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Abstract

Learning the distributed representation of a sentence is a fundamental operation
for a variety of natural language processing tasks, such as text classification,
machine translation, and text semantic matching. Tree-structured dynamic
compositional networks have achieved promising performance in sentence rep-5

resentation due to its ability in capturing the richness of compositionality. How-
ever, existing dynamic compositional networks are mostly based on binarized
constituency trees which cannot represent the inherent structural information
of sentences effectively. Moreover, syntactic tag information, which is demon-
strated to be useful in sentence representation, has been rarely exploited in10

existing dynamic compositional models. In this paper, a novel LSTM structure,
ARTree-LSTM, is proposed to handle general constituency trees in which each
non-leaf node can have any number of child nodes. Based on ARTree-LSTM,
a novel network model, Tag-Enhanced Dynamic Compositional Neural Network
(TE-DCNN), is proposed for sentence representation learning, which contains t-15

wo ARTree-LSTMs, i.e. tag-level ARTree-LSTM and word-level ARTree-LSTM.
The tag-level ARTree-LSTM guides the word-level ARTree-LSTM in conducting
dynamic composition. Extensive experiments demonstrate that the proposed
TE-DCNN achieves state-of-the-art performance on text classification and text
semantic matching tasks.20

Keywords: Sentence representation, Text classification, Text semantic match-
ing, Dynamic compositional networks

1. Introduction

Representing sentences in terms of compact semantic vectors is an impor-
tant operation for various natural language processing (NLP) tasks, such as25

text classification (Li & Roth, 2002; Zhu et al., 2015), text semantic match-
ing (Wang et al., 2017b; Xu et al., 2019) and machine translation (Cho et al.,
2014). Existing deep neural networks for sentence representation can be gen-
erally grouped into four types: sequence models, convolutional models, self-
attention models and recursive models. The most widely used sequence models30

are recurrent neural network (RNN) (Elman, 1990) and its variants such as
Gated Recurrent Unit (GRU) (Cho et al., 2014) and Long Short-Term Memo-
ry (LSTM) (Hochreiter & Schmidhuber, 1997). Apart from sequence models,
other neural architectures such as self-attention models (Shen et al., 2018) and
convolutional neural networks (CNN) (Kim, 2014) are also used for sentence35

representation. However, these three types of models handle a sentence in a
flat sequential way without considering the compositional structure of a sen-
tence. In fact, the inherent compositional structure of a sentence, which can
be described by a constituency tree or a dependency tree, is an integral part
of its meaning (Kim et al., 2019). Thus, recursive neural network (RecNN) or40
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tree-structured neural network1 models (Socher et al., 2011, 2013b) are devised
to obtain the structural information of a sentence explicitly. RecNN models
have achieved impressive results for sentence representation on several down-
stream NLP tasks such as text classification, text semantic matching and so
on (Tai et al., 2015; Yang et al., 2017; Cheng et al., 2018). However, a major45

limitation is that all kinds of syntactic compositions share the same parame-
ters in RecNN models, neglecting the fact that different compositions require
different composition rules. For example, the adjective-noun composition is sig-
nificantly different from the adverb-adjective composition. Thus, some dynamic
compositional models have been proposed to model the diversity of different50

syntactic compositions (Hashimoto et al., 2013; Dong et al., 2014; Qian et al.,
2015; Wang et al., 2017a; Liu et al., 2017c; Huang et al., 2017; Kim et al., 2019;
Shen et al., 2020). For example, Shen et al. (2020) proposes a hypernetwork
RecNN which employs Part-of-Speech (POS) tag2 information and semantic
information of word/phrase jointly as inputs to generate parameters of differen-55

t syntactic compositions dynamically, and achieves impressive performance on
text classification and text semantic matching.

In spite of the impressive performance, there are at least two limitations
with previous dynamic compositional models. The first limitation is that exist-
ing dynamic compositional models are based on a binarized constituency tree60

which is different from the original constituency tree generated by a parser and
cannot obtain the inherent structural information of a sentence effectively. Fig-
ure 1 shows a binarized constituency tree and the original constituency tree
for a sentence from the TREC dataset (Li & Roth, 2002). It is clear that, d-
ifferent from the binarized constituency tree, the number of child nodes of a65

non-leaf node of the original constituency tree varies significantly. Furthermore,
the original constituency tree is more shallow and so can represent a sentence
in a more compact format than its corresponding binarized tree. In addition,
recently proposed TreeNet (Cheng et al., 2018) has also demonstrated the ef-
fectiveness of using the original constituency tree for sentence representation.70

However, similar to early RecNN models, TreeNet cannot capture the diversity
of different syntactic compositions.

