still much room

for improvement, such as how to effectively perform deduction weights update, how to fully

use the synergies of multi-clause to a greater extent. As the clause and literal selection strategies

are foundational approach, how to efficient use and enrich these strategies for multi-clause

dynamic deduction is the main task. The implementation of multi-clause dynamic deduction

does not include the superposition calculus for dealing with equality, adding superposition

calculus is the next major research work.

Although SDDA_V 0.1 outperforms Vampire 4.1 and SDDA_E 0.1 outperforms E 2.3 to

a certain extent, there is also much room for their improvement. In the setting runtime, multi-

clause dynamic deduction can generate a large number of S-CSCs as lemmas, how to effectively

evaluate these new clauses and more precise choice as lemmas also is the main task. In terms

of combination, the multi-clause dynamic deduction and the leading prover run sequentially

according to their runtime, this unidirectional method restricts the ability of combination.

Therefore, the more effectively combined multi-clause dynamic deduction with the leading

provers is also one of the focus in our future work.

Acknowledgments

This paper is supported by the Natural Science Foundation of China (Grant No. 61673320);

The Natural Science Foundation of Jiangxi Province (Grant No. 20181BAB202004); The

Humanities and Social Sciences Research Project of the Ministry of Education of P. R. China

(Grant No. 20XJCZ H016).

REFERENCES

[1] V. Pavlov, A. Schukin, T. Cherkasova. Exploring Automated Reasoning in First-Order

Logic: Tools, Techniques and Application Areas, In: The 4th International Conference

on Knowledge Engineering and Semantic Web, vol. 394 in Communications in Computer

and Information Science, St. Petersburg, Russia, October 7-9, 2013, pp. 102-116.

[2] G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant. First-

Order Automated Reasoning with Theories: When Deduction Modulo Theory Meets

Practice. Journal of Automated Reasoning, 64(6)(2020): pp. 1001-1050.

[3] L. Kovács, A. Voronkov, First-order Theorem Proving and Vampire, In: The 25th

International Conference on Computer Aided Verification, LNCS 8044, Saint Petersburg,

Russia, July 13-19, 2013, pp. 1-35.

[4] S. Schulz, System Description: E 1.8, In: The 19th International Conference on Logic for

Programming, Artificial Intelligence and Reasoning, LNCS 8312, Stellenbosch, South

africa, December 14-19, 2013, pp. 735-743.

[5] G. Sutcliffe, TSTP Solution Domains, http://www.tptp.org/cgi-bin/SeeTPTP?Category=

Solutions, Accessed 10 July 2020.

[6] G. Sutcliffe, The 9th IJCAR Automated Theorem Proving System Competition-CASC-

J9, AI Communications, 31(6) (2018) 495–507.

[7] G. Sutcliffe, The CADE-27 Automated Theorem Proving System Competition-CASC-

27, AI Communications, 32(5-6) (2019) 373 – 389.

[8] J.A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the

ACM, 12(1) (1965) 23-41.

[9] J.A. Robinson, A. Voronkov, Handbook of Automated Reasoning, Vols. 1 and 2, the MIT

Press and North Holland, 2001.

[10] J. Harrison, Handbook of Practical Logic and Automated Reasoning, Cambridge

University Press, 2009.

[11] D. Plaisted, History and prospects for first-order automated deduction, In: The 25th

International Conference on Automated Deduction, LNCS 9195, Berlin, Germany,

August 1-7, 2015, pp. 3-28.

[12] J.A. Robinson, Automatic Deduction with Hyper-resolution, International Journal of

Computer Mathematics, 1(1965) 227-234.

[13] J.R. Slagle, Automatic Theorem Proving with Renamable and Semantic Resolution,

Journal of the ACM, 14(4) (1967) 687-697.

[14] A. Degtyarev, R. Nieuwenhuis, and A. Voronkovc, Stratified resolution. Journal of

Symbolic Computation, 36(1) (2003) 79–99.

[15] H. de Nivelle, J. Meng, Geometric Resolution: A Proof Procedure Based on Finite Model

Search, In: Proc. of the 3th International Joint Conference on Automated Reasoning,

LNAI 4130, Seattle, WA, United states, August 17-20, 2006, pp. 303-317.

