1 2 3 4 5	Pathogenic alleles in microtubule, secretory granule and extracellular matrix-related genes in familial keratoconus							
6	Vishal Shinde ^{1#} , Nara Sobreira ^{2#} , Elizabeth Wohler ^{2#} , George Maiti ¹ , Nan Hu ¹ , Giuliana Silvestri ³ , Sonia							
7	George ³ , Jonathan Jackson ³ , Aravinda Chakravarti ⁴ , Colin E. Willoughby ^{3,5} , Shukti Chakravarti ^{1,6} *							
8 9 10 11 12 13 14 15 16 17 18 19 20	 Department of Ophthalmology, NYU Grossman School of Medicine, NY, NY McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, 21287, USA Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast, BT12 6BA Northern Ireland, UK Center for Human Genetics and Genomics, NYU Grossman School of Medicine, NY, NY Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK Department of Pathology, NYU Grossman School of Medicine, NY, NY 							
21	Vishal Shinde - <u>vishal.shinde@nyulangone.org</u>							
22	Nara Sobreira - <u>hsobreiz@jhmi.edu</u>							
23	Elizabeth Wohler - <u>esquibb1@jnmi.edu</u>							
24 25	Nan Hu - Nan Hu@nyulangone org							
26	Giuliana Silvestri - julie silvestri@belfasttrust.hscni.net							
27	Sonia George - sonia.george@belfasttrust.hscni.net							
28	Jonathan Jackson - jonathan.jackson@belfasttrust.hscni.net							
29	Aravinda Chakravarti – <u>Aravinda.Chakravarti@nyulangone.org</u>							
30	Colin E. Wiloughby - <u>c.willoughby@ulster.ac.uk</u>							
31 32 33 34 35 36 37 38 39	*Corresponding author: Shukti Chakravarti, MS., PhD Departments of Ophthalmology and Pathology NYU Langone Health Alexandria Life Sciences Center, West Tower 646-501-8464 (office) 646-501-8470 (Lab) Email: Shukti.Chakravarti@nyulangone.org							

- 40 Abstract
- 41
- 42 Keratoconus is a common corneal defect with a complex genetic basis. We explored its genetic
- 43 architecture by whole exome sequencing of affected members from 11 multiplex families of European
- 44 ancestry. By searching for pathogenic variants in genes compatible with phenotypic segregation in
- 45 families, and known to be ocular disease associated, we identified 23 heterozygous variants in 8 genes.
- 46 These include nonsynonymous single amino acid substitutions in *HSPG2*, *EML6*, *CENPF*, *NBEAL2*, *LRP1B*,
- 47 *PIK3CG*, *ITGAX* and *MRGPRD*, except *ITGAX*, where an indel and a base substitution, predicts protein
- 48 truncation. With the exception of *HSPG2*, a known corneal component, little is known about the
- 49 function of the remaining genes in the cornea. We immunolocalized the encoded proteins of all except
- 50 *ITGAX* and *MRGPRD* in the cornea. In cultured control donor stromal cells, we detected a fibrillar
- 51 cytoskeletal network of EML6, and CENPF in the basal body of primary cilia confirming these to be
- 52 components of corneal cell cytoskeleton. We also found increased serum levels of α_x (*ITGAX*), a known
- subunit of the $\alpha_x \beta_2$ leukocyte integrin, in the 3 affected families compared to 10 unrelated controls.
- 54 Overall, our study suggests two major genetic themes. First, the genes identified suggests dysregulation
- of protein trafficking and secretion, barrier tissue function and response to injury and inflammation.
- 56 Second, the eight variants in EML6, CENPF, NBEAL2, LRP1B and PIK3CG, extremely rare in the adult
- 57 unselected population, localize to highly conserved regions of the proteins, and have the greatest
- 58 evidence of involvement in keratoconus.
- 59