The second limitation is that previous models only use the tag embedding
of the current phrase whilst composing the representation of the phrase, which
is not reasonable in some cases. For example, in Figure 1 (a), although phrase75

“Stuart/NNP Hamblen/NNP” and phrase “the/DT first/JJ singing/NN cow-
boy/NN” both have the same NP tag, these two phrases have different internal
structure because they vary greatly in size and the tags of their child nodes
are quite different. Therefore, it is not reasonable to guide the composition
of these two phrases solely based on the simple tag embedding of the NP tag.80

Thus, more complicated tag representations are needed to obtain structural

1Recursive neural network or tree-structured neural network is denoted as RecNN in this
paper to distinguish them from recurrent neural network (RNN).

2For simplicity, we refer to Part-of-Speech (POS) tags as tags in the rest of the paper.
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(b) Binarized constituency tree

Figure 1: Original constituency tree and binarized constituency tree for sentence
“In what medium is Stuart Hamblen considered to be the first singing cowboy
?”.

information. Moreover, tag representations of child nodes are important for
distinguishing different syntactic compositions.

To alleviate the above two limitations, we firstly propose a variant of LSTM,
ARTree-LSTM, to handle arbitrary tree structure, in which each node within a85

tree can learn from its left sibling and right most child from left to right and bot-
tom to top directions. Based on ARTree-LSTM, Tag-Enhanced Dynamic Com-
positional Neural Network (TE-DCNN) is proposed for sentence representation
learning, which contains two ARTree-LSTMs, one tag-level ARTree-LSTM and
one word-level ARTree-LSTM. The tag-level ARTree-LSTM accepts original tag90
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embedding at each node of the constituency tree and outputs the computed tag
representations for the nodes, and then these tag representations will be used to
control the gates of the word-level ARTree-LSTM to conduct dynamic seman-
tic composition. For word-level ARTree-LSTM, a gate-memory encoder (Cheng
et al., 2018) is used to obtain the word representation of each leaf node in the95

constituency tree. For each non-leaf nodes, its representation is computed based
on the states and tag representations of its left sibling and right most child. The
final representation of the root node is used as sentence representation. To the
best of our knowledge, the proposed TE-DCNN is the first work that has the a-
bility of both handling arbitrary tree structures such as the original constituency100

tree and capturing the richness of compositionality.
This paper is structured as follows. Related works are discussed in Section

2. ARTree-LSTM is presented in Section 3, and the complete model is presented
in Section 4. Section 5 describes two applications of the proposed model. Ex-
perimental results on text classification and text semantic matching are given105

in Section 6. Ablation study is shown in Section 7. Section 8 presents error
analysis and Section 9 concludes this paper.

2. Related Works

2.1. Recursive Neural Networks for Sentence Representation

Recursive neural networks (RecNNs) or tree-structured neural networks are110

a type of neural architecture which learns sentence representation based on re-
cursive syntactic structures. Given a syntactic parse tree, RecNNs convert each
word at the leaf nodes of the tree to a representation vector firstly, and then
a compositional function such as a feed-forward neural network, is used on the
representation vectors of word/phrase pairs to get the representations of non-115

leaf nodes recursively over trees. Finally, the representation of the root node
is used as sentence representation. The earliest RecNN model was proposed by
Socher et al. (2011), in which a simple feed-forward neural network is used as
the compositional function of the model. To improve the performance of the
basic RecNN model, researchers have developed some more effective composi-120

tional functions instead of feed-forward neural network. Socher et al. (2012)
used matrix-vector multiplication as compositional function in order to model
semantic composition adaptively. Socher et al. (2013b) utilizes more complex
tensor computation as compositional function. However, these RecNN models
suffers from the vanishing gradient problem over deep structures, resulting in125

difficulties in capturing long-distance dependencies in the structures. Therefore,
Tree-LSTM (Tai et al., 2015) has been proposed. Tree-LSTM is a generaliza-
tion of LSTM to tree-structured network topologies, which can keep long-term
memory due to the well-designed gate mechanism. However, these models use
the same compositional function for all kinds of syntactic compositions and so130

lack ability of handling dynamic compositionality for different syntactic config-
urations.
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2.2. Dynamic Compositionality in Recursive Neural Networks

