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Abstract: in the past decades, automated theorem proving (ATP) for first-order logic has made good 

progress, in which binary resolution inference rule plays a crucial role. However, as shown in the latest 

benchmark library of the ATP system, there are still many practical problems that have not been resolved 

or cannot be effectively resolved. Recently, in order to overcome the limitations of ATP based on binary 

resolution inference rules, a novel multi-clause dynamic standard contradiction separation (S-CS) 

inference rule and its automated deduction theory have been proposed. Based on this theory, this paper 

first clarifies the generality of this S-CS rule by comparing it with some well-known variants of the 

binary resolution rule, and then focuses on how to design a specific and effective algorithm along with 

search strategies to realize the S-CS based deductive theory with its implementation. Specifically, the 

present work proposes a novel S-CS dynamic deduction algorithm (in short SDDA) based on different 

strategies and summarizes its implementation procedures. In addition, we focus on evaluating whether 

SDDA, as a novel perspective multi-clause dynamic automatic deduction algorithm, can be applied on 

top of the current leading ATP system architectures to further improve their performances. Therefore, 

SDDA is applied to the current leading first-order ATP systems, i.e., Vampire and E, respectively 

forming two integrated APT systems, denoted as SDDA_V and SDDA_E. Then the capabilities of 

SDDA_V and SDDA_E are evaluated on the latest benchmark database TPTP, such as the CASC-J9 

problems (FOF division) as well as the hard problems with a rating of 1 in the TPTP benchmark database. 

The experimental results show the effectiveness of SDDA: SDDA_V outperforms Vampire itself, and 

SDDA_E, outperforms E itself, and the two improved ATP systems have solved a number of hard 

problems with the rating of 1 in TPTP, that is, some problems in the latest benchmark database TPTP 

which have not yet been solved by other current first-order ATP systems. 
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1. Introduction 

Automated theorem proving (ATP) for first-order logic has made good progress during the past 

decades and has been successfully applied in many application areas [1, 2], including those 

state-of-the-art ATPs, such as Vampire [3] and E [4], etc. However, there are still a lot of real 

problems unsolved or not solved efficiently as illustrated in the latest released version (TPTP-

v7.4.0) of the TPTP (Thousands of Problems for Theorem Provers) benchmark library of ATP 

systems [5]. In addition, from the development trend of ATPs in the past few years [6, 7], the 

provers with resolution method as the inference core is the current mainstream of ATPs. 

Therefore, improving the capability of ATPs from the perspective of the resolution method is 

still an important research direction, and there is much space for further development.  

The resolution inference [8] has been greatly developed and has promoted the rapid 

development of automated reasoning for over five decades [9-11]. Many variants of resolution, 

e.g., [12-16], redundancy elimination techniques, e.g., [17, 18], and heuristic strategies for 

controlling proof search, e.g., [19, 20], have been studied from both analytical and empirical 

perspectives. An important feature of those methods is that only two clauses involved in each 

deduction step, and only one complementary pair from parent clauses is eliminated. Although 

the simple and elegant resolution inference scheme has been successful to a great extent, the 

question naturally raises of whether it can be improved, can we extend the resolution scheme 

into a contradiction consists of more than two clauses? Accordingly, can we replace the separate 

set of complementary pairs of literals in binary resolution by a larger set of literals from more 

than two parent clauses which is called a contradiction? 

The recent multi-clause standard contradiction separation (S-CS) calculus for first-order 

logic [21] can be regarded as a critical initial step to answer this question. S-CS rule takes 

multiple (two or more) clauses as parent clauses, and selects multiple literals (one or more) 

from each parent to build a contradictory set of sub-clauses, then infers the clause formed from 

the disjunction of the non-selected literals of the parent clauses. Especially, the constructed 

contradiction is oriented to the choice of subsequent clauses, and it is synergistic to eliminate 

the literals in the selected clause. The S-CS rule combines multiple resolution (full resolution, 



not just binary) and factoring steps. Full and binary resolution are special cases of S-CS. Details 

of the S-CS inference rule are provided in Section 2. 

S-CS calculus for first-order logic in [21] was introduced to address the above question 

from a purely proof-theoretical perspective and established a sound and complete multi-clause 

dynamic automated deduction theory. The use of the S-CS inference rule allows automated 

deduction to take “large steps" in the search space, which is normally desirable in a search for 

a refutation. However, the necessary proof search algorithms and strategies to support this 

theory and achieve the implementation for automation with detailed experiments and case 

studies have not yet been discussed in [21]. The present work therefore serves for the purpose 

on how this theory can be achieved through the development of specific and effective 

algorithms and how it can be implemented on top of the existing architectures of first-order 

theorem provers in order to improve further their performances and solve some hard problems. 

Specifically, a multi-clause S-CS dynamic deduction algorithm (called SDDA) is proposed 

based on different strategies and is then applied to the current leading first-order theorem 

provers, i.e., Vampire and E, respectively forming two integrated provers, denoted as SDDA_V 

and SDDA_E. SDDA_V (SDDA_E) runs SDDA and Vampire (E) first sequentially, and then 

in a cooperative way. Both SDDA_V and SDDA_E are then evaluated on the latest TPTP 

benchmark database in terms of its generality and capability, e.g., CASC-J9 problems (FOF 

division) as well as some hard problems with the rating of 1 in the TPTP benchmark database. 

The experimental results show that SDDA_V outperforms Vampire itself, and SDDA_E, 

outperforms E itself, and both of the improved provers solve a number of hard problems with 

rating of 1 in TPTP, i.e., the problems in the latest TPTP benchmark database which have not 

yet been solved by any of other current provers. 

The remainder of this paper is structured as follows. In Section 2, we briefly review some 

preliminaries about the notations and terminologies, as well as provide an overview of the 

contradiction separation-based deduction with some clarification of its relationship with some 

popular variations of the binary resolution. Section 3 discusses the challenges to establish the 

S-CS deduction algorithm along with the possible ways to address those challenges. In Section 

4, the heuristic strategies are introduced which are related to the specific algorithm 

implementation. Accordingly, multi-clause dynamic deduction framework for proof search is 



proposed in Section 5 first, then a novel multi-clause dynamic deduction algorithm, called 

SDDA, is introduced and detailed in Section 6. How can this algorithm be applied and 

incorporated into the leading first-order theorem provers is discussed in Section 7. Section 8 

provides the detailed experimental studies using the TPTP benchmark database to 

comparatively illustrate the performance of leading provers and their improved ones using the 

SDDA. The paper is concluded in Section 9 along with indication of planned future work.  

2. Overview of Standard Contradiction Separation Rule in First-order Logic 

Multi-clause dynamic deduction theory for first-order logic based on standard contradiction 

separation rule (in short, S-CS deduction) was introduced in [21], this section firstly provides a 

review of basic concepts and results, then clarifies its relationship with binary resolution, finally 

summarizes the key features of S-CS deduction.  

2.1 Preliminaries 

In order to better introduce the multi-clause dynamic deduction algorithm, some definitions and 

terminologies are reviewed in this section, the readers are referred to [21] for more details. 

Definition 2.1 [21] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic, where 

the following conditions hold: 

(1) There does not exist the same variables among 𝐶1, 𝐶2, … , 𝐶𝑚  (if there exist the same 

variables, a rename substitution can be applied to make them different); 

(2) For each 𝐶𝑖 (𝑖 = 1,2, … , 𝑚), a substitution i can be applied to 𝐶𝑖 (i could be an 

empty substitution) and the same literals merged after substitution, the resultant clause is 

denoted 𝐶𝑖
𝜎𝑖 . Each 𝐶𝑖

𝜎𝑖  is partitioned into two sub-clauses 𝐶𝑖
𝜎𝑖−

 and 𝐶𝑖
𝜎𝑖+

 such that: 

i) 𝐶𝑖
𝜎𝑖 = 𝐶𝑖

𝜎𝑖−
∨ 𝐶𝑖

𝜎𝑖+
, where 𝐶𝑖

𝜎𝑖−
 and 𝐶𝑖

𝜎𝑖+
 do not share the same literal, 𝐶𝑖

𝜎𝑖−
 is not 

empty, 𝐶𝑖
𝜎𝑖+

 might be empty; moreover,  

ii) For any (𝑥1, … , 𝑥𝑚) ∈ ∏ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  (m-fold Cartesian product, where each element is an 

m-dimensional array, i.e., m-tuple), there exists at least one complementary pair among 

{𝑥1, … , 𝑥𝑚}  (where “complementary” has the usual meaning of “the negation of”). The 

conjunction ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is called a Separated Standard Contradiction (S-SC); 



iii) The resulting clause ∨𝑖=1
𝑚 𝐶𝑖

𝜎𝑖+
, denoted as C𝑚

𝑠𝜎
 (here “s” means “standard”, 𝜎 =

⋃𝑖=1
𝑚 𝜎𝑖), is called a Standard Contradiction Separation Clause (S-CSC) of S. 

The inference rule that produces a new clause C𝑚
𝑠𝜎

 is called a Standard Contradiction 

Separation rule in first-order logic, in short, an S-CS rule. 

In this definition, every input clause is assumed to be split into two parts (denoted as 

positive and negative, although the notation has nothing to do with the sign of the involved 

literals) in such a form that the conjunction of the "negative" parts is a contradiction; then, the 

disjunction of the "positive" parts of the clauses, i.e., S-CSC, is the intended output of the rule. 

Example 2.1 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4} be a clause set in first-order logic, where 𝐶1 =

𝑃1(𝑓(𝑎)) ∨ 𝑃2(𝑏, 𝑏), 𝐶2 = 𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃2(𝑏, 𝑏), 𝐶3 = ~𝑃1(𝑓(𝑎)) ∨ 𝑃1(𝑏) ∨ ~𝑃2(𝑥1, 𝑥2) ∨

𝑃3(𝑥1, 𝑥3) , 𝐶4 = 𝑃1(𝑏) ∨ ~𝑃1(𝑥4) ∨ ~𝑃2(𝑓(𝑥5), 𝑏) ∨ ~𝑃3(𝑓(𝑏), 𝑥6) . Here a and b are 

constants, 𝑓 is a function symbol, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 are variables, 𝑃1, 𝑃2, 𝑃3 are predicate 

symbols.  