60

61

62 Introduction

63 Keratoconus, a relatively common ocular disease affects work-age young adults and is a leading 64 cause of cornea transplantation worldwide ^{1; 2}. Clinically, keratoconus manifests as a bilateral thinning of 65 the cornea and its conical protrusion, resulting in severe astigmatism, myopia, corneal scarring and loss of vision ³⁻⁵. Diagnosis normally occurs in the 2nd-3rd decade of life, prompted by progressive myopic 66 67 astigmatism, characteristic clinical features upon ocular examination and changes in corneal 68 topography. Although there are no curative treatments for keratoconus, if recognized at an early age 69 the progressive corneal weakening can be stabilized with corneal UVA/riboflavin cross-linking ⁶. Clinical 70 diagnosis in the early stages can be challenging as patients present with progressive myopia and 71 astigmatism, a common optometric presentation in young adults worldwide. Therefore, identifying at-72 risk individuals and early disease presentation by molecular genetic analysis could improve case 73 identification, target precious clinical resources and identify refractive surgery candidates at high risk of 74 post-laser ectasia. Understanding the genetic basis of keratoconus will also help patient stratification, 75 direct the development of new therapies based on disease pathogenesis, and lead to personalized 76 keratoconus management.

77 While a minority of keratoconus cases are syndromic, associated with Leber congenital 78 amaurosis, Down syndrome, Marfan syndrome, and other connective tissue anomalies, the most 79 common form of keratoconus is isolated. The incidence (20 – 230 cases per 100,000 individuals or 80 roughly 1/5,000 – 1/500) and prevalence (270 cases to ~2,000 per 100,000 individuals or roughly 0.2-2%) of non-syndromic keratoconus shows population differences ⁷⁻¹¹. Environmental factors certainly 81 play a role in these differences since keratoconus is exacerbated by hot dry climates ¹², eye rubbing ¹³⁻¹⁵, 82 83 allergy⁸ and contact lens wear ¹⁶. However, a strong genetic component in keratoconus has long been suggested based on higher concordance of disease in monozygotic over dizygotic twins ^{17; 18; 19}, a 84

85 positive family history in 15-18% of cases ²⁰, and a 33% higher (167-fold higher than the population) than expected risk in first degree relatives ^{21; 22}. Indeed, the genetic influence may be significantly larger than 86 87 its environmental causes. Linkage studies, candidate gene sequencing and genome-wide association 88 studies (GWAS) have identified numerous genes and loci contributing to keratoconus, but very few of these findings are either statistically significant or, if significant, replicated across studies ²³⁻²⁶. Consider, 89 for example, that pathogenic VSX1 variants in keratoconus were later deemed polymorphisms or 90 variants with minor pathogenic consequences ²⁷, and their role remains unclear. Other biologically 91 92 significant genes that are yet not validated include SOD1, LOX, COL4A3 and COL4A4 ²⁸⁻³¹. GWAS on 93 central corneal thickness (CCT), a trait with 95% heritability, used as an endophenotype to increase the 94 success of keratoconus gene discovery, led to five, FOXO1, FNDC3B, ZFN469, COL5A1 and AKAP13, significant associations with keratoconus ²². Among these, variants in the ZFN469 gene, previously 95 identified in brittle cornea syndrome, were also found in keratoconus patients ³²; however, another 96 study from Australia found no such enrichment ³³. Thus far, no single gene with large effects have been 97 98 identified, that are consistent across studies.

99 Keratoconus is not a Mendelian disorder in all cases but many multiplex families show 100 phenotypes consistent with such inheritance. Thus, one genetic model for keratoconus is its etiology 101 from individual 'dominant' susceptibility alleles at many loci, some common, others rare, with their 102 penetrance modified by environment and lifestyle factors. However, compatibility with monogenic 103 segregation does not imply that multiple genes are not involved. As recently shown for Hirschsprung 104 disease, pathogenesis may not be triggered except with the accumulation of a multiplicity of individually 105 deleterious genetic variants, be they coding or noncoding ³⁴. Thus, keratoconus could arise from the 106 interplay of multiple (oligogenic) genetic variants ³⁵. In either case, the failure of the cornea in 107 keratoconus may be a consequence of multiple dysregulations in the epithelium, stromal keratocytes, 108 assembly of the stromal ECM, or a combination of these. Microscopic and biochemical studies suggest

changes in the epithelial and stromal layers, loss of stromal cells ^{36; 37}, breaks in the Bowman's layer ³⁸,
and collagen fibril anomalies ^{39; 40}. Recent proteomic ⁴¹⁻⁴⁴ and transcriptomic studies ⁴⁵⁻⁴⁹ of the
keratoconic cornea underscore the loss of epithelial integrity, impaired cellular response to injury,
inflammation and degenerative changes in the stroma as the underlying causes of keratoconus. These
changes may be causal or consequences of fundamental defects which genomic analysis of keratoconus
cases can help resolve.