To perform dynamic composition, some previous works utilize multiple com-
positional functions, which are pre-defined according to some specific partition135

criterion (Socher et al., 2013a; Dong et al., 2014). Socher et al. (2013a) de-
fined several compositional functions according to syntactic categories. For each
word/phrase pair, a suitable compositional function is selected according to its
syntactic categories. Dong et al. (2014) introduced AdaMC-RNTN, which also
uses multiple compositional functions and adaptively chooses them based on140

tags and child vectors. It is difficult to predefine a general criterion that can
cover all the compositional rules. Some researchers leverage tag embeddings
as additional inputs for the existing tree-structured models (Qian et al., 2015;
Wang et al., 2017a; Huang et al., 2017; Kim et al., 2019). For example, Wang
et al. (2017a) and Huang et al. (2017) utilize tag embeddings to control the145

gates of the Tree-LSTM to conduct dynamic composition. Liu et al. (2017c)
took advantage of hypernetwork and dynamic parameter prediction (Bertinetto
et al., 2016), and proposed DC-TreeLSTM. DC-TreeLSTM composed of two
separate Tree-LSTMs that have similar structure but different number of pa-
rameters. The smaller Tree-LSTM is utilized to calculate the weights of the big-150

ger Tree-LSTM. Shen et al. (2020) proposed TG-HTreeLSTM, which improves
the performance of DC-TreeLSTM by using tag embeddings as supplementary
inputs for hypernetwork Tree-LSTM.

3. ARTree-LSTM

LSTM (Hochreiter & Schmidhuber, 1997) is proposed to deal with the van-155

ishing and exploding gradient problems of RNN (Elman, 1990), which can cap-
ture long-distance dependencies for sequential data due to its well-designed
gate mechanism. Tai et al. (2015) applied LSTM unit into tree structures and
achieved impressive performance for sentence representation. Previous dynamic
compositional models usually assume that there are only two child nodes for160

non-leaf nodes in Tree-LSTM, thus it can only handle a binarized constituen-
cy tree which is different from the original constituency tree generated by a
standard parser tool, and cannot represent the inherent structure of a sentence
effectively. Inspired by TreeNet (Cheng et al., 2018), in which each non-leaf
node can learn from its left sibling and right most child, we extend the original165

Tree-LSTM to ARTree-LSTM to handle the original constituency tree, in which
the number of child nodes of non-leaf nodes is arbitrary. Instead of learning
from left and right child nodes as in Tree-LSTM, each node in ARTree-LSTM
will learn from its left sibling and right most child. Child nodes with the same
parent node are processed sequentially from left to right in a recurrent manner,170

thus the right most child can learn from all its siblings. Figure 2 shows the left
sibling and right most child of a node j in two different cases. For each node j,
the left sibling can be seen as its previous state and the right most child can be
viewed as the representation of its descendants.

Figure 3 shows the architecture of ARTree-LSTM unit. For each node j175

in a constituency tree of a sentence, let xj = [x1, . . . , xde
]T be an input vector,
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(a) node j with multiple child nodes (b) node j with only one child node

Figure 2: Left sibling and right most child of a node j in two different cases. If
node j has multiple child nodes, then the last child is regarded as right most
child. Otherwise, the only child is regarded as right most child.

hls
j = [hls1 , . . . , h

ls
d ]T and hrc

j = [hrc1 , . . . , h
rc
d ]T be the hidden states of left sibling

and right most child of node j, respectively. clsj = [cls1 , . . . , c
ls
d ]T and crcj =

[crc1 , . . . , c
rc
d ]T be the memory cells of left sibling and right most child of node j,

respectively.180

Figure 3: Illustration of ARTree-LSTM architecture.

A new vector zj is created by concatenating xj ,h
ls
j ,h

rc
j where zj = [x1, . . . , xde

, hls1 , . . . , h
ls
d , h

rc
1 , . . . , h

rc
d ]T . Then the hidden state of each node j in ARTree-

LSTM is computed by the following equations:

ij = σ(Wizj + bi) (1)

f lsj = σ(Wlszj + bls) (2)
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frcj = σ(Wrczj + brc) (3)

gj = tanh(Wgzj + bg) (4)

oj = σ(Wozj + bo) (5)

cj = f lsj � clsj + frcj � crcj + ij � gj (6)

hj = oj � tanh(cj) (7)

where cj ,hj ∈ Rd refer to the memory cell and hidden state of node j. ij , f
ls
j , f

rc
j ,

oj ∈ Rd represent input gate, two forgot gates (left sibling and right most child),
and output gate, respectively. gj ∈ Rd is the newly composed input for the
memory cell. Wi,Wls,Wrc,Wg,Wo ∈ Rd×(2d+de) and bi,bls,brc,bg,bo ∈ Rd

are trainable parameters. tanh is the hyperbolic tangent, σ denotes the sigmoid185

function, and � represents element-wise multiplication.
In particular, child nodes with the same parent node are processed sequen-

tially from left to right. If node j is a leaf node (has no child nodes), a zero
vector is employed to initialize hrc

j and crcj . If node j is the first child node (has

no left sibling), a zero vector is used to initialize hls
j and clsj .190

For simplicity, we describe the computation of the hidden state of node j at
a high level with Equation (8) to facilitate references later in the paper, and the
detailed computation refers to Equations (1-7).

hj = ARTree− LSTM(xj ,h
ls
j ,h

rc
j , c

ls
j , c

rc
j ) (8)

All notations in Equation (8) follow equations Equations (1-7).