Applying the S-CS rule to the 4 clauses 𝐶1, 𝐶2, 𝐶3, 𝐶4, let a variable substitution i and the 

resultant clause 𝐶𝑖
𝜎𝑖  be: 

i i 𝐶𝑖
𝜎𝑖 

1  𝑃1(𝑓(𝑎)) ∨ 𝑃2(𝑏, 𝑏) 

2  𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃2(𝑏, 𝑏) 

3 𝑓(𝑏)/𝑥1, 𝑏/𝑥2 ~𝑃1(𝑓(𝑎)) ∨ 𝑃1(𝑏) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃3(𝑓(𝑏), 𝑥3) 

4 𝑓(𝑎)/𝑥4, 𝑏/𝑥5, 𝑥3/𝑥6 𝑃1(𝑏) ∨ ~𝑃1(𝑓(𝑎)) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ ~𝑃3(𝑓(𝑏), 𝑥3) 

Partition the 𝐶𝑖
𝜎𝑖   as follows: 

i 𝐶𝑖
𝜎𝑖+

 𝐶𝑖
𝜎𝑖−

 

1 𝑃2(𝑏, 𝑏) 𝑃1(𝑓(𝑎)) 

2 𝑃2(𝑏, 𝑏) 𝑃2(𝑓(𝑏), 𝑏) 

3 𝑃1(𝑏) ~𝑃1(𝑓(𝑎)) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃3(𝑓(𝑏), 𝑥3) 

4 𝑃1(𝑏) ~𝑃1(𝑓(𝑎)) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ ~𝑃3(𝑓(𝑏), 𝑥3) 

So, the S-SC is: 

(𝑃1(𝑓(𝑎)))∧ (𝑃2(𝑓(𝑏), 𝑏))∧(~𝑃1(𝑓(𝑎)) ∨ ~𝑃2(𝑓(𝑏), 𝑏) ∨ 𝑃3(𝑓(𝑏), 𝑥3)) ∧ (~𝑃1(𝑓(𝑎)) ∨

~𝑃2(𝑓(𝑏), 𝑏) ∨ ~𝑃3(𝑓(𝑏), 𝑥3)). 

And the S-CSC involving the synergized deduction of 4 clauses is: 

𝐶5= C4
𝑠 (𝐶1, 𝐶2, 𝐶3, 𝐶4)=𝑃1(𝑏) ∨ 𝑃2(𝑏, 𝑏). 



Definition 2.2 [21] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚}  in first-order logic. 

𝛷1, 𝛷2, … , 𝛷𝑡 is called a standard contradiction separation based dynamic deduction sequence 

(S-CS deduction) from S to a clause 𝛷𝑡, denoted as 𝔇𝑠, if  

 (1) 𝛷𝑖 ∈ 𝑆; or  

(2) there exist 𝑟1, 𝑟2, , … , 𝑟𝑘𝑖
 𝑖, 𝛷𝑖 = C𝑘𝑖

𝑠𝜃𝑖  (𝛷𝑟1
, 𝛷𝑟2

, … , 𝛷𝑟𝑘𝑖
).  

where 𝜃𝑖 = ⋃𝑗=1
𝑘𝑖 𝜎𝑗, 𝜎𝑗  is a substitution to 𝛷𝑟𝑗

, 𝑗 = 1,2, . . . , 𝑘𝑖, 𝑖 ∈ {1,2, . . . , 𝑡}. 

The ki in (2) varies with the deduction process, which means that the number of clauses 

involved in the contradiction separation in each deduction process could be different from each 

other, i.e., not fixed. This reflects the meaning of “dynamic deduction”. Dynamic selection of 

different numbers of clauses during the deduction process provides much flexibility which 

provides an effective way to overcome the two-clause restriction to continue the proof search 

using multiple paths, therefore enhances the adaptive behaviour of the automated deduction. 

Clearly there are many choice points in the S-CS deduction that need to be determined and 

controlled. This is the subject of Sections 4 and 5. The algorithm in Section 6 aims to achieve 

this dynamic deduction and it is a core base to implement a theorem prover. 

Theorem 2.1 (Soundness) [21] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order 

logic. 𝛷1, 𝛷2, … , 𝛷𝑡 is an S-CS based dynamic deduction sequence from S to a clause 𝛷𝑡. If 

𝛷𝑡 is an empty clause, then S is unsatisfiable. 

Theorem 2.2 (Completeness) [21] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order 

logic. If S is unsatisfiable, then there exists an S-CS based dynamic deduction sequence from S 

to an empty clause. 

2.2 Summary of distinct features of S-CS dynamic deduction 

Some distinct features of S-CS dynamic deduction are illustrated and summarized here.   

Example 2.2 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4} be a clause set in first-order logic, where  

𝐶1 = 𝑃1(𝑎) ∨ 𝑃2(𝑐, 𝑥1), 𝐶2 = 𝑃2(𝑎, 𝑏) ∨ 𝑃2(𝑐, 𝑥2),  

𝐶3 = ~𝑃1(𝑎) ∨ ~𝑃2(𝑥3, 𝑥4) ∨ 𝑃3(𝑥3, 𝑓(𝑎)) ∨ 𝑃4(𝑥4),  

𝐶4 = ~𝑃2(𝑥6, 𝑥5) ∨ ~𝑃3(𝑎, 𝑓(𝑎)) ∨ 𝑃4(𝑥5).  

Here a, b, c are constants, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6  are variables,  𝑓  is a function symbol, 

𝑃1, 𝑃2, 𝑃3, 𝑃4 are predicate symbols. 



We have the variables substitutions ( 𝑎/𝑥3, 𝑏/𝑥4, 𝑏/𝑥5, 𝑎/𝑥6 ) and obtain an S-CSC 

𝐶5 =  C
4
𝑠𝜎(𝐶1, 𝐶2, 𝐶3, 𝐶4) = 𝑃4(𝑏) ∨ 𝑃2(𝑐, 𝑥1).  

The process of S-CS rule deduction is shown in Table 2.1. 

Table 2.1 S-CS deduction in Example 2.2 

 𝐶2 𝐶3 𝐶1 𝐶4 

𝐶𝑖
𝜎𝑖+

 𝑃2(𝑐, 𝑥2) 𝑃4(𝑏) 𝑃2(𝑐, 𝑥1) 𝑃4(𝑏) 

𝐶𝑖
𝜎𝑖−

 𝑃2(a, b) ~𝑃1(𝑎)⋁𝑃3(𝑎, 𝑓(𝑎)) ∨ ~𝑃2(𝑎, 𝑏) 𝑃1(𝑎) ~𝑃3(𝑎, 𝑓(𝑎)) ∨ ~𝑃2(𝑎, 𝑏) 

Different from binary resolution method as a static resolution, where only two clauses are 

involved and a complementary pair of literals is eliminated in each deduction step, S-CS 

deduction has the following distinguish features [21-23]: 

(1) Multi-clause deduction. The number of input clauses can be more than two in each S-

CS deduction step, synergized deduction among clauses can be reflected, and generates an S-

CSC based on more literals elimination. In Example 2.2, C4
𝑠𝜎(𝐶1, 𝐶2, 𝐶3, 𝐶4) is a result from 4 

clauses 𝐶1, 𝐶2, 𝐶3, 𝐶4. From Table 2.1, the S-CS deduction has four clauses involved, if we 

select a subset of the literals from 𝐶1, 𝐶2, 𝐶3, 𝐶4 to build a standard contradiction, it will infer 

the disjunction of the non-selected literals on the four involved clauses, it is a synergized 

deduction method. From the perspective of literals elimination, one literal is eliminated in 𝐶1 

and 𝐶2 respectively, three literals are eliminated in 𝐶3, and two literals are eliminated in 𝐶4, 

therefore the S-CS deduction can achieve more literals elimination, thereby improving the 

deduction efficiency.  

(2) Dynamic deduction. Which input clauses, how many input clauses and which literals 

from input clauses are selected to construct standard contradictions are controlled dynamically 

in the process of the S-CS deduction during a search space. 

(3) Flexible deduction. The input clauses are flexible in the process of the S-CS deduction. 

From Table 2.1, there is no requirement about any literal relevance between C1 and C2, it does 

not contain a complementary pair of literals, nor does it contain the same literal, and even 

predicate symbols are allowed to be different between input clauses. 

(4) Guided deduction. The input clauses can play a guiding role in the subsequent clause 

selection. In Example 2.2, the clause C4 is selected according to the input clauses 𝐶1, 𝐶2, 𝐶3. 



(5) S-CSCs usually have fewer literals. S-CS deduction separates a standard contradiction 

which is a literal set from input clauses, and the S-CSCs are generated by the disjunction of the 

non-selected literals of the input clauses can be controlled by heuristic strategy, so S-CSCs 

usually have fewer literals, and a large proportion of them are unit clauses. 

In order to provide a graphical and intuitive illustration on the essential features of the S-

CS deduction, as well as the essential difference from binary resolution deduction, we use the 

funnel as an intuitive figure to show the automated deduction process from the input clause set.. 

Fig. 2.1 and Fig. 2.2 [21] below show a graphical funnel view comparison between the binary 

resolution deduction process and the S-CS based dynamic deduction process. The one coming 

out from the exit of the funnel is the final output. Fig. 2.1 actually also illustrates some insights 

why the pre-processing and simplification steps are essential in the binary resolution deduction, 

even take the majority of the steps and time, and also why lots of work have been focused on 

splitting and simplifying the clause set into the simpler ones just because the exit is too narrow. 

Fig. 2.2 illustrates the dynamic and flexible nature of the S-CS based dynamic deduction. This 

dynamic nature reflects non-determinism in terms of which clauses and how many of them 

involved in each deduction and have its ability to arrive at outcomes using various routes. This 

type of nondeterminism is especially beneficial for the problems in mathematical theorem 

proving when there is a single outcome with multiple paths by which the outcome may be 

discovered. 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 2.1 The graphical funnel view of binary resolution deduction process 

Static and binary restrict deduction 

• Each ellipse represents one deduction step. 