[16] J. Slaney, B.W. Paleo, Conflict resolution: a first-order resolution calculus with decision

literals and conflict-driven clause learning, Journal of Automated Reasoning, 12(4) (2016)

1-24.

[17] B. Loechner, A Redundancy Criterion Based on Ground Reducibility by Ordered

Rewriting, In: Proc. of the 2nd International Joint Conference on Automated Reasoning,

LNCS 3097, Cork, Ireland, July 4-8, 2004, pp. 45-59.

[18] S. Schulz, Simple and Efficient Clause Subsumption with Feature Vector Indexing, In:

Automated Reasoning and Mathematics: Essays in Memory of William W. McCune,

LNCS 7788, 2013, pp. 45-67.

[19] K. Hoder, G. Reger, M Suda, A, Voronkov. Selecting the selection, In: The 8th

International Joint Conference on Automated Reasoning, LNCS 9706, Coimbra, Portugal,

June 27 – July 2, 2016, pp. 313-329.

[20] S. Schulz, M. Mohrmann, Performance of clause selection heuristics for saturation-based

theorem proving, The 8th International Joint Conference on Automated Reasoning,

LNCS 9706, Coimbra, Portugal, June 27 – July 2, 2016, pp. 330-345.

[21] Y. Xu, J. Liu, S.W. Chen, et al., Contradiction separation based dynamic multi-clause

synergized automated deduction, Information Sciences, 462 (2018) 93-113.

[22] F. Cao, Y. Xu, J. Liu, et al., CSE_E 1.0: An integrated automated theorem prover for first-

order logic, Symmetry, 11(9) (2019) 1142.

[23] Y. Xu, S.W. Chen, J. Liu, X.M. Zhong and X.X. He, Distinctive features of the

contradiction separation based dynamic automated deduction, In: The 13th International

FLINS Conference on Decision Making and Soft Computing, Vol. 11, Belfast, UK,

August 21-24, 2018, pp: 725-732.

[24] D.W. Loveland, A Linear Format for Resolution, In: Symposium on Automatic

Demonstration, 1970, pp. 147-162.

[25] J.A. Robinson, The generalized resolution principle, Journal of Symbolic Computation,

3 (1968) 135-151.

[26] X.H. Liu, A new semantic resolution principle, Journal of Jilin University, 2 (1978) 112-

117 (in Chinese).

[27] R.S. Boyer, Locking: A Restriction of Resolution. Doctoral Dissertation, University of

Texas at Austin, 1971.

[28] Y. Xu, J. Liu, S.W. Chen, and X.M. Zhong, A novel generalization of resolution principle

for automated deduction, In: The 12th International FLINS Conference on Uncertainty

Modelling in Knowledge Engineering and Decision Making, Roubaix, France, August

24-26, 2016, pp. 483-488.

[29] S.W. Chen, Y. Xu, Y. Jiang, J. Liu, X.X. He, Some synergized clause selection strategies

for contradiction separation based automated deduction, In: The 12th International

Conference on Intelligent Systems and Knowledge Engineering, Nanjing, China,

November 24-26, 2017, pp. 143-148.

[30] F. Cao, Y. Xu, J. Zhong, G.F. Wu, Holistic deductive framework theorem proving based

on standard contradiction separation for first-order logic, In: The 12th International

Conference on Intelligent Systems and Knowledge Engineering, Nanjing, China,

November 24-26, 2017, pp. 389-393.

[31] F. Cao, Y. Xu, X.R. Ning and X.C. Wang, Deductive control strategies based on

contradiction separation rule, In: The 13th International FLINS Conference on Decision

Making and Soft Computing, Vol. 11, Belfast, UK, August 21-24, 2018, pp. 766-773.

[32] F. Cao, Y. Xu, S.W. Chen, et al, A contradiction separation dynamic deduction algorithm

based on optimized proof search, International Journal of Computational Intelligence

Systems, 12(2) (2019) 1245-1254.