4. Model

In this section, a novel dynamic compositional neural architecture, named
TE-DCNN (Tag-Enhanced Dynamic Compositional Neural Network) is pre-
sented. The proposed TE-DCNN is composed of two separate ARTree-LSTMs:195

Tag-level ARTree-LSTM and word-level ARTree-LSTM. The tag-level ARTree-
LSTM is employed to guide the composition of word-level ARTree-LSTM which
is responsible for constructing sentence representations. For a node j in the con-
stituency tree, instead of using its own tag representation, tag representations
of its left sibling and right most child are jointly used to control the gate func-200

tions of the word-level ARTree-LSTM to perform dynamic composition. Figure
4 illustrates the proposed model.

Formally, we denote sentence as a sequence of words (w1, w2, ..., wm) where
m is the length of the sentence, and the word embeddings as (v1, . . .vm) where
vi = [v1, . . . , vdw ]T , i ∈ [1,m]. Tag embedding for the tag attached to each node

8



Figure 4: An overview of TE-DCNN at node j. Tag-level ARTree-LSTM only
accepts tag embeddings as inputs, the hidden state ĥj of node j is computed

based on its tag embeddings ej and the hidden states of its right most child ĥrc
j

and left sibling ĥls
j . Word-level ARTree-LSTM accepts word representations and

tag representations generated by tag-level ARTree-LSTM as inputs, the hidden
state ȟj is computed based on hidden states of its right most child ȟrc

j and left

sibling ȟls
j and the corresponding tag presentations ĥrc

j and ĥls
j .

j in the constituency tree is denoted by ej = [e1, . . . , edt
]T . For each word wt

(t ∈ [1,m]) within a sentence, we use a gate-memory encoder (Cheng et al.,
2018) on its word embedding vt and tag embedding et to obtain a new word
representation h̄t by the following equations:

īt = σ(Uvivt + Ueiet + ai) (9)

ōt = σ(Uvovt + Ueoet + ao) (10)

ḡt = σ(Uvgvt + Ueget + ag) (11)

c̄t = īt � ḡt (12)

h̄t = ōt � tanh(c̄t) (13)

where h̄t, c̄t ∈ Rdh represent the hidden state and memory cell of the gate-
memory encoder. īt, ōt ∈ Rdh are two gates of the gate-memory encoder.
Uvi,Uei,Uvo,Ueo,Uvg,Ueg ∈ Rdh×(dw+dt) and ai,ao,ag ∈ Rdh are trainable205

parameters. The rest of the notations follow that of the ARTree-LSTM above.
The representations h̄t of words in the sentence will be used as the inputs of
the word-level ARTree-LSTM.
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Then, the final representation for the input sentence can be obtained in two
steps:210

First, the tag-level ARTree-LSTM which only accepts tag embeddings as
inputs is employed to obtain the structure-aware tag representations (the right
side of Figure 4). Tags are usually represented as low-dimensional tag embed-
dings in most previous works. Kim et al. (2019) used a Tree-LSTM on original
tag embeddings to obtain the structure-aware tag representations which have
proven to be more effective than simple tag embeddings. Similarly, we use a sep-
arate ARTree-LSTM to obtain the structure-aware tag representation ĥj ∈ Rdh

for each node j in a constituency tree in the following way:

ĥj = ARTree− LSTM(ej , ĥ
ls
j , ĥ

rc
j , ĉ

ls
j , ĉ

rc
j ) (14)

where ARTree− LSTM refers to Equation (8). ej ∈ Rdt is tag embedding for

the tag attached to each node j. ĥls
j , ĥ

rc
j , ĉ

ls
j , ĉ

rc
j ∈ Rdh represent the hidden

states and memory cells of the left sibling and right most child of node j. The
new tag representation ĥj will be used to control the gates of the word-level
ARTree-LSTM to conduct dynamic composition.215

Second, the word-level ARTree-LSTM (the left side of Figure 4) which ac-
cepts word representations as inputs is used to obtain the final sentence rep-
resentation. Note that for each non-leaf nodes, its representation is computed
based on the states and tag representations of its left sibling and right most
child. Let ȟls

j = [ȟls1 , . . . , ȟ
ls
dh

]T , člsj = [čls1 , . . . , č
ls
dh

]T , ȟrc
j = [ȟrc1 , . . . , ȟ

rc
dh

]T , črcj =

[črc1 , . . . , č
rc
dh

]T be the hidden states and memory cells of left sibling and right

most child of node j in the word-level ARTree-LSTM, respectively. h̄j =
[h̄1, . . . , h̄dh