115 In this study we aim to identify specific genes by whole exome sequencing (WES), together with 116 functional studies; few such WES studies in keratoconus exist, and have been performed only in small sporadic cohorts ⁵⁰ or individual families ^{51 52}. We studied 11 Northern Irish families comprising 21 117 118 affected members, identifying pathogenic variants in 8 genes, namely, HSPG2, EML6, CENPF, LRP1B, 119 NBEAL2, ITGAX, MRGPRD and PIK3CGi, with variants in two or more families. We present genetic 120 analyses of these 8 genes and their potential functional deficits. Our results suggest that the biological 121 processes of protein trafficking and secretion, barrier tissue function and response to injury and 122 inflammation, fundamentally important to the cornea, are dysregulated in keratoconus. We need larger 123 studies of unrelated cases to distinguish between monogenic and polygenic or oligogenic inheritance. 124

125 Material and Methods

126 Familial Keratoconus Recruitment and Diagnosis

This study was approved by local Research Ethics Committees and conducted in accordance with
the Declaration of Helsinki; all participants provided written informed consent. We used familial
keratoconus patients identified at the Department of Ophthalmology, Royal Victoria Hospital, Belfast,
Northern Ireland UK (Belfast Health and Social Care Trust, UK). Families with at least 2 affected
members with non-syndromic keratoconus and available DNA were recruited to this study (Table 1).
Disease diagnosis was based on clinical examination and corneal topography ^{32; 53}. Specifically, we used

characteristic slit-lamp biomicroscopy findings (corneal thinning, Vogts' striae, or a Fleischer ring) and
dilated retinoscopy signs (scissoring red reflex and the oil droplet sign). Corneal topography, using either
the Tomey KC screening (Topographic Modeling System, software version 2.4.2J, Tomey Corp, Nagoya,
Japan), the Orbscan II (Bausch & Lomb Surgical, Orbtek Inc, Salt Lake City, Utah, USA) or Pentacam
(Oculus Optikgeräte GmbH, Wetzlar, Germany) systems confirmed diagnosis. Corneal transplantation
(penetrating or deep anterior lamellar keratoplasty) for keratoconus was sufficient to confirm diagnosis.

140 DNA extraction, whole exome sequencing and variant detection

141 DNA was extracted from leukocytes from whole blood samples using the Wizard Genomic DNA 142 Purification Kit (Whole Blood) from Promega following the manufacturer's recommendations. DNA 143 samples were sent to the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) for WES. Each 144 individual sequenced was processed using the Agilent SureSelect XT kit to capture ~52 Mb CCDS exonic 145 and flanking intronic regions ⁵⁴. Paired end 100 bp reads with the Illumina HiSeq2500 platform were 146 performed. Each read was aligned to the GRCh37 human genome reference with the Burrows-Wheeler Alignment (BWA) version 0.5.10-tpx ⁵⁵. Local realignment around indels and base call quality score 147 148 recalibration was performed using the Genome Analysis Toolkit (GATK) version 2.3-9-ge5ebf34, with 149 HaplotypeCaller/CombineGVCF/GenotypeGVCF workflows ⁵⁶. Variants were then filtered using the 150 Variant Quality Score Recalibration (VQSR) method ⁵⁷. Single nucleotide variants (SNVs) were annotated 151 by the MQRankSum, HaplotypeScore, QD, FS, MQ, ReadPosRankSum adaptive error model (6 max 152 Gaussians allowed, worst 3% used for training the negative model). HapMap3.3 (The International 153 HapMap 3 Consortium, 2010) and Omni2.5 were used as training data with HapMap3.3 used as the true 154 positive set. SNVs were filtered to obtain all variants up to the 99th percentile of positive control sites 155 (1% false negative rate). For indels the annotations of QD, FS, Haplotype Score, ReadPosRankSum were 156 used in the adaptive error model (4 max Gaussians allowed, worst 12% used for training the negative