• The number of clauses used in each step is 

fixed as two clauses. 
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Fig. 2.2 The graphical funnel view of S-CS based dynamic deduction process 

2.2 Generality of S-CS rule compared with binary resolution and its variations 

This section clarifies the generality of the S-SC rule by comparing it with some well-known 

variants of the binary resolution used by some of the state-of-the-art provers. 

The research of multi-clause deduction can be traced back to some resolution methods of 

handling several clauses, such as linear resolution [24], unit resulting resolution [25], hyper-

resolution [12], which are briefly summarized below:  

1) Linear resolution (LR) is a multi-step resolution process with a clause called a center 

clause and another one called a side clause; each generated clause is used as the next central 

clause. This method makes full use of generated clause to perform deduction and retains the 

intermediate new generated clause in the process of deduction.  

2) Unit resulting resolution (UR) is a binary tree structure whose one of leaf nodes must 

be a unit clause (each deduction step requires a unit clause involved), and each path of the 

binary tree must generate a unit clause or an empty clause. The deduction process starts from a 

unit clause and ends to the final generation of a unit clause or an empty clause.  

3) Hyper-resolution (HR) is also a multi-step deduction process. The clauses to be 

resolved are divided two types: clauses with only positive literals (called as electrons) and other 

clauses with one or more negative literals (called as nucleus). In the process of hyper-resolution, 

…
 

Dynamic and flexible deduction 

• Each ellipse represents one deduction 

step. 

• The number of clauses used in each step 

can be different, can be guided and 

adjust dynamically. 



the nucleus is resolved with a series of electrons, and an electron is generated as the final 

resultant clause where intermediate new generated clauses are discarded.  

The above variants of binary resolution are used for handling multi-clauses, but each 

deduction step only involves two clauses and eliminates a complementary pair of literal (two 

literals), which are essentially a multi-step deduction of binary resolution and different from 

the S-CS rule.  

Remark 2.1 Binary resolution and its variations are restricted forms of S-CS. 

The number of clauses involved in each S-CS inference can be more than two. When the 

number of clauses is limited to two, the S-CS becomes a binary resolution. Variations of binary 

resolution were proposed by restricting or specifying the resolution path, their essence are still 

binary resolution in each deduction step, so the variations of binary resolution are also restricted 

forms of the S-CS, such as semantic resolution [25, 26] and lock-resolution [27]. 

In the following, some variations of the S-CS are provided which help to clarify the 

relationships between variants of the binary resolution and the S-CS. 

Definition 2.3 In each S-CS deduction step, if it requires that: 1) the input clauses must 

contain at least one unit clause; 2) the S-CSC is a unit clause or an empty clause, then this 

deduction is called as a unit resulting resolution based on the S-CS rule (SCS-UR). 

Example 2.3 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} be a clause set in first-order logic, where 𝐶1 =

~𝑃1(𝑥1) ∨ 𝑃2(𝑥1) ∨ ~𝑃3(𝑥2) ,  𝐶2 = 𝑃1(𝑎) ∨ 𝑃1(𝑏) ,  𝐶3 = ~𝑃2(𝑥3) ,  𝐶4 = 𝑃3(𝑎) , 𝐶5 =

𝑃3(𝑓(𝑏)). Here a, b are constants, 𝑥1, 𝑥2, 𝑥3 are variables, 𝑓 is a function symbol, 𝑃1, 𝑃2, 𝑃3 

are predicate symbols, the process of UR resolution is shown in Fig. 2.3. 

 

Fig. 2.3 The process of UR resolution for Example 2.3  



Corresponding to the UR resolution for Example 2.3, the processes of the SCS-UR 

deduction are shown in Tables 2.2 and 2.3. 

Table 2.2 The first SCS-UR deduction for Example 2.3 

 𝐶2 𝐶4 𝐶1 𝐶3 

𝐶𝑖
𝜎𝑖+

(= C6) 𝑃1(𝑏)    

𝐶𝑖
𝜎𝑖−

 𝑃1(𝑎) 𝑃3(𝑎) ~𝑃1(𝑎/𝑥1)⋁𝑃2(𝑎/𝑥1)⋁~𝑃3(𝑎/𝑥2) ~𝑃2(𝑎/𝑥3) 

Table 2.3 The second SCS-UR deduction for Example 2.3 

 𝐶6 𝐶5 𝐶1 𝐶3 

𝐶𝑖
𝜎𝑖+

     

𝐶𝑖
𝜎𝑖−

 𝑃1(𝑏) 𝑃3(𝑓(𝑏)) ~𝑃1(𝑏/𝑥1)⋁𝑃2(𝑏/𝑥1)⋁~𝑃3(𝑓(𝑏)/𝑥2) ~𝑃2(𝑏/𝑥3) 

As shown in Tables 2.2 and 2.3, two unit clauses ~𝑃2(𝑥3) and 𝑃3(𝑎) are involved in 

the first SCS-UR deduction, which eliminates three complementary pairs of literals in one 

deduction step and the S-CSC is a unit clause. The final generated S-CSC is an empty clause in 

the second SCS-UR deduction and also two unit-clauses are involved. 

Definition 2.4 In each S-CS deduction step, if it requires that: 1) the input clauses is 

unrestricted and can come from the original clause set in the first deduction step; 2) in addition 

to the first deduction step, the input clauses must contain a clause which is an S-CSC generated 

by the last deduction, then this deduction is called as a LR based on the S-CS rule (SCS-LR). 

Example 2.4 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} be a clause set in first-order logic, where 𝐶1 =

𝑃1(𝑥1) ∨ ~𝑃2(𝑎)  ∨ 𝑃4(𝑥1)，𝐶2 = ~𝑃1(𝑎) ∨ 𝑃4(𝑎)，𝐶3 = 𝑃2(𝑥2)，𝐶4 = 𝑃3(𝑥3) ∨ ~𝑃4(𝑎)，

𝐶5 = ~𝑃3(𝑓(𝑎)) ∨ ~𝑃4(𝑥4) . Here 𝑎  is a constant, 𝑥1 ,  𝑥2 ,  𝑥3 ,  𝑥4  are variables,  𝑓  is a 

function symbol, 𝑃1, 𝑃2, 𝑃3, 𝑃4 are predicate symbols, the process of LR is shown in Fig. 2.4. 

 
Fig. 2.4 The process of LR for Example 2.4 



Corresponding to the LR, the process of SCS-LR deduction for Example 2.4 is shown in 

Tables 2.4 and 2.5: 

Table 2.4 The first SCS-LR deduction for Example 2.4 

 𝐶3 𝐶1 𝐶2 

𝐶𝑖
𝜎𝑖+

(= 𝐶6)  𝑃4(𝑎/𝑥1) 𝑃4(𝑎) 

𝐶𝑖
𝜎𝑖−

 𝑃2(𝑎/𝑥2)  𝑃1(𝑎/𝑥1) ∨ ~𝑃2(𝑎) ~𝑃1(𝑎) 

Table 2.5 The second SCS-LR deduction for Example 2.4 

 𝐶5 𝐶4 𝐶6 

𝐶𝑖
𝜎𝑖+

    

𝐶𝑖
𝜎𝑖−

 ~𝑃3(𝑓(𝑎)) ∨ ~𝑃4(𝑎/𝑥4) ~𝑃4(𝑎) ∨ 𝑃3(𝑓(𝑎)/𝑥3) 𝑃4(𝑎) 

As shown in Tables 2.4 and 2.5, the input clauses are all from the original clause set in the 

first S-CS deduction, and the input clauses of the second S-CS deduction contain an S-CS clause 

𝐶6 which is generated in the first S-CS deduction. 

Definition 2.5 In each S-CS deduction step, if it requires that: 1) clauses in the clause set 

are divided into two types: clauses with only positive literals (called as electrons) and other 

clauses with one or more negative literals (called as nucleuses); 2) the input clauses only 

contains a nucleus; 3) this S-CS deduction finally generates an electron; 4) the generated S-CS 

clauses are discarded in the process of deduction. This deduction is called as a hyper-resolution 

based on S-CS rule (SCS-HR). 

Example 2.5 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} be a clause set in first-order logic, where 𝐶1 =

~𝑃1(𝑥1) ∨ ~𝑃2(𝑎)  ∨ 𝑃4(𝑥1) ， 𝐶2 = 𝑃1(𝑎) ∨ 𝑃4(𝑎) ， 𝐶3 = 𝑃2(𝑥2) ， 𝐶4 = 𝑃3(𝑥3) ， 𝐶5 =

~𝑃3(𝑓(𝑎)) ∨ ~𝑃4(𝑥4). Here 𝑎  is a constant, 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4  are variables, 𝑓  is a function 

symbol, 𝑃1, 𝑃2, 𝑃3, 𝑃4 are predicate symbols, the process of HR is shown in Fig. 2.5. 

 

Fig. 2.5 The process of HR for Example 2.5 



Corresponding to the HR, the process of SCS-HR deduction for Example 2.5 is shown in 

Tables 2.6 and 2.7: 

Table 2.6 The first SCS-HR deduction for Example 2.5 

 𝐶3 𝐶1 𝐶2 

𝐶𝑖
𝜎𝑖+

(= 𝐶6)  𝑃4(𝑎/𝑥1) 𝑃4(𝑎) 

𝐶𝑖
𝜎𝑖−

 𝑃2(𝑎/𝑥2)  ~𝑃1(𝑎/𝑥1) ∨ ~𝑃2(𝑎) 𝑃1(𝑎) 

Table 2.7 The second SCS-HR deduction for Example 2.5 

 𝐶5 𝐶4 𝐶6 

𝐶𝑖
𝜎𝑖+

    

𝐶𝑖
𝜎𝑖−

 ~𝑃3(𝑓(𝑎)) ∨ ~𝑃4(𝑎/𝑥4)  𝑃3(𝑓(𝑎)/𝑥3) 𝑃4(𝑎) 

As shown in Tables 2.6 and 2.7, the input clauses only contains a nucleus, but contains 

two electrons, and finally generate an electron in the first S-CS deduction, and the input clauses 

of the second S-CS deduction only contains a nucleus, but contains two electrons, and finally 

generate an empty clause. 