]T is the input vector of node j, which is a zero vector at non-
leaf node and word representation vector computed by Equations (9-13) at leaf

nodes. ĥls
j = [ĥls1 , . . . , ĥ

ls
dh

]T , ĥrc
j = [ĥrc1 , . . . , ĥ

rc
dh

]T are the tag representations
of the left sibling and right most child of node j, which are computed by E-
quation (14). Vectors pj ∈ R5dh and qj ∈ R3dh are created by concatenating

(h̄j , ȟ
ls
j , ȟ

rc
j , ĥ

ls
j , ĥ

ls
j ) and (h̄j , ȟ

ls
j , ȟ

rc
j ), respectively. The hidden states of each

node j in word-level ARTree-LSTM is defined by the following:

ǐj = σ(Vipj + ri) (15)

f̌ lsj = σ(Vlspj + rls) (16)

f̌rcj = σ(Vrcpj + rrc) (17)

ǧj = tanh(Vgqj + rg) (18)

ǒj = σ(Vopj + ro) (19)

čj = f̌ lsj � člsj + f̌rcj � črcj + ǐj � ǧj (20)

10



ȟj = ǒj � tanh(čj) (21)

where ȟj , čj ∈ Rdh refer to the hidden state and memory cell of node j in
the word-level ARTree-LSTM. Vi,Vls,Vrc,Vo ∈ Rdh×5dh ,Vg ∈ Rdh×3dh and
ri, rls, rrc, rg, ro ∈ Rdh are learnable parameters. The remaining notation fol-
lows Equations (1-7). Finally, the hidden state of the root node ȟroot ∈ Rdh

in the word-level ARTree-LSTM is used as the representation for the given sen-220

tence.

5. Applications of TE-DCNN

In this section, we describe the applications of TE-DCNN for two typical
NLP tasks.

Text classification. Given a sentence s and a pre-defined class set Y,
text classification is to predict a label ŷ ∈ Y for s. A softmax classifier is
applied directly on the sentence representation ȟroot ∈ Rdh in this paper. The
final predicted probability distribution of class y given sentence s is defined as
following:

p(y|s) = softmax(Wcȟ
root + bc) (22)

where Wc ∈ Rdc×dh ,bc ∈ Rdc are trainable parameters, dc is the size of class225

set Y.
Text semantic matching. Text semantic matching is to predict a label l̂

which represents the relationship between a given sentence pair s1 and s2 from
a pre-defined label set L. Firstly, the same TE-DCNN is used to encode s1
and s2 into two sentence representation vectors ȟroot

s1 , ȟroot
s2 ∈ Rdh . Next, some

matching heuristics (Mou et al., 2016) are used to combine these two sentence
representation vectors together in the following way:

hst = [ȟroot
s1 , ȟroot

s2 , ȟroot
s1 � ȟroot

s2 , |ȟroot
s1 − ȟroot

s2 |] (23)

Then, a single layer MLP with ReLU activation function is applied on the above
concatenated vector hst:

hm = Relu(Wmhst + bm) (24)

where hm ∈ Rdm is the intermediate feature vector for the following classifier.
Wm ∈ Rdm×4dh ,bm ∈ Rdm are trainable parameters. Finally, the probability
distribution of label l given sentence pair s1 and s2 is obtained using a softmax
classifier:

p(l|(s1, s2)) = softmax(Wlhm + bl) (25)

where Wl ∈ Rdl×dm ,bl ∈ Rdl are again trainable parameters. The parameter-
s of the model are learned to minimise the cross-entropy of the distributions
between predicted and true label.
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6. Experiments230

6.1. Datasets

We evaluate the proposed model on three benchmarks for text classification
(MR, SUBJ, TREC) and one dataset (SICK) for text semantic matching:

• MR: The movie reviews with positive or negative label (Pang & Lee,
2005)3.235

• SUBJ: Sentences grouped as being either subjective or objective (Pang &
Lee, 2004)4.

• TREC: A dataset which groups questions into six different question types
(Li & Roth, 2002)5.

• SICK: A textual entailment dataset with three classes (entailment, neu-240

tral, contradiction) (Marelli et al., 2014)6.

Tabel 1 shows the detailed statistics about the above four datasets.

Table 1: Statistics of four benchmark datasets for two tasks. Train, Dev and
Test are the size of train, validation and test dataset, respectively. CV means 10-
fold cross validation is used. Lavg is the average number of words in sentences.
|V | is the size of vocabulary. |T | is the number of tags. Class is the size of
label/class set.