157	model, indels that had annotations more than 10 standard deviations from the mean were excluded
158	from the Gaussian mixture model). A set of curated indels obtained from the GATK resource bundle
159	(Mills_and_1000G_gold_standard.indels.b37.vcf) were used as training and truth sites. Indels were
160	filtered to obtain all variants up to the 95th percentile of true positive sites (5% false negative rate).
161	
162	Variant Filtering
163	Using the PhenoDB Variant Analysis Tool ⁵⁸ , we prioritized rare variants, defined as those with a
164	minor allele frequency (MAF) <1%. These included functional (missense, nonsense, canonical splice site
165	variants, and indels) heterozygous and homozygous variants in each proband. Variant allele frequencies
166	were obtained from the Exome Variant Server (release ESP6500SI-V2), 1000 Genomes Project 59 ,
167	ExAC/gnomAD ⁶⁰ , and in our in-house BHCMG samples ⁵⁸ .
168	
169	Analysis Strategy
170	First, in each proband, we selected variants in previously reported keratoconus susceptibility
171	genes (www.OMIM.org), in those with a GWAS association to cornea-related traits and in those where
172	the encoded proteins have been reported as significantly changed in the keratoconus corneal proteome
173	^{24; 25; 43; 61} . Second, we selected genes with variants in two or more probands. We attempted to confirm
174	all putative causal variants by Sanger sequencing.
175	
176	Extraction and culturing of corneal stromal cells
177	Cadaverous donor corneas, unsuitable for transplantation (Lions Eye Institute for Transplant and
178	Research, Tampa, FL) were extracted with 2 mg/ml of collagenase type-I (Invitrogen; Carlsbad, CA) as
179	described ^{62; 63} , further digested with 0.25% Trypsin-EDTA (Invitrogen) and plated in DMEM: F12 media
180	containing 5% FBS and 1% antibiotic/antimycotic solution. To evoke the keratocyte phenotype,

181	fibroblasts were switched to low-glucose serum-free (LGSF) DMEM supplemented with 1% insulin,
182	transferrin, selenium (Sigma-Aldrich Corp., St. Louis, MO, USA) and 1mM phosphoascorbic acid ⁶³ . All
183	cultures were used within 4-5 passages.

- 184

Immunofluorescence staining of cell cultures 185

186 Cells were seeded into 8 well chamber slides at a density of 30,000 cells per well, allowed to 187 adhere overnight, and fixed in 4% paraformaldehyde in PBS for 10 minutes on ice, washed with Tris 188 buffered saline (TBS) and 0.01% Tween. Cells were permeabilized with 100% Ethanol, blocked in 5% 189 bovine serum albumin in TBS for 1 hour at room temperature, and incubated overnight with primary 190 antibody (Table S1) in blocking buffer. The slides were washed three times with TBS and Tween, and 191 further incubated with 5 µg/ml Alexa Fluor secondary antibody (Table S1) diluted in TBS. The nuclei 192 were counterstained with DAPI and images acquired with a Zeiss LSM 700 microscope. For co-staining of 193 CENPF and acetylated tubulin (polymerized), cells were serum starved for 10 days using low-glucose 194 serum-free (LGSF) DMEM supplemented with 1% insulin, transferrin, selenium (I3146; Sigma-Aldrich 195 Corp., St. Louis, MO, USA), 1 mM phosphoascorbic acid and 1% antibiotic/antimycotic solution.