Following the similar way as Theorem 2.1, we can prove the following theorems: 

Theorem 2.3 (Soundness) Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic. 

𝛷1, 𝛷2, … , 𝛷𝑡 is an SCS-UR based dynamic deduction sequence from S to a clause 𝛷𝑡. If 𝛷𝑡 

is an empty clause, then S is unsatisfiable. 

Theorem 2.4 (Soundness) Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic. 

𝛷1, 𝛷2, … , 𝛷𝑡 is an SCS-LR based dynamic deduction sequence from S to a clause 𝛷𝑡. If 𝛷𝑡 

is an empty clause, then S is unsatisfiable. 

Theorem 2.5 (Soundness) Suppose a clause set 𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑚} in first-order logic. 

𝛷1, 𝛷2, … , 𝛷𝑡 is an SCS-HR based dynamic deduction sequence from S to a clause 𝛷𝑡. If 𝛷𝑡 

is an empty clause, then S is unsatisfiable. 

In summary, the S-CS is a generic inference method and a further development of binary 

resolution principle. Its good characteristics place the important theoretical guarantee for the 

deduction and proof search design and implementation, which are the key contributions of the 

present work, and will be detailed in Sections 4, 5 and 6. 

 



3. Multi-clause Dynamic Deduction Algorithm: Challenges and Solutions 

This established S-CS based automated deduction theory in [21, 23, 28-32] is just a first step 

towards the development of a proof search procedure that could be implemented as an effective 

S-CS based theorem prover. The ability and efficiency of proof search is the most critical part 

of the performance of the first-order logic automated theorem provers [3, 4, 33-36]. Practical 

implementation of the S-CS based automated deduction further hinges on specific algorithms 

and strategies making the “right” single S-CS step including the “suitable selection” or “full 

use” of input clauses to be involved in each deduction process useful for proof search.  

The static binary resolution adopts the saturation algorithm [37-39] to achieve the proof 

search, which is clear and easy to implement. Compared with the binary resolution, the 

proposed S-CS deduction offers more chances or new windows of algorithms and 

implementations development for proof search, this multi-clause synergized S-CS deduction 

however also increases the difficulty of proof searching due to multiple clauses involvement in 

the search process, the strict saturation algorithm is apparently not feasible anymore. To 

establish this kind of S-CS based proof search algorithms or strategies and implementation is 

challenging, but it does not mean it is impossible. That is the motivation and major focus of the 

present work. The main challenges are summarized below along with the possible solutions 

proposed respectively. One specific algorithm is then proposed and implemented (as detailed 

in Sections 5 and 6) as one potential solution and evaluated through the benchmark in Sections 

7 and 8.  

Challenge 1: how to effectively control the number of clauses involved in each multi-

clause dynamic deduction? In principle, due to the multi-clause and dynamic nature, there is no 

restriction given on how many clauses can be selected for each deduction. It may become rather 

difficult and time consuming for the large-scale clause set. It may lead to another question, that 

is, how to effectively control when each deduction will stop based on the number of clauses 

involved? 

Possible solutions: 1) set a threshold for the number of input clauses for each multi-clause 

dynamic deduction, i.e., specifying how many clauses can be involved in each deduction 

process. For example, assume the threshold is 200, if 200 clauses are involved in the S-CS 



dynamic deduction, then this multi-clause dynamic deduction will stop and get the S-CSCs. It 

is a static control method; 2) control the input clauses by setting the constraints of S-CSC, 

including the threshold of the maximum number of literals or the maximum term depth. The 

feasible method is to make the generation of S-CSC a slowly increasing process in terms of the 

number of literals and the maximal term depth. When an S-CSC has reached either of the 

thresholds, this multi-clause dynamic deduction will stop and get the S-CSCs. It is a dynamic 

control method. 

Our further theoretical analysis and practice show that the more input clauses involved in 

each S-CS deduction step the better the inference efficiency. The reason behind is that it can 

separate a more flexible and large standard contradiction from a large number of input clauses. 

Challenge: 2: how to avoid getting stuck in certain proof search when the input clauses 

and their selected order are the same after some S-CS deductions?  

The S-CS dynamic deduction generates an S-CSC by selecting input clauses and then 

separating a standard contradiction with literals from the input clauses. The deduction algorithm 

generally selects the input clause through clause selecting strategy, and the literal is selected by 

literal selecting strategy. Different from the binary resolution using the saturation algorithm, 

the S-CS deduction is controlled dynamically, and it is possible to undergo the repetitive proof 

search, which leads to the S-CS clause which has been generated before.  

Possible solutions: This is a difficult part of the S-CS dynamic deduction algorithm 

implementation, which can be handled in the following ways: 1) in order to avoid getting stuck 

in certain proof search effectively, it is necessary to portray some information about each S-CS 

deduction. In each S-CS deduction step, some information about whether an input clause and 

the involved literals participate in deduction is an acceptable proof search or an unacceptable 

proof search. The S-CS deduction history are recorded by deduction weight of clause and literal. 

Because the deduction weight is changed dynamically in each deduction step, the deduction 

algorithm can select clause and literal according the changed deduction weight; 2) change 

clause selection strategy and literal selection strategy dynamically after a period of the S-CS 

deduction. Feasible practice is that multiple strategies are used one by one in equal time slices 

for the total set time during the problem proving, the previously generated S-CSC used the 

previous strategies can be allowed to use for next dynamic deduction with the next strategy. 



Using different strategies provide different clause selection strategy and literal selection 

methods, which can avoid getting stuck in certain proof search. 

Challenge 3: Intuitively, when there are m numbers of input clauses (m>2), it may takes 

more time to generate an S-CSC than binary resolution which just only two clauses involved, 

this can result in slower proof search speed during a problem proving. In addition, m numbers 

of input clauses participating in deduction only generate one S-CSC, some proof search may be 

lost. Therefore, how to handle this challenge to improve the efficiency of the S-CS dynamic 

deduction? 

Possible solutions: Actually, according to the definition of S-CS rule (Definition 2.1), it 

can be seen that m input clauses participated in deduction, and the previous deduction of m-1 

input clauses also satisfies the requirements of the S-CS rule. In order to improve S-CS 

deduction’s efficiency and prevent possible proof search lost, feasible practice is that the 

generated S-CSCs can be reserved in the process of S-CS dynamic deduction, that is to say, the 

S-CS deduction of m input clauses, which can generate a S-CSC set by separating different 

contradictions, including the S-CSCs such as ( C2
𝑠𝜎(𝐶1, 𝐶2) ), ( C3

𝑠𝜎(𝐶1, 𝐶2, 𝐶3) ),…, 

(C𝑚−1
𝑠𝜎 (𝐶1, 𝐶2, … , 𝐶𝑚−1)). 

Challenge 4: The state of the art first-order logic automated theorem provers adopts the 

saturation method, and the proof search is very clear. The S-CS rule is a multi-clause deduction 

method, so how to plan the proof search according to certain rules based on the S-CS dynamic 

deduction? 

Possible solutions: This is another major challenge for the S-CS dynamic deduction. In 

general, it is difficult to find a certain deduction scheme for multi-clause. The difficulty is 

reflected in how to effectively perform the next deduction after the completion of an S-CS 

dynamic deduction. Feasible practice is that that S-CS deduction can be an iteration deduction 

method based on the first input clause (called as iteration deduction), and the input clauses and 

literals used to construct standard contradictions can be selected by deduction weight. As the 

clause set continues to increase, when all the selectable clauses are completed the iteration 

deduction as the first input clause, the completed clauses can be restarted iteration deduction as 

the first input clause under a new clause set (called as sheave deduction).  



The above summary of challenges and possible solutions place a good motivation and 

basis for the following proposed strategies and algorithms.  

4. Heuristic Strategies 

In the process of theorem proving, heuristic strategies are used frequently to perform optimal 

proof search, including some machine learning methods [40-43], which are useful for finding 

refutation, thus improve the performance of a prover. In the last decade, most state-of-the art 

provers have developed and implemented mature heuristic strategies [19, 20, 39, 44-46], and 

achieved good results.  

In general, different inference mechanisms have large differences in the way of proof 

search, so their supporting heuristic strategies are also different. As the first multi-clause 

dynamic deduction method, the heuristic strategies for the S-CS dynamic deduction are quite 

different from the methods utilized in those famous provers. In order to implement a multi-

clause dynamic deduction algorithm effectively, some basic heuristic strategies according to 

the different selection angle of the input clauses and literals are utilized to construct a standard 

contradiction. This section introduces these basic clause/literal selection strategies along with 

the strategies for setting some global thresholds, which are closely related to the multi-clause 

dynamic deduction algorithm introduced in Section 6. 

4.1 Clause selection strategy 

The heuristic control of S-CS dynamic deduction is based on various measures of each literal 

and clause. Clause selection strategy refers to the method of selecting an input clause to perform 

S-CS dynamic deduction, and it is implemented based on the combined uses of several clause 

attribute measures. Those clause attribute measures mainly include: 

(1) Acceptable deduction (AD) weight of a clause [22, 32]. This measure is based on two 

concepts: deduction weight of a clause and acceptable deduction. The former represents the 

number of times a clause has been used in an S-CS dynamic deduction during a theorem proving. 

The latter means an S-CS dynamic deduction that generates an S-CSC which is either not 

redundant or satisfies the set global threshold (e.g., the global threshold of the number of literals 

or the maximum term depth etc.) (in other words, is acceptable). Correspondingly, this 

generated S-CSC is called an acceptable clause. Therefore, AD weight of a clause is the number 



of times that a clause has participated in an acceptable S-CS dynamic deduction during a 

theorem proving. A clause used in an acceptable deduction once, its AD weight is increased by 

1. 