Dataset Train Dev Test Lavg |V| |T| Class
MR 10662 - CV 22 19K 73 2
SUBJ 10000 - CV 21 21K 72 2
TREC 75952 - 500 10 10K 67 6
SICK 4500 500 4927 10 2K 41 3

6.2. Experimental Setup

In all experiments, sentences in datasets are tokenized and parsed by S-
tanford Stanford PCFG parser7 (Klein & Manning, 2003). Word embeddings245

are initialized with the 300-dimensional GloVe word vectors (Pennington et al.,
2014), and out-of-vocabulary words are randomly sampled from the uniform
distribution [−0.05, 0.05]. Tag embeddings are initialized by the normal distri-
bution [0, 1]. Tag embeddings are fine-tuned during training procedure while
word embeddings are fixed. Hidden size for ARTree-LSTMs is fine-tuned from250

3https://www.cs.cornell.edu/people/pabo/movie-review-data/
4https://www.cs.cornell.edu/people/pabo/movie-review-data/
5https://cogcomp.seas.upenn.edu/Data/QA/QC/
6https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
7https://nlp.stanford.edu/software/lex-parser.shtml
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[100, 200, 300]. The dimension of tag embedding is selected from [20, 25]. Batch
size is selected from [32, 64]. Weights of the model are trained by minimizing
the cross-entropy of the training dataset by Adam optimizer (Kingma & Ba,
2014) and learning rate is fine-tuned in the range of [1e−2, 1e−3]. The accuracy
metric is used in this paper to measure the performance of the proposed and all255

comparison models on four datasets, and the results of all comparison models
come from respective papers.

6.3. Results

Text Classification The proposed TE-DCNN is compared with two types
of models. The first is RecNN based models which are based on tree structure,260

and the other is non-RecNN based models. Table 2 and Table 3 show test
accuracies of the proposed TE-DCNN and comparison models on each dataset.

Table 2: Accuracies of previous RecNN based models and the proposed TE-
DCNN on three text classification datasets.

Model MR SUBJ TREC
Non-Dynamic Models
RecNN (Socher et al., 2011) 76.4 91.8 90.2
Tree-LSTM (Tai et al., 2015) 81.2 93.2 93.6
BiTreeLSTM (Teng & Zhang, 2017) - - 94.8
TreeNet (Cheng et al., 2018) 83.6 95.9 96.1
Dynamic Compositional Models
AdaHT-LSTM (Liu et al., 2017b) 81.9 94.1 -
iTLSTM (Liu et al., 2017a) 82.5 94.5 -
DC-RecNN (Liu et al., 2017c) 80.2 93.5 91.2
DC-TreeLSTM (Liu et al., 2017c) 81.7 93.7 93.8
TE-RNN (Qian et al., 2015) 77.9 - -
TE-LSTM (Huang et al., 2017) 82.2 - -
SATA Tree-LSTM(Kim et al., 2019) 83.8 95.4 96.2
TG-HRecNN (Shen et al., 2020) 80.9 93.7 93.6
TG-HTreeLSTM (Shen et al., 2020) 82.6 94.9 95.8
TE-DCNN (proposed) 84.1 95.1 97.0

Comparison with RecNN based Models. We classified RecNN based
models into two categories: Non-dynamic models and dynamic compositional265

models. Non-dynamic models are RecNN based models that share the same pa-
rameters for all kinds of syntactic compositions, while dynamic compositional
models can distinguish different syntactic compositions. Table 2 shows test accu-
racies of the proposed TE-DCNN and previous RecNN based models. Firstly,
compared with all previous RecNN based models, TE-DCNN achieves superi-270

or or competitive performance on all three text classification datasets. More-
over, it sets a new state of the art among RecNN based models on two out of

13



three datasets - MR and TREC with accuracies of 84.1% and 97%, respectively.
Specifically, the proposed TE-DCNN outperforms the best non-dynamic model
and dynamic compositional model on MR dataset by a margin of 0.5% and 0.3%;275

and on TREC dataset by a margin of 0.9% and 0.8%, respectively. Secondly,
the proposed model is superior to dynamic compositional models ignoring tag
information (i.e., AdaHT-LSTM, iTLSTM, DC-RecNN and DC-TreeLSTM) on
all three datasets MR, SUBJ and TREC with 2.4%, 0.6% and 3.2% improve-
ments, respectively. The consistency suggests these improvements are due to the280

usage of tag information which is helpful for composing sentence representation.
Thirdly, compared with five dynamic models leveraging tag information (i.e.,
TE-RNN, TE-LSTM, TG-HRecNN, TG-HTreeLSTM and SATA Tree-LSTM),
TE-DCNN outperforms these models on MR and TREC datasets by a margin
of 0.3% and 0.8%, respectively, and achieves competitive performance with the285

state-of-the-art model SATA Tree-LSTM on SUBJ dataset.

Table 3: Accuracies of Non-RecNN based models and the proposed TE-DCNN
on three text classification datasets. The symbol * indicates models which are
pre-trained with large external corpora.