196

197 Immunohistology of tissues

198 Sections of paraffin-embedded human donor corneas were blocked with 10 % animal serum in 199 TBS, followed by overnight incubation with primary antibody (Table S1) at 4°C. The slides were washed 200 three times with TBS, further incubated with a secondary antibody (Table S1) for 2 hours, nuclei 201 counterstained with DAPI and images acquired with a Zeiss LSM 700 microscope. 202 **RNA extraction and qRTPCR**

203 Total RNA was isolated from cultured fibroblasts from human donor (DN) corneas. Three 204 individual DN corneas were used to establish fibroblast stock cultures, as previously described ⁶⁴. Briefly,

205 the corneas were homogenized in TRIzol (Life Technologies -15596-026) at room temperature,

206 chloroform-extracted and centrifuged at 12,000g for 15 minutes and the RNA in the aqueous phase was

207 precipitated using 100% isopropanol centrifuged, washed with 75% ethanol and resuspended in RNAse-

208 free water. A cDNA Reverse Transcription kit (Biorad) was used to prepare cDNA. Each cDNA (20 ng) was

209 subjected to qRT-PCR using Applied Biosystems TaqMan assays for selected genes (Table S1) on a One

210 Step Plus instrument (Applied Biosystems). The number of cycles (Ct) needed to reach the midpoint of

211 the linear phase was noted and GAPDH was used as a housekeeping gene.

212

213

Enzyme-linked immunosorbent assay (ELISA)

214 ITGAX levels in sera were measured using a Human ITGAX ELISA kit (Biobool, E020155). In brief, 215 ITGAX antibody precoated NUNC Maxisorp plates were incubated with the serum samples, washed and 216 incubated with the detection antibody, washed, incubated with Streptavidin-HRP, developed with TMB, 217 the reaction stopped and absorbance measured at 450 nm (VERSAmax microplate reader) plate 218 reader.

219

220 Results

221 **Proband families**

222 Eleven families with a total of 21 cases were recruited for this study (Table. 1). Mean age at 223 diagnosis was 19 years, with the minimum and maximum ages being 12 and 46 years, respectively. 224 Clinically, 16 of the 21 cases had stromal thinning, 10 of 21 showed Fleischer ring and 9 of 21 had an 225 irregular retinoscopy reflex. Ten patients reported mild allergies, hay fever or eczema, while 7 of 21 226 cases had unilateral or bilateral corneal surgery (Table 1). The families were given a BHCMG (BH) ID, 227 with the extension _1 assigned to the proband, _2 to the mother, _3 to the father, and _4, etc. to 228 affected siblings. Most families were consistent with a Mendelian pattern of inheritance: families

BH8959, BH8964, BH8965 and BH8967 were compatible with an autosomal recessive inheritance
pattern, while BH8960, BH8966 and BH8970 were compatible with an autosomal dominant inheritance
pattern.

- 232
- 233 Candidate genes identified through WES analysis.

234 We identified 17 rare (MAF<0.01), coding, non-synonymous or nonsense, heterozygous variants 235 in genes with an ocular phenotype association (Table S2), of which three, HSPG2, EML6 and CENPF have 236 variants in more than one family from the current study. An additional five genes, LRP1B, ITGAX, PIK3CG, 237 NBEAL2 and MRGPRD harbor rare heterozygous variants in 2 or more probands. These 8 candidate 238 genes contain a total of 23 rare variants; 18 are potentially pathogenic based on their CADD scores being 239 higher than 20 (1% false positive rate), while 5 with CADD score <20 may have mild functional deficits 240 (Table 2). With the exception of HSPG2 (or perlecan), which is a major component of the corneal 241 basement membrane, the remaining genes have unknown roles, if any, in the cornea. We placed the 242 genes in three broad functional categories important to the cornea, based on their own or their closest 243 paralogs' functions in other tissues: 1) cytoskeletal structure, protein trafficking and secretion by the 244 epithelial and stromal cells are centrally important for optimal nutrient distribution and secretion of 245 large proteins in a structurally confined, rigid and avascular cornea; 2) barrier protection is integral to 246 the cornea as the outermost layer of the eye; and, 3) response to tissue injury is important to the cornea 247 to restrict immune response and inflammation that can compromise corneal transparency, as discussed 248 below.