Accordingly, a clause with the smaller AD weight is selected preferentially to perform the 

S-CS dynamic deduction, because this clause may be seldom selected or most of the generated 

S-CSCs due to this clause’s involvement are rarely acceptable, therefore, excessive frequent 

use of certain clauses is avoided. To avoid falling into the local optimum, the AD weight of a 

clause is updated dynamically when the set global threshold is reached. The AD weight of a 

clause Ci is updated as follows: 

ADW(Ci)K+1= ADW(Ci)K/Avg(ADW(C1)K,…, ADW(Cm)K), i=1, 2,…, m; K=0, 1, ….    (1) 

In Eq. (1), ADW stands for the AD weight, Avg means average, and K counts the times of 

the AD weight of a clause being updated. 

(2) Unacceptable deduction (UD) weight of a clause [22, 32]. UD weight is the number of 

times that a clause has participated in an unacceptable S-CS dynamic deduction during a 

theorem proving. An unacceptable S-CS dynamic deduction means an S-CS dynamic deduction 

that generates an S-CSC which is either redundant or does not satisfy the set global threshold 

(i.e., unacceptable). Correspondingly, this generated S-CSC is called an unacceptable clause. A 

clause participated in an unacceptable deduction once, its UD weight is increased by 1. 

Accordingly, a clause with the smaller UD weight is selected preferentially to perform the 

S-CS dynamic deduction, because this clause may be seldom selected or most of the generated 

S-CSCs due to this clause’s involvement are acceptable, therefore excessive frequent use of 

certain clauses is avoided. To avoid falling into the local optimum, the UD weight of a clause 

is updated dynamically when the set global threshold is reached. The UD weight of a clause Ci 

is updated as follows: 

UDW(Ci)K+1= UDW(Ci)K/Avg(UDW(C1)K,…, UDW(Cm)K), i=1, 2,…, m; K=0, 1, …;    (2) 

In Eq. (2), UDW stands for unacceptable deduction weight, Avg means average, and K 

counts the times of the UD weight of a clause being updated. 

(3) Clause complexity (CC). The unified substitution may cause the structure of a clause 

more complicated, especially for the multi-clause deduction because the variables in an input 



clause can be substituted many times in the deduction process. This may lead to rather 

complicated structure for the generated clause and affect the deduction efficiency. Because only 

the function symbols in a clause have different depths, so the complexity of a clause is measured 

by the complexity of function symbols included, which is measured by the depth of function 

symbols as follows: 

CC(Ci)=Σ(FO(Tf)), i=1, 2,…, m;         (3)  

FO(Tf)=Dep(Tf)+Σ(FO(SubTf)).          (4)  

In Eqs. (3) and (4), CC stands for clause complexity, Tf means the terms included in the 

clause Ci, FO stands for the function symbol complexity, Dep stands for the depth of function 

symbol, SubTf is a sub-function symbol of Tf. 

Example 2.6 Let C1=P(f(f(f(a))))+P(b). Here a and b are constants, f is a function symbol. 

According to Eqs. (3) and (4), we have:  

Dep(f(f(f(a))))=3, Dep(f(f(a)))=2, Dep(f(a))=1,  

∑(FO(f(f(a))))=Dep(f(f(a)))+Σ(FO(f(a)))=2+Dep(f(a))=3,  

CC(C1)=Dep(f(f(f(a))))+Σ(FO(f(f(a))))=6. 

(4) The number of literals. The number of literals included in a clause is an important 

indicator of clause evaluation. The resolvent of binary resolution usually contains many literals, 

but the S-CS rule can eliminate multiple literals by separating a standard contradiction (a literal 

set), so the generated S-CSC usually contains less literals. The number of literals in an input 

clause can reflect the number of literals in the generated S-CSC to certain extent [22], which is 

used to control the number of literals in an S-CSC, thus improving the deduction efficiency.  

4.2 Literal selection strategy 

Literal selection strategy refers to the method of selecting a literal from the input clause to 

construct a standard contradiction, and it is implemented based on the combined uses of several 

literal attribute measures. Those literal attribute measures mainly include: 

(1) Deduction weight of a literal. Deduction weight of a literal is the number of times that a 

literal has been used in the S-CS dynamic deduction for constructing standard contradiction, 

and the generated S-CSC is unacceptable. It effectively controls the order in which a literal is 

selected in an involved clause for deduction. In the process of the S-CS dynamic deduction, if 



a literal is used to construct a standard contradiction once, and the generated S-CSC is 

unacceptable, then the deduction weight of this literal is increased by 1.  

A literal with the smaller deduction weight is selected preferentially to construct standard 

contradiction, because this literal may be seldom selected or most of the generated S-CSCs due 

to this literal’s involvement are acceptable, and excessive frequent use of certain literals is 

avoided effectively. To avoid falling into the local optimum, deduction weight of a literal is 

updated dynamically when the set global threshold is reached. The deduction weight of a literal 

Pi from clause C is updated as follows: 

         DW(Pi)K+1= DW(Pi)K/Avg(DW(P1)K,…, DW(Pm)K), i=1, 2,…, m; K=0, 1, ….    (5) 

In Eq. (5), DW stands for deduction weight, Avg means average, and K counts the times of 

the deduction weight of a literal being updated. 

(2) Literal complexity. We describe literal complexity by its function symbols included, and 

it can be measured as follows: 

         LC(Pi)=Σ(FO(Tf)), i=1, 2,…, m.           (6)  

In Eq. (6), LC stands for literal complexity, FO stands for function symbol complexity (its 

computing method is the same as Eq. (3)), i is the serial literal number of a clause, m is the 

number of literals in the clause. 

(3) The number of variables. Because the S-CS rule is a multi-clause deduction, and is a 

process of constructing standard contradictions dynamically, the literals that have participated 

in the construction of a standard contradiction can continue to construct the subsequent new 

standard contradictions. In general, in the process of the S-CS dynamic deduction, literals with 

more variables are more flexible than the literals which only contains constants or fewer 

variables.  

(4) Literal weight. Literal weight is used to characterize the statistics of symbols in a literal, 

it is the number of symbols (predicates, functions, constants, and variable occurrences) in a 

literal (the initial value of literal weight is 1). 

4.3 Global threshold setting strategy 



Global thresholds are the parameters required in the design of the S-CS dynamic deduction 

algorithm; their values are set in advance through the global thresholds set strategy. The global 

thresholds used are listed as follows: 

(1) Global threshold of AD weight of a clause. According to our empirical experience via 

experiments, the default setting is 500.  

(2) Global threshold of UD weight of a clause. According to our empirical experience, the 

default setting is 1000. 

(3) Global threshold of deduction weight of a literal. According to our empirical experience, 

the default setting is 1000. 

(4) Global threshold of the maximum number of literals in a generated S-CSC. According 

to our empirical experience, the default setting is 6. If the number of literals in the generated S-

CSC exceeds this threshold, this S-CS dynamic deduction is regarded as an unacceptable 

deduction. 

(5) Global threshold of the maximum literal term depth in a generated S-CSC (literal term 

depth is the maximum depth of function nesting in a term in a literal). According to our 

empirical experience, the default setting is 15. If the maximum term depth of the generated S-

CSC exceeds this threshold, this S-CS dynamic deduction is regarded as an unacceptable 

deduction. 

(6) Global threshold of iteration deduction times. According to our empirical experience, 

the default setting is 500. 

(7) Global threshold of sheave deduction times. According to our empirical experience, the 

default setting is 1000. 

(8) Global threshold of the maximum number of input clauses in an S-CS deduction. 

According to our empirical experience, the default setting is 2000. 

(9) Global threshold of the runtime for each problem proving. According to the standard 

runtime from the TSTP (Thousands of Solutions from Theorem Provers), the default setting is 

300 seconds. 

(10) Global threshold of the remaining memory for each problem proving. According to 

our empirical experience, the default setting is 200 megabytes. 



In order to solve different problems effectively, an alternative method is used to set some 

relevant thresholds according to the attribute values of the original clause set parsed in the pre-

processing stage, such as setting the S-CSC thresholds of the maximum number of literals and 

the maximum literal term depth.  

5. S-CS Dynamic Deduction Framework for Proof Search 

In general, the first-order logic theorem proving is considered to be an infinite search space 

problem, and it is impossible in general to perform all possible proof search within a limited 

runtime. In order to improve the ability of the first-order logic automated theorem prover, it is 

important to perform proof search effectively. Saturation method can plan proof search 

effectively for the saturation-based provers, which use binary resolution, but it does not suit for 

multi-clause dynamic deduction because it is rather complicated to handle multi-clause 

synergize deduction. S-CS dynamic deduction framework for proof search is proposed in this 

section which is used to describe the scheme and guideline on how to select different input 

clauses to apply the S-CS rule iteratively, and generate different S-CSCs during the process of 

theorem proving. The S-CS dynamic deduction framework for proof search considers the 

comprehensiveness and efficiency, and performs proof search in the following ways: 

(1) Iteration deduction. It refers to the deduction process in which an appointed input clause 

(denoted as C) repeats M (a global threshold) times as the first input clause of the S-CS dynamic 

deduction algorithm (i.e., SDDA introduced in Section 6). This is called M-iteration deduction 

based on the appointed input clause C, so that the input clause C can be used to perform the S-

CS dynamic deduction and proof search as preferred. The S-CS dynamic deduction plans proof 

search of iteration deduction based on an appointed input clause in this way: in order to give 

full play to the diversity of an S-CS dynamic deduction and generate more S-CSCs, each 

iteration deduction based on the first input clause also includes the proof search based on 

another appointed input clause in the selected input clauses, such as selecting the second input 

clause to continue to perform iteration deduction. Therefore, an S-CS dynamic deduction can 

perform more proof search and improve deduction efficiency effectively. 



In addition, in order to reduce repetitive proof search, when iteration deduction based on an 

appointed input clause are performed, if an acceptable S-CSC cannot be obtained, this iteration 

deduction will stop, and a new iteration deduction base on a next appointed input clause starts. 