[33] C. Weidenbach, R.A. Schmidt, T Hillenbrand, R Rusev, D. Topic, System description:

Spass version 3.0, In: The 21th International Conference on Automated Deduction, LNAI

4603, Bremen, Germany, July 17-20, 2007, pp. 514–520.

[34] A. Voronkov, AVATAR: The architecture for first-order theorem provers, In: The 26th

International Conference on Computer Aided Verification, LNCS 8559, Vienna, Austria,

July 18-22, 2014, pp. 696-710.

[35] K. Korovin, iProver - An Instantiation-Based Theorem Prover for First-Order Logic

(System Description), In: The 4th International Joint Conference on Automated

Reasoning, LNAI 5195, Sydney, Australia, August 12-15, 2008, pp. 292-298.

[36] D. Itegulov, J. Slaney, B.W. Paleo, Scavenger 0.1: A Theorem Prover Based on Conflict

Resolution, In: The 26th International Conference on Automated Deduction, LNAI 10395,

Gothenburg, Sweden, August 6-11, 2017, pp. 344-356.

[37] J. Denzinger, M. Kronenburg, S Schulz, DISCOUNT: a distributed and learning

equational prover, Journal of Automated Reasoning, 18(2) (1997) 189–198.

[38] W. McCune, L. Wos, Otter: the CADE-13 competition incarnations, Journal of

Automated Reasoning, 18(2) (1997) 211–220.

[39] A. Riazanov, A. Voronkov, Limited resource strategy in resolution theorem proving,

Journal of Symbolic Computation, 36(1) (2003) 101-115.

[40] S. Schulz, Learning Search Control Knowledge for Equational Theorem Proving, In: The

Joint 24th German Conference on Artificial Intelligence and 9th Austrian Conference on

Artificial Intelligence, LNCS 2174, Vienna, Austria, September 19-21, 2001, pp. 320-

334.

[41] M. Khalifa, H. Raafat, M. Almulla, Machine Learning Approach to Enhance the Design

of Automated Theorem Provers, In: The 9th International Conference on Neural

Information Processing, LNCS 7664, Doha, Qatar, November 12-15, 2012, pp. 673-682.

[42] D. Kühlwein, S. Schulz, J. Urban, E-MaLeS 1.1, In: The 24th International Conference

on Automated Deduction, LNAI 7898, Lake Placid, NY, United states, June 9-14, 2013,

pp. 407-413.

[43] C. Kaliszyk, J. Urban, FEMaLeCoP: Fairly Efficient Machine Learning Connection

Prover, In: The 20th International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, LNCS 9450, Suva, Fiji, November 24-28, 2015, pp. 88-96.

[44] S. Schulz, Fingerprint Indexing for Paramodulation and Rewriting, In: The 6th

International Joint Conference on Automated Reasoning, LNCS 7364, Manchester, UK,

June 26-29, 2012, pp. 477-483.

[45] C. Kaliszyk, S. Schulz, J. Urban, J Vyskocil, System Description: E.T. 0.1, In: The 25th

international Conference on Automated Deduction, LNCS 9195, Berlin, Germany,

August 1-7, 2015, pp. 389-398.

[46] G. Reger, D. Tishkovsky, A. Voronkov, Cooperating Proof Attempts, In: The 25th

international Conference on Automated Deduction, LNCS 9195, Berlin, Germany,

August 1-7, 2015, pp. 339-355.

[47] G. Sutclifie, J. Zimmer, S. Schulz, TSTP Data-Exchange Formats for Automated

Theorem Proving Tools, In W. Zhang and V. Sorge (Ed.), Distributed Constraint Problem

Solving and Reasoning in Multi-Agent Systems, number 112 in Frontiers in Artificial

Intelligence and Applications, IOS Press, 2004, pp. 201-215.

[48] W.W. McCune. Prover9. http://www.cs.unm.edu/ mccune/prover9/. Accessed 2019.

[49] Sutcliffe G. The CADE ATP System Competition. http:/tptp.cs.miami.edu/CASC/.

Accessed 30 May 2019.

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=6CSy2IdecGBECb7KP6D&field=AU&value=Vyskocil,%20J&ut=1311199&pos=4&excludeEventConfig=ExcludeIfFromFullRecPage