249

250 Cytoskeletal, protein trafficking and vesicular secretion-related genes

251 CENPF and EML6 are potentially involved in microtubule association and cytoskeletal functions.
 252 *EML6* encodes a large protein (1958 aa) of the microtubule associated protein (MAP) family. We

253 identified the substitutions, p.D256H and p.S947L in two Tryp-Asp (WD) dipeptide repeat domains ⁶⁵ 254 which are highly conserved (Figure S1), and potentially pathogenic sites based on their CADD scores 255 (Table 2) The p.D256H substitution affects the atypical tandem β -propellar domain shared by all 256 mammalian EMLs ⁶⁶, and possibly perturbs microtubule interactions, although no direct evidence 257 supports microtubule binding by EML6. Little is known about EML6 in the eye, except by GWAS ⁶⁷ in 258 Asians, its association ($p = 2.13 \times 10^{-6}$) with refractive astigmatism, a strong endophenotype of 259 keratoconus. CENPF encodes a large (3,114 amino acid, 350 kDa) centromeric protein of the nuclear 260 matrix and envelope in the G2/S phase, and is associated with the kinetochore complex linking 261 chromosomes to microtubules, enabling chromosome movement during cell division ⁶⁸. The p.L322P 262 change in CENPF affects a highly conserved (Table 2, Figure S1) cytoplasmic localization domain, where 263 introduction of a proline can affect protein folding and is potentially damaging. The p.R2309H, within a 264 kinetochore-microtubule interaction site, while rare in the general population, is likely mild or has no 265 effect (CADD score = 1.15). Two studies reported extremely rare CENPF nonsense, protein-truncating, 266 and missense variants, that cause mid to late gestational lethality and milder ciliopathies with rare 267 homozygous recessives or compound heterozygotes ^{69; 70}. NBEAL2 encodes a cellular scaffold protein 268 (2750 amino acids, 302kDa), which has not been detected in the cornea before, except its inclusion in 269 the keratoconus library in NEIbank (neibank.nei.nih.gov). We identified three single amino acid 270 substitutions of which two, p.R659Q and p.V2118I are deemed pathogenic. The first occurs in a 271 conserved region in a 150 amino acid long concanavalin-A like lectin binding domain that could interact 272 with oligosaccharides (Figure S1). The V21181 substitution affects the highly conserved BEACH domain 273 (Figure S1), found in 8 other related proteins in humans that may regulate vesicular transport and are 274 associated with lysosome-related organelle diseases. Missense, nonsense, frameshift variants and small 275 deletions in NBEAL2, including its BEACH domain, cause an extremely rare bleeding disorder known as

276 gray platelet syndrome (GPS) where secretory α granules are defective in microscopically gray appearing 277 platelets ⁷¹⁻⁷³; none of the GPS variants were detected in keratoconus families.

- 278
- 279 Corneal barrier protection related gene

280 We placed HSPG2/perlecan in this category as it is a major component of the corneal basement 281 membrane, detected in keratoconus library in NEIbank (neibank.nei.nih.gov), essential for maintaining a 282 stratified epithelium, and providing a physical extracellular matrix barrier for the eye ⁷⁴. The p.T2436N 283 change, rare (1.6x10⁻⁵) in the control population, occurs in the long immunoglobulin repeat carrying 284 domain IV believed to form a scaffold platform for protein-protein interactions in the ECM. The second 285 p.A4328T substitution affects the terminal domain V, implicated in cell adhesion, regulation of 286 angiogenesis and autophagy. Both variants may be damaging but neither are highly conserved in 100 287 vertebrates (Table 2). Other HSPG2 variants have been identified in chondrodysplasias such as Schwartz-288 Jampel syndrome type 1 with autosomal recessive inheritance in which affected individuals can display 289 microcornea 75.

290

291 Response to injury and inflammation related genes

292 The LRP1B, ITGAX, PIK3CG and MRGPRD genes may function in corneal response to injury and 293 inflammation. We identified 4 missense variants in LRP1B encoding a large, 4,599 aa long, single-pass 294 type I transmembrane LDL receptor family member. Like other LDL receptors, LRP1B regulates 295 cholesterol internalization via clathrin-mediated endocytosis, lysosomal transport, degradation and metabolism. Three of the variants with frequencies ranging from 1.3×10^{-4} to 4.25×10^{-5} are extremely 296 297 rare in the control population. However, all four encode potentially damaging substitutions, based on 298 their CADD scores, and occur in highly conserved regions within the large extracellular segment of 14 299 EGF-like domains, 32 LDL receptor class A and 36 LDL receptor class B domains.