Model MR SUBJ TREC
CNN (Kim, 2014) 81.5 93.4 93.6
BLSTM-2DCNN (Zhou et al., 2016) 82.3 94.0 96.1
byte-mLSTM* (Radford et al., 2017) 86.9 94.6 -
BCN + Char + CoVe* (McCann et al., 2017) - - 95.8
DARLM (Zhou et al., 2018) 83.2 94.1 96.0
3W-CNN (Zhang et al., 2019) 82.3 93.5 -
WSAN (Huang et al., 2019) 83.2 94.6 95.0
TE-DCNN (proposed) 84.1 95.1 97.0

Comparison with Non-RecNN based Models. Table 3 shows a com-
parison with some non-RecNN based models on three text classification datasets.
We observe that the proposed TE-DCNN has consistently strong performance
on three datasets, and it outperforms all comparison models in this group on290

SUBJ and TREC datasets by a margin of 0.5% and 0.9%, respectively. Al-
though byte-mLSTM achieves the state-of-the-art performance on MR dataset
with an accuracy of 86.9%, better than TE-DCNN with an accuracy of 84.1%,
it is pre-trained with large external corpora while TE-DCNN do not perform
any pre-train procedure.295

Text Semantic Matching. To evaluate the proposed TE-DCNN on other
NLP tasks, we also conducted an experiment on text semantic matching task.
Different from text classification which works by classifying one sentence at
a time, text semantic matching works by comparing two sentences at a time.
Therefore, in a text classification dataset, a sample is a single sentence where-300

as in a text semantic matching dataset, a sample is a pair of sentences.Text
semantic matching experiments were conducted on the SICK (Marelli et al.,
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2014) dataset, and the experimental results are shown in Table 4. The results
of TreeNet and SATA TreeLSTM come from our implementation while results
of other comparison models come from respective papers. We can see that TE-305

DCNN has again demonstrated its superior performance compared against the
previous RecNN based models. Specifically, TE-DCNN outperforms all com-
pared non-dynamic models by a margin of 1.2% and is slightly better than
previous dynamic compositional models with 0.1% improvements. This com-
parison shows that TE-DCNN is also effective in text sematic matching task,310

and has generalization ability in different NLP tasks.

Table 4: Accuracies of previous RecNN based models and the proposed TE-
DCNN on the SICK dataset.

Model SICK
Non-Dynamic Models
RecNN(Socher et al., 2011) 74.9
MV-RNN (Socher et al., 2012) 75.5
RNTN (Socher et al., 2013b) 76.9
TreeLSTM (Tai et al., 2015) 77.5
TreeNet (Cheng et al., 2018) 82.1
Dynamic Compositional Models
DC-RecNN (Liu et al., 2017c) 80.2
DC-TreeLSTM (Liu et al., 2017c) 82.3
TG-HRecNN (Shen et al., 2020) 77.5
TG-HTreeLSTM (Shen et al., 2020) 83.3
SATA Tree-LSTM (Kim et al., 2019) 83.3
TE-DCNN (proposed) 83.4

7. Ablation Study

In this section, we present an ablation study on key modules of the proposed
TE-DCNN to explore their effectiveness. We focus on two modules, the ARTree-
LSTM and tag representations. TREC dataset is used in this experiment, and315

the target module is replaced with other candidates while keeping the other
settings fixed. In the first case, the ARTree-LSTM is replaced with a basic
Tree-LSTM. In the second case, we do not employ any tag information in the
model.

The experimental results are shown in figure 5. As the chart shows, TE-320

DCNN outperforms the other two options we considered. Specially, if we do
not use any tag information in TE-DCNN, the accuracy of the model drops
to 95.6%, with 1.4% performance degradation. A possible reason for this per-
formance degradation is that the model cannot distinguish different syntactic
compositions while neglecting tag information, because tag representations are325

used to control the gates of the word-level ARTree-LSTM to conduct dynamic
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Figure 5: An ablation study on key modules of TE-DCNN. Test accuracies
on TREC dataset are reported. Tree-LSTM: Tree-LSTM is used instead of
ARTree-LSTM in TE-DCNN. w/o tags: Tag information is not used.

composition in TE-DCNN. If we replace ARTree-LSTM with a basic Tree-LSTM
in TE-DCNN, the accuracy of the model drops to 96.1%, with 0.9% performance
degradation. Possible reason for this performance degradation is because ba-
sic Tree-LSTM can only handle a binarized constituency tree which is different330

from the original constituency tree. In contrast, ARTree-LSTM can handle the
original constituency tree of a sentence, thus can capture the inherent struc-
tural information of a sentence effectively and has better expressive ability than
a basic Tree-LSTM.