(2) Sheave deduction. After an S-CS iteration deduction, the whole clause set is changed, 

and the proof search is also changed. In order to make the proof search more comprehensive, 

when all input clauses in the clause set have completed M times of iteration deduction, it is 

necessary to restart a new S-CS iteration deduction based on those completed and appointed 

input clauses and continue to find refutation under the new clause set (called a sheave 

deduction). The restarting time is set as N (a global threshold). By this way, the iteration 

deduction based on an appointed input clause restarts time after time under the new clause set 

to ensure the comprehensiveness of proof search. 

Next, we demonstrate the S-CS dynamic deduction framework including the above two 

deduction schemes through an example below. 

Example 2.7 Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} be a clause set in first-order logic, where 𝐶1 =

~𝑃1(𝑥1) ∨ ~𝑃2(𝑎)  ∨ 𝑃4(𝑥1)，𝐶2 = 𝑃1(𝑓(𝑎)) ∨ 𝑃4(𝑎)，𝐶3 = 𝑃2(𝑥2)，𝐶4 = 𝑃3(𝑥3)，𝐶5 =

~𝑃3(𝑓(𝑏)) ∨ ~𝑃4(𝑥4) ， 𝐶6 = 𝑃1(𝑥1) ∨ ~𝑃2(𝑎)  ∨ 𝑃3(𝑐) . Here 𝑎, 𝑏, 𝑐  are constants, 

𝑥1, 𝑥2, 𝑥3, 𝑥4 are variables, 𝑓 is a function symbol, 𝑃1, 𝑃2, 𝑃3, 𝑃4 are predicate symbols. 

Assume the times of Iteration deduction is 3. Now using 𝐶3 as the first input clause, we 

have the variables substitutions ( 𝑎/𝑥1, 𝑎/𝑥2, 𝑓(𝑏)/𝑥3, 𝑎/𝑥4 ) and obtain an S-CSC 𝐶7 =

 C5
𝑠𝜎(𝐶3, 𝐶1, 𝐶2, 𝐶4, 𝐶5) = ~𝑃1(𝑎). 

Continue to use 𝐶3  as the first input clause, we have the variables substitutions 

( 𝑓(𝑎)/𝑥1, 𝑎/𝑥2, 𝑓(𝑏)/𝑥3, 𝑎/𝑥4 ) and obtain an S-CSC 𝐶8 =  C
5
𝑠𝜎(𝐶3, 𝐶1, 𝐶2, 𝐶4, 𝐶5) =

𝑃4(𝑓(𝑎)). 

Continue to use 𝐶3  as the first input clause, we have the variables substitutions 

(𝑎/𝑥1, 𝑎/𝑥2) and obtain an S-CSC 𝐶9 =  C
4
𝑠𝜎(𝐶3, 𝐶6, 𝐶7, 𝐶8) = 𝑃3(𝑐). 

The Iteration deduction using 𝐶3 now ended.  

Next using 𝐶4  as the first input clause, we have the variables substitutions 

(𝑓(𝑏)/𝑥3, 𝑓(𝑎)/𝑥4) and obtain an S-CSC 𝐶10 =  C
4
𝑠𝜎(𝐶4, 𝐶5, 𝐶7, 𝐶8) = ∅. 



If the deduction does not generate empty clause, then continue to use 𝐶4 as the first input 

clause to apply the S-CS rule and generate a new S-CSC. After 3 times of Iteration deduction 

using 𝐶4, another clause in clause set is selected as the first input clause for new Iteration 

deduction. When all clauses in clause set are selected for Iteration deduction, it is called a 

Sheave deduction. Repeat the above steps to start a new Iteration deduction. 

In contrast to saturation method for planning proof search by binary resolution, S-CS 

dynamic deduction uses iteration deduction and sheave deduction to plan its deduction proof 

search. In order to balance the inference ability and efficiency, the deduction selects an optimal 

input clause by clause selection strategy to perform iteration deduction and selects an optimal 

literal by literal selection strategy to be used in each S-CS deduction step, which is able to 

improve proof search efficiency. 

6. A Novel S-CS Dynamic Deduction Algorithm  

Based on the definition of the S-CS rule, the established S-CS dynamic deduction theory, and 

heuristic strategies proposed in Section 4, a novel and effective S-CS Dynamic Deduction 

Algorithm, in short SDDA, is designed and detailed in this section. This algorithm can make 

full use of input clauses, the S-CSCs are generated with a slowly increasing process in terms of 

the number of literals and the maximum literal term depth for generating unit S-CSCs 

effectively.  

The basic flow of the SDDA firstly selects an input clause through clause selection strategy 

and fixes this first input clause for iteration deduction. Literal selection strategy selects a literal 

in the input clause and searches for a clause list in the whole clause set, where the clauses in 

the list should contain some literals that can construct standard contradictions along with the 

selected literal. Iteratively traverse this clause list as the new input clause, perform the S-CS 

rule and generate an S-CSC. When the generated S-CSC is an unacceptable clause, try to 

construct another standard contradiction with the selected input clauses, until an acceptable S-

CSC is generated. Make full use of the current input clause (if it is completed, select another 

input clause), the deduction is repeated until an exit condition is satisfied, so the S-CS dynamic 

deduction is performed one time, and finally a S-CSC set is obtained.  

In more specific details, SDDA is described in the following steps: 



Step 1: If it is an iteration deduction, select the clause which is the first input clause in last 

S-CS deduction; otherwise, select a clause according to clause selection strategy, and mark it 

as the first labeled input clause C for iteration deduction. 

Step 2: According to literal selection strategy, select a literal in the input clause to search 

a clause list (called Q) from the whole clause set in which can construct a standard contradiction. 

Reorder the clause list Q according to clause combined sorting method of acceptable deduction 

weight from small to large, unacceptable deduction weight from small to large, and the number 

of literals. 

Step 3: Sequentially traverse the clause in Q and search an optimal input clause. The search 

process is summarized: sequentially traverse clause Ci in Q, apply the S-CS rule with the input 

clauses, separate a standard contradiction (there are many different forms of contradictions 

which need to be tried one by one), then generate an S-CSC. If the S-CSC is an empty clause, 

exit the traversal, and go to Step 7. Record the number of literals and the maximum term depth 

of the S-CSC. When the traversal is complete, an optimal input clause is obtained. Otherwise, 

if the number of literals in S-CSC exceeds the global threshold, mark the next selected clause 

as the new labeled input clause C, perform backtracking operations and go to Step 2. Here again, 

the searched optimal clauses that have tried different contradiction construction will no longer 

be searched. 

Step 4: The S-CSC is checked whether it is an acceptable clause. Considering the following 

two conditions: 

1) If an S-CSC is a tautology, then it is an unacceptable clause. 

2) If an S-CSC is a redundant clause by forward simplification, then it is an unacceptable 

clause. 

If one of the above two conditions is satisfied, backtracking operations is performed, and 

go to Step 3. 

Backtracking operations are described as follows: 

1) Clear the record of proof search by the current input clause participating in the deduction 

and remove literals in the S-CSC and the constructed standard contradiction, which come from 

the current input clause. 



2) Clear substitutions which are caused by the current input clause participating in the 

deduction. 

3) Unacceptable deduction weight of the current input clause is increased by 1. 

4) Deduction weight of the literals in the current input clause which are used for 

constructing a standard contradiction is increased by 1. 

Step 5: If the generated S-CSC is an acceptable clause, the acceptable deduction weight of 

the current input clause is increased by 1. Add this generated S-CSC into a temporary clause 

set (the initial set is empty, called R). 

Step 6: The algorithm exit conditions is checked: if it is satisfied, go to Step 7. Make full 

use of the current input clause Ci according to whether Ci contains substitutions. If yes, 

reconstruct clause Ci, go to Step 3; otherwise, go to Step 3. 

Step 7: Exit this S-CS dynamic deduction. The exit conditions include: 

1) If the S-CSC is an empty clause, then the unsatisfiable conclusion is obtained. 

2) The number of input clauses has exceeded the set global threshold. 

3) The clause in the whole clause set has used up. 

4) The runtime has reached the set global threshold. 

5) The remaining memory has reached the set global threshold. 

6) If the generated S-CSC set R does not contain an empty clause, an internal simplification 

is performed on R, then apply forward simplification on R using the clause in the whole clause 

set, and apply backward simplification on the whole clause set using the clause in R, then each 

S-CS clause in R is added in the whole clause set.  

This algorithm will be executed iteratively following the deduction framework for proof as 

introduced in Section 5 until the refutation found, or the set thresholds of runtime and the 

remaining memory are reached. 

 

The pseudo-code for SDDA is described below.  

 



SDDA: S-CS Dynamic Deduction Algorithm 

Input: a given clause set (S); selected clauses are denoted as g, c; a selected literal is denoted as p; 

two empty clause sets are denoted as  𝐷, 𝑄. 

Output: a generated S-CS clause set 𝑅. 

1: g = selectFirstClause(S) 

2: D = 𝐷 ∪ g 

3: p = selectLiteral(g) 

4: Q = selectCandidateClauseSet(p,S) 

5: c = TraversalClauseSet(Q) 

6: While c ≠ null begin 

7:   r = extendedSplitContradiction(c, D) 

8:   if r ==  

9:      return “Unsat” 

10:  else if checkInvalid(r, S) 

11:      Backtracking(c) 

12:      goto 5 

13:  else 

14:      R = 𝑅 ∪ r 

15:      D = 𝐷 ∪ c 

16:      if checkExitConditions() 

17:         goto 25 

18:      if checkFullUse(c) 

19:         c = reconstructClause(c) 

20:         goto 5 

21:      else 

22:         goto 5 

23:   end 

24: end  

25: innerSimplification(R) 

26: foreach c ∈ 𝑅 

27:  backwardSimplification(S, c) 

28: S = 𝑆 ∪ R 

The functions in the above pseudo-code are explained as follows: 

selectFirstClause(S): Select a clause as the first input clause in S-CS deduction.  

selectLiteral(g): Select a literal in the clause g according to literal selection strategy, which 

is used to construct contradictions. 

selectCandidateClauseSet(p, S): Select a clause set in the clause set S, which at least 

contains a unified complementary literal with the literal p. 