300

301	ITGAX, encoding a leukocyte-specific integrin subunit (CD11c), carries four different variants in
302	three families. Two families with missense variants, p.L239S (BH9870), and p.V1019M (BH8966), while
303	the third family has an indel, and a base substitution at the same site with consequent protein
304	truncation. ITGAX/CD11c, not expressed by resident cells of the cornea, is expressed by monocytes and
305	granulocytes, where it dimerizes with the eta 2 integrin subunit to form the C3b complement component
306	receptor 4 on leukocytes ⁷⁶ . Using ELISA, we detected significantly higher levels of secreted ITGAX/CD11c
307	in the plasma of the four patients from these three families compared to 10 healthy controls. It is not
308	clear why circulating ITGAX/CD11c should increase in patients with an amino acid substitution or an
309	ITGAX truncation (Figure 1). A possible explanation is that these variants either directly or indirectly
310	affect complexation of CD11c with the eta 2 subunit, causing increased shedding of ITGAX/CD11c in
311	circulation, a hypothesis that requires further study.

312

313 We identified three rare variants in PIK3CG, two of which are predicted to have mild 314 consequences. The third, p.F694L (BH8970) substitution is extremely rare (4 x10⁻⁶) in the control 315 population, conserved in vertebrates (Figure S1), may affect substrate presentation to the kinase 316 complex, and potentially damaging. PIK3CG is a phosphoinositide 3 kinase that phosphorylates PIP2 to 317 PIP3, interacts with GPCRs, and regulates AKT signaling, affecting a range of functions from platelet 318 aggregation, thrombosis, response to tissue injury and immune cell functions. We identified two 319 variants in MRGPRD in three families, none considered to be damaging (Table 2). MRGPRD encodes a 320 GPCR known to be expressed by primary sensory neurons and possibly regulating itch and pain sensations ^{77; 78}. Further studies are needed to define functions of MRGPRD in the eye and its potential 321 322 connection with corneal health.

324 Expression of candidate genes in the cornea and corneal tissues

325 Earlier RNA sequencing studied by us detected all candidate gene transcripts except MRGPRD, in 326 human donor and keratoconus corneas. Nevertheless, here we used Tagman qPCR to assess expression 327 of these 8 genes in a human corneal epithelial cell line hTCEpi, and low passage primary donor stromal 328 fibroblasts (Figure 2). We considered Ct values of ≥ 36 as not expressed, values $29 \geq 34$ as very low 329 expression, and values <29 as high expression (Table 3). HSPG2 is expressed at high levels in the hTCEpi 330 and cultured stromal fibroblasts. CENPF is expressed more strongly in the stromal fibroblasts than in the 331 hTCEpi epithelial cells, while we detected low levels of *EML6* transcripts in both cell types. *NBEAL2* is 332 robustly expressed in the epithelial cell layers. PIK3CG and MRGPRD expressions are undetectable in 333 both cell cultures, while *ITGAX* and *LRP1B* are barely detectable in epithelial and stromal cultures 334 respectively.

335 We next attempted to localize the proteins encoded by EML6, CENPF, NBEAL2, PIK3CG and 336 LRP1B in the human cornea and cultured corneal cells. We excluded ITGAX and MRGPRD as by qPCR 337 these are not expressed in the cornea, and HSPG2 as it is a well-documented ECM proteoglycan present 338 in the corneal basement membrane and stromal pericellular matrix. Donor cornea sections show strong 339 immunofluorescence staining of CENPF in the epithelium, in particular the basal epithelial layer and a 340 subset of the stromal keratocytes in the central cornea (Figure 3 A). The staining is primarily nuclear, 341 consistent with CENPF being a centromeric protein. CENPF is known to localize to the basal body of 342 primary cilium and primary cilia have been visualized in the mouse cornea ⁷⁹. However, as there are no 343 reports of CENPF in primary cilia of corneal cells, we visualized primary cilia in serum-starved, quiescent 344 donor corneal stromal fibroblasts by immunostaining for polymerized acetylated tubulin, and detected 345 CENPF in the basal body by immunostaining (Figure 3B). EML6 shows extracellular staining of all layers 346 of the epithelium, and lamellar structures in the stroma (Figure 4A). Stromal fibroblast cultures show 347 staining of fibrillar EML6 structures that form a cytoskeletal nest around the nucleus, with little