335

8. Error Analysis

In this section, we analyze the predictions of the proposed TE-DCNN model
and another two state-of-the-art models, TreeNet (Cheng et al., 2018) and SATA
Tree-LSTM (Kim et al., 2019). SATA TreeLSTM and our model are dynamic
compositional models while TreeNet is a non-dynamic model. Table 5 gives a340

breakdown of accuracy for classes on test sets of TREC and SICK datasets. We
observe that, for TREC dataset, the proposed TE-DCNN matches the other two
models on all classes. For SICK dataset, most of our gains stem from Neutral,
while most losses come from Entailment pairs. Figure 6 presents the distribution
of errors of our TE-DCNN and other two models on SICK dataset. There are345

six types of error in total. We can see that the most frequent error type of the
proposed model is E→N which means our model tend to classify an Entailment
sentence pair Neutral. While the most frequent type of error of TreeNet and
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SATA TreeLSTM is N→E. For all the three models, the least frequent error
type is E→C. Moreover, in most cases, dynamic compositional models such as350

SATA TreeLSTM and the propsoed TE-DCNN have smaller error rate than
non-dynamic model TreeNet except N→C.

Table 6 shows some example wins and losses of the proposed TE-DCNN
compared to other models on SICK dataset. Examples 1 and 2 are cases where
the proposed TE-DCNN is correct while both TreeNet and SATA TreeLSTM355

are incorrect. In these two examples, both sentences contain phrases that are
either the same or highly lexically related (e.g., “a dog”, “toddler/baby” and
“a toy/a ball”). Our TE-DCNN correctly favors Neutral in these cases, while
TreeNet and SATA TreeLSTM prefer to Entailment. Due to this characteristic
of TE-DCNN, it fails in Examples 3 and 4 while TreeNet and SATA TreeLSTM360

succeed. Examples 5 and 6 are cases where the proposed TE-DCNN and SATA
TreeLSTM are correct and TreeNet is incorrect. In these two examples, the key
point to predict correctly is to conclude that “a white and brown dog/no white
and brown dog” and “no girl/one girl” are contradictions. A possible reason
for the success of TE-DCNN and SATA TreeLSTM in these two cases is that365

these two models conduct dynamic composition with the aid of syntactic tags,
so they can find the differences between above two phrase pairs easily.

Datasets Class TreeNet SATA Tree-LSTM TE-DCNN

TREC

NUM 94.7 95.6 96.5
HUM 98.5 98.5 98.5
ENTY 89.4 93.6 93.6
LOC 95.1 96.3 97.5

DESC 96.4 97.8 98.6
ABBR 88.9 88.9 98.6
Overall 96.1 96.2 97.0

SICK

Entailment 84 84.9 77.9
Neutral 81.8 82.2 86.2

Contradiction 78.4 85.3 83.3
Overall 82.1 83.3 83.4

Table 5: Breakdown of accuracy with respect to classes on TREC and SICK
test sets. TE-DCNN is the proposed model while TreeNet (Cheng et al., 2018)
and SATA Tree-LSTM (Kim et al., 2019) are two previously developed models
with state-of-the-art performance (see Tables 2 and 4).

9. Conclusion

In this paper, we have presented a novel dynamic compositional model that
exploits tree structures for sentence representation. A newly introduced ARTree-370

LSTM is employed to handle the original constituency tree firstly, in which an
inner node can have arbitrary child nodes. Then a tag-level ARTree-LSTM and
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Figure 6: Distribution of errors on SICK dataset. C, N and E refer to Con-
tradiction, Neutral and Entailment, respectively. C→N means the true label is
Contradiction while the prediction is Neutral. and so on.

ID Text pair TreeNet SATA TE-DCNN Gold

1
a dog is licking a toddler E E N N
a dog is licking a baby

2
a dog is running towards a ball E E N N
a dog is running through a field and is chasing a toy

3
a deer is jumping over a fence E E N E
a deer is jumping over the enclosure

4
a man is playing soccer E E N E
a man is playing a game with a ball

5
a white and brown dog is walking through the water with difficulty N C C C
there is no white and brown dog pacing with through the water difficulty

6
there is no girl jumping into the car N C C C
one girl is jumping on the car

Table 6: Example wins and losses on SICK dataset of the proposed TE-DCNN
compared to two state-of-the-art models TreeNet (Cheng et al., 2018) and SATA
(i.e., SATA Tree-LSTM (Kim et al., 2019).) E, C and N refer to Entailment,
Contradiction and Neutral, respectively.

18



a word-level ARTree-LSTM are jointly used for sentence representation. Exper-
iments on four datasets and two NLP tasks have demonstrated the superiority
and the generalization ability of the proposed model. In future work, we plan375

to explore a new way of conducting dynamic composition over arbitrary tree
structure using hypernetworks.
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