TraversalClauseSet(Q): Sequentially traverse the clause set Q and return a clause 

according to the given search conditions. 



extendedSplitContradiction(c, D): Apply the S-CS rule with the current input clause c and 

the input clauses D that has participated in the deduction. 

checkInvalid(r, S): Check whether the generated S-CS clause r is an acceptable clause 

under the clause set S. 

Backtracking(c): It is used to return to the last S-CS deduction step. 

checkExitConditions(): Check whether one of the deduction exit conditions is satisfied, and 

the exit conditions are described in the algorithm description. 

checkFullUse(c): Check whether the clause C needs to be fully used, and the condition of 

full use are described in the algorithm description. 

reconstructClause(c): reconstruct a new clause which does not contain any substitutions 

according to the clause c. 

innerSimplification(R): Apply forward simplification in the S-CS clause set R. 

backwardSimplification(S, c): Check whether the clauses in the clause set S are redundant 

clauses using the clause c. 

SDDA implements a sequence of steps, aiming at finding a proof of a first-order problem 

in the TPTP FOF syntax [47]. 

1) E is used to convert the problem to clause normal form (in the TPTP CNF syntax). 

2) The CNF is parsed and stored in a binary-tree based structure, with sharing of nodes for 

variables and constants. 

3) A strategy is set, with control parameter values that are either specified by the user, or 

automatically computed from the input clauses. The strategy parameterizes the clause selection 

and literal selection, as well as those global thresholds set, described in Section 4. 

4) The deduction framework for proof search described in Section 5 is invoked with the 

strategy and the SDDA algorithm above, to search for a refutation. 

5) If a refutation is found, a proof is output. Proof checking is available by verifying the S-

CS inference using the (trusted) Prover9 system [48]. 

SDDA has an option to do strategy scheduling, using multiple strategies. In this case each 

strategy is given an allocated CPU time limit. The clause storage (clause set) is retained 

throughout, so that clauses inferred using one strategy are passed on when SDDA switches to 

the next strategy. SDDA is implemented mainly in C++. 



7. Combination of SDDA with Leading First-Order Theorem Provers 

The leading first-order automated theorem provers Vampire [3] and E [4] have won the first 

and the second places of the CADE ATP System Competition (CASC) respectively for several 

years since 2002 [49]. It is worth noting that although the proposed S-CS-based SDDA 

algorithm offers a new window of algorithms and implementations development for improving 

proof search, has not yet included some important rules or strategies as those leading provers, 

such as superposition (to handle equality effectively), many effective heuristic strategies, as 

well as many pre-processing or simplification procedures etc. So, it does not make sense or 

even impossible to compete with those two leading provers. Now that those two provers have 

been very well developed, therefore the SDDA evaluation in terms of its effectiveness, 

applicability and generality, is focused on applying SDDA on top of the existing architectures 

of ATP systems to see if it can enhance further their performances. Therefore, SDDA is applied 

to Vampire 4.1 1 (released in the CASC-26) and leads to a combined prover called SDDA_V; 

SDDA is also applied to E 2.3 2 and leads to a combined prover called SDDA_E.  

SDDA_V (SDDA_E) runs SDDA and Vampire (E) first sequentially, and then in a 

cooperative way. The combination scheme is summarized below: SDDA_V (SDDA_E) first 

tries to solve the given problem with Vampire (E), and if unsuccessful it tries with SDDA. If 

neither solves the problem, then selected clauses inferred by SDDA are combined with the 

original problem's clauses to form a new problem for Vampire (E). Experiential experiences 

show that the initial run of Vampire (E) solves many problems, and the subsequent run of 

SDDA solves some problems that cannot be solved by Vampire (E). However, the unique 

strength of SDDA_V (SDDA_E) in the third step, as the inferred clauses passed from SDDA 

allow Vampire (E) to solve some further problems that neither SDDA nor Vampire (E) can 

solve alone. 

8. Experimental and Performance Analysis 

8.1 Experimental setup 

 
1 http:/tptp.cs.miami.edu/CASC/ 
2 https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html 



For a comprehensive evaluation purpose, SDDA_V (the given version number is 0.1) and 

SDDA_E (the given version number is 0.1) are tested on the CADE ATP competition CASC-

J9 FOF division problems respectively. We also test SDDA_V and SDDA_E on some hard 

problems with rating of 1 (no current prover can solve them according to the latest benchmark 

database TSTP solutions library 3 ) by setting strategies interactively. The experiments are 

carried on a PC with 3.6GHz Inter(R) Core (TM) i7-4790 processor and 16GB memory, OS 

Ubuntu15.04 64-bit, with the standard CPU time limit of 300s. In order to check the correctness 

of proof procedure by SDDA, the well-known ATP Prover9 [48] is used to check each 

deduction step, which is useful for finding refutation. For experimental comparisons, Vampire 

4.1 and E 2.3 are tested under the same hardware environment. 

8.2 Experiment results overview and analysis 

8.2.1 Performance analysis of SDDA_V 0.1 for CASC-J9 FOF division problems 

In order to evaluate if SDDA is able to enhance the performance of Vampire, SDDA_V 0.1 and 

Vampire 4.1 are tested on the CASC-J9 FOF division problems respectively in the same 

hardware environment. Fig 8.1 shows the comparison on solved problems by SDDA_V 0.1 and 

Vampire 4.1.  
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Fig. 8.1 Comparison on solved problems by SDDA_V 0.1 and Vampire 4.1 

From Fig. 8.1, SDDA_V 0.1 has solved 435 problems with 8 more than Vampire 4.1 which 

has solved 427 problems. The average time spent for 427 problems by Vampire 4.1 is 18.9 

seconds, and 21.35 seconds spent for 435 problems by SDDA_V 0.1. In particular, the average 

 
3 http://www.tptp.org/TSTP/ 



time spent for 427 problems by SDDA_V0.1 is 17.02 seconds, 1.88 seconds less than that of 

Vampire 4.1. Therefore, SDDA_V0.1 has better time efficiency than Vampire 4.1 when solving 

the same number of problems. 

According to the CPU time spent, the number of solved problems by SDDA_V 0.1 and 

Vampire 4.1 are almost within the half of standard runtime (300 seconds). From the 150 seconds 

point onwards, SDDA_V 0.1 outperforms Vampire 4.1. Within 200 seconds, SDDA_V 0.1 has 

solved 422 problems with 8 more than Vampire 4.1. Within 250 seconds, SDDA_V 0.1 has 

solved 430 problems with 13 more than Vampire 4.1. Within 300 seconds, SDDA_V 0.1 has 

solved 435 problems with 8 more than Vampire 4.1. Experimental results show that SDDA_V 

0.1 outperformed Vampire 4.1 in terms of the ability and time efficiency. 

In addition, for those 73 problems unsolved by Vampire 4.1, SDDA_V 0.1 solved 14 

problems accounting for 19.2% of the total, with the average CPU time 223.8 seconds. Table 

8.3 lists those 14 problems solved by SDDA_V 0.1 but not by Vampire 4.1. 1 of 14 problems 

were solved by SDDA alone, and 13 solved by Vampire 4.1 with clauses added from the SDDA. 

For those 14 solved problems, there are 5 problems with rating greater than 0.9; 10 problems 

with rating greater than 0.8, accounting for 35.7.6% and 71.4% of the total (listed in Table 8.1) 

respectively. The average TPTP difficulty rating of these problems is 0.84.  

Table 8.1 List of problems solved by SDDA_V 0.1 but not by Vampire 4.1 

Theorem 

Name 
Rating 

Number of 

formulae  

Maximum 

formula depth 

Number of 

variables 

Maximum  

term depth 

CPU time 

(seconds) 

COM132+1 0.75 67 23 362 5 248.61 

GEO324+1 0.94 181 46 816 3 244.16 

GRA009+1 0.72 18 13 71 3 199.64 

GRA009+2 0.69 18 13 71 3 190.77 

GRP746+1 0.62 9 6 16 4 254.33 

LCL468+1 0.94 43 6 65 5 198.53 

LCL474+1 0.94 43 6 65 5 199.32 

LCL552+1 0.84 77 6 110 5 253.68 

LCL553+1 0.84 77 6 110 5 259.15 

LCL558+1 0.88 77 6 110 5 251.91 

LCL680+1.005 0.86 3 104 187 1 235.25 

NUN056+1 0.95 19 13 62 1 191.92 

SWW264+1 0.97 1288 13 2686 12 173.50 

SWW384+1 0.81 5250 22 16634 19 232.5 



Specially, from Table 8.1, those solved problems with high rating mostly contain a large 

maximum formulae depth or a large number of literals (e.g., SWW264+1 and SWW384+1). 

Experimental results show that SDDA_V 0.1 indeed enhances the performance of Vampire 4.1 

alone, it can solve some hard problems which cannot be solved by Vampire 4.1, and multi-

clause dynamic deduction can eliminate more literals, fully use the input clauses contains lots 

of variables during the deduction process and has the advantage of dealing with clauses with a 

large number of literals. 

8.2.2 Performance analysis of SDDA_E 0.1 for CASC-J9 FOF division problems 

In order to further evaluate if SDDA is able to enhance the performance of E, SDDA_E 0.1 and 

E 2.3 are also test on the CASC-J9 FOF division problems respectively in the same hardware 

environment. Fig. 8.2 shows the comparison on solved problems by SDDA_E 0.1 and E 2.3.  
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Fig. 8.2 Comparison on solved problems by SDDA_E0.1 and E 2.3 

From Fig. 8.2, SDDA_E 0.1 has solved 369 problems with 7 more than E 2.3 which has 

solved 362 problems. The average time spent for the 362 solved problems by E 2.3 is 20.14 

seconds, and 22.54 seconds spent for the 369 solved problems by SDDA_E 0.1. In particular, 

the average time spent for 362 problems solved by SDDA_E 0.1 is 17.65 seconds, 2.49 seconds 

less than that of E 2.3. Therefore, SDDA_E 0.1 also has better time efficiency than E 2.3 when 

solving the same number of problems. 