colocalization with microtubules, except where the EML6 fibrils seemed to traverse microtubules (Figure
4B, video in supplemental materials). We detected strong NBEAL2 staining in all layers of the corneal
epithelium and some stromal keratocytes (Figure 5 A). Cultured stromal fibroblasts show punctate
cytoplasmic staining of NBEAL2 with some colocalization with tubulin in the cell periphery (Figure 5B
video in supplemental materials).

353

354 Discussion

355 Exome sequence analysis of genomic DNA from 21 members of 11 multiplex non-syndromic 356 keratoconus families identified 23 pathogenic variants in 8 genes (CENPF, EML6, NBEAL2, HSOG2, LRP1B, 357 ITGAX, PIK3CG and MRGPRD) based on the predicted change in the protein, sequence conservation 358 across 100 vertebrates and their rare frequencies in the adult unselected population. All of the 359 identified pathogenic variants, except the S947L substitution in EML6, were confirmed by Sanger 360 sequencing. Furthermore, 8 variants in five genes, EML6 (p.D256H and p.S947L), CENPF (p.L322P), 361 NBEAL2 (p.R659Q and p.V2118I), LRP1B (p.T2435I and p.N3034S), and PIK3CG (p.F694L) in four of the 362 families appear to be particularly consequential (Figure S1). Additionally, we need further studies of 363 ITGAX, which although not expressed in the cornea, we demonstrate harbors variants with a detectable 364 plasma phenotype. Given the known roles of ITGAX, we hypothesize that the pathogenic variants affect 365 infiltrating and resident immune cells of the cornea and contribute to keratoconus in a non-cell 366 autonomous manner. These results emphasize that keratoconus could arise from both corneal-367 autonomous and non-cell autonomous effects. These results also emphasize that EML6, CENPF, NBEAL2, 368 *LRP1B* and *PIK3CG* play key roles in the physiology of the cornea. 369 The cornea has multiple protective mechanisms to remove abnormal cytotoxic proteins, DNA 370 and lipids produced by oxidative damage-induced reactive oxygen and nitrogen species. Keratoconus 371 has long been postulated to be the result of disruptions in these protective mechanisms with

downstream extracellular matrix remodeling, collagen structural anomalies, scarring and vison loss ⁸⁰. 372 373 SOD1 (super oxide dismutase), and LOX, COL5A1, COL4A3 and COL4A4 are some of the previously 374 identified candidate genes that are consistent with this idea. From our data here, LRP1B may have a 375 significant role in lysosomal degradation of oxidative stress-associated lipid byproducts and their 376 removal from the cornea. All four variants in our three families are predicted to be damaging and causal in keratoconus. NBEAL2, also associates with lysosome related organelles⁸¹, interacts with the guanine 377 378 nucleotide exchange factor DOCK7 and the ER export factor SEC16A⁸², and regulates actin 379 reorganization and vesicular transport. Disruptions in lysosome related organelle functions are connected to lysosomal storage diseases and other ocular abnormalities⁸³, and we hypothesize that 380 381 keratoconus may have shared pathogenesis.

382 UV light and environmental stress-induced cell death and autophagy is highly relevant to the 383 cornea. Our earlier proteomic studies of keratoconus had suggested alterations in cell survival and AKT 384 signaling in keratoconus ^{63; 64}. This is further emphasized by our finding of significant *PIK3CG* variants in 385 keratoconus families, as PIK3CG encodes a subunit of the phosphoinositide kinase that phosphorylates PIP2 to PIP3, and is integral to AKT signaling, WNT signaling, previously implicated in keratoconus⁸⁴ and 386 387 cell survival. Consistently, FOXO1, identified as a central corneal thickness and keratoconus susceptibility 388 gene by a GWAS meta-analysis²², is a major regulator of