According to the CPU spent time, the number of solved problems by SDDA_E 0.1 and E 

2.3 are almost within 260 seconds. From the 260 seconds point onwards, the performance of 



SDDA_E 0.1 outperforms E 2.3. Within 270 seconds, SDDA_E 0.1 has solved 364 problems 

with 2 more than E 2.3. Within 280 seconds, SDDA_E 0.1 has solved 367 problems with 5 

more than E 2.3. Within 300 seconds, SDDA_E 0.1 has solved 369 problems with 7 more than 

E 2.3. Experimental results show that SDDA_E 0.1 outperformed E 2.3 in terms of the ability 

and time efficiency. 

In addition, for those 138 problems unsolved by E 2.3, SDDA_E 0.1 solved 14 problems 

accounting for 10.1% of the total, with the average CPU time 228.73 seconds. Table 8.2 lists 

those 14 problems solved by SDDA_E 0.1 but not by E 2.3. 7 of 14 problems were solved by 

SDDA alone, and 7 solved by E 2.3 with clauses added from the SDDA. For those 14 solved 

problems, there are 2 problems with the rating greater than 0.9, 11 problems with rating greater 

than 0.8, accounting for 14.3% and 78.6% of the total (listed in Table 8.2) respectively. The 

average TPTP difficulty rating of these problems is 0.83. SDDA_E 0.1 solved one problem, 

GEO506+1, that was not solved by any other system in CASC-J9. The clauses in these problems 

usually contain many literals, which SDDA is able to deal with effectively with the S-CS 

inference rule, inferring new clauses with fewer literals. Experimental results show that 

SDDA_E 0.1 also can solve some hard problems which cannot be solved by E 2.3. 

Table 8.2 List of problems solved by SDDA_E0.1 but not by E 2.3 

Theorem 

Name 
Rating 

Number of 

formulae  

Maximum 

formula depth 

Number of 

variables 

Maximum  

term depth 

CPU time 

(seconds) 

AGT018+1 0.69 556 8 71 5 206.37 

AGT022+1 0.81 556 8 72 5 286.61 

AGT022+2 0.72 923 8 72 5 274.12 

BOO109+1 0.81 3 6 9 6 226.81 

GEO506+1 0.91 143 22 564 3 280.01 

GEO511+1 0.84 162 22 650 3 188.1 

LCL466+1 0.91 43 6 65 5 262.03 

SWB016+1 0.72 559 27 973 2 193 

SWB022+1 0.84 560 27 981 2 249.15 

SWB027+1 0.88 560 27 976 2 176.3 

SWB082+1 0.88 560 27 973 2 193.39 

SWB094+1 0.88 560 27 973 2 193.42 

SWB098+1 0.84 560 27 973 2 194.50 

SWW189+1 0.88 1150 14 3058 9 278.39 

 



8.2.3 Performance analysis of SDDA_V and SDDA_E for hard problems with rating of 1 

In this section, the ability of SDDA_V and SDDA_E is further evaluated on the problems with 

rating of 1 within FOF division from TPTP. Table 8.3 lists the total 40 problems with rating of 

1 solved by SDDA_V and SDDA_E, 27 of which by SDDA_V and 13 of which by SDDA_E, 

and the rating of these problems are acquired from TSTP by the time of this paper submission.  

From Table 8.3, the average CPU time for each problem is 218.9 seconds. It is rather 

promising performance considering the number of problem and the average time spent because 

the problems with rating of 1 are the most difficult, that means, no current state-of-the-art ATP 

can solve them based on the claim from the latest benchmark database TPTP. That also means 

the leading provers Vampire and E cannot solve them by themselves, it is indeed the SDDA 

plays the crucial role in the combined SDDA_V and SDDA_E in solving those problems.  

Table 8.3 The list of 40 problems with rating of 1 solved by SDDA_V and SDDA_E 

The above comparison analysis shows that SDDA_V (SDDA_E) is able to effectively 

improve Vampire (E) in terms of capability and time efficiency, and the S-CS dynamic 

No Problem category Time(s) Prover No Problem category Time(s) Prover 

1 ANA005-4 Rating=1 231.7 SDDA_V 21 NUM522+1 Rating=1 292.2 SDDA_V 

2 GEO508+1 Rating=1 260.5 SDDA_E 22 NUM522+3 Rating=1 295.3 SDDA_V 

3 GEO516+1 Rating=1 293.6 SDDA_V 23 NUM553+3 Rating=1 288.8 SDDA_V 

4 GEO326+1 Rating=1 250.2 SDDA_V 24 SET133-6 Rating=1 65 SDDA_V 

5 KLE165+1 Rating=1 287.8 SDDA_E 25 SET177-6 Rating=1 192.4 SDDA_E 

6 LAT077-1 Rating=1 272.5 SDDA_E 26 SET180-6 Rating=1 122 SDDA_V 

7 LCL450+1 Rating=1 169.2 SDDA_V 27 SET182-6 Rating=1 274 SDDA_E 

8 LCL450+2 Rating=1 209.3 SDDA_V 28 SET279-6 Rating=1 259.9 SDDA_E 

9 LCL471+1 Rating=1 283.8 SDDA_V 29 SET289-6 Rating=1 299 SDDA_V 

10 LCL478+1 Rating=1 265.5 SDDA_V 30 SET290-6 Rating=1 156.5 SDDA_E 

11 LCL479+1 Rating=1 248.7 SDDA_V 31 SET305-6 Rating=1 166 SDDA_V 

12 LCL554+1 Rating=1 263.7 SDDA_V 32 SET345-6 Rating=1 138 SDDA_E 

13 LCL560+1 Rating=1 298 SDDA_V 33 SET348-6 Rating=1 128.4 SDDA_V 

14 NUM054-1 Rating=1 96 SDDA_V 34 SET368-6 Rating=1 172.1 SDDA_V 

15 NUM057-1 Rating=1 267.9 SDDA_V 35 SEU372+2 Rating=1 158.8 SDDA_V 

16 NUM076-1 Rating=1 152.7 SDDA_E 36 SEU410+3 Rating=1 167.9 SDDA_E 

17 NUM090-1 Rating=1 155.5 SDDA_V 37 SWC186+1 Rating=1 270.5 SDDA_E 

18 NUM136-1 Rating=1 155.7 SDDA_V 38 SWC199-1 Rating=1 185 SDDA_V 

19 NUM428+1 Rating=1 272.1 SDDA_V 39 SWC199+1 Rating=1 277 SDDA_V 

20 NUM486+1 Rating=1 115.6 SDDA_E 40 SWV276-1 Rating=1 298 SDDA_E 



deduction can be effectively applied to first-order logic automated theorem prover. The possible 

reasons can be: 1) the multi-clause dynamic deduction can fully exert the synergized deduction 

of more than two clauses, and the ability of multi-clause dynamic deduction to proof search is 

not equivalent to the binary deduction by saturation under heuristic strategies; 2) the multi-

clause and dynamic nature of S-CS deduction, which reflects non-determinism in terms of 

which clauses, how many of them involved in each deduction, and select which clauses from 

the input clauses to construct contradictions, so the S-CS deduction has the ability to arrive at 

various proof search by handling multi-clause. This type of non-determinism is maybe 

beneficial for the hard problems in mathematical theorem proving. Compared with binary 

resolution method, the S-CS deduction offers more chances or new windows of algorithms and 

implementations development for proof search. Experimental results show that multi-clause 

dynamic deduction is an effective complement to binary resolution method, which can arrive 

at the proof search that current state-of-the-art provers cannot reach, as illustrated in Table 8.3.  

9. Conclusions and Future Work 

Multi-clause standard contradiction separation (S-CS) calculus for first-order logic is a new 

deduction theory and method for automated reasoning based on the S-CS rule [21]. The present 

work focused on how this theory can be achieved through the development of specific and 

effective algorithms and how it can be implemented on top of the existing architectures of the 

leading first-order theorem provers in order to further improve their performances and solve 

some hard problems. For effective implementation, the proposed multi-clause dynamic 

deduction algorithm SDDA can make full use of input clauses and give full play to the ability 

of synergized deduction with more than two clauses. Under the proposed heuristic strategies, 

the input clauses can eliminate more literals through standard contradiction separating, make 

most of the S-CS clauses are unit clauses or contains fewer literals.  

SDDA was applied to the leading provers Vampire 4.1 and E 2.3 and formed the combined 

provers SDDA_V and SDDA_E respectively. The experimental results have shown that 

SDDA_V 0.1 outperforms Vampire 4.1 and SDDA_E 0.1 outperforms E 2.3 to a certain extent 

so indeed enhance their performance. Especially, SDDA_V and SDDA_E have solved some 

hard problems with rating of 1 that are unsolved by the state-of-the-art ATP system, indicating 



that the S-CS rule is an effective method for theorem proving and an important extension of the 

binary resolution method, and the proposed deduction algorithm can effectively improve the 

ability of the state-of-the-art provers. 

Although SDDA has proposed different kinds of heuristic strategies, and the proposed 

deduction algorithm can effectively perform the optimal proof search, there is still much room 

for improvement, such as how to effectively perform deduction weights update, how to fully 

use the synergies of multi-clause to a greater extent. As the clause and literal selection strategies 

are foundational approach, how to efficient use and enrich these strategies for multi-clause 

dynamic deduction is the main task. The implementation of multi-clause dynamic deduction 

does not include the superposition calculus for dealing with equality, adding superposition 

calculus is the next major research work. 

Although SDDA_V 0.1 outperforms Vampire 4.1 and SDDA_E 0.1 outperforms E 2.3 to 

a certain extent, there is also much room for their improvement. In the setting runtime, multi-

clause dynamic deduction can generate a large number of S-CSCs as lemmas, how to effectively 

evaluate these new clauses and more precise choice as lemmas also is the main task. In terms 

of combination, the multi-clause dynamic deduction and the leading prover run sequentially 

according to their runtime, this unidirectional method restricts the ability of combination. 

Therefore, the more effectively combined multi-clause dynamic deduction with the leading 

provers is also one of the focus in our future work. 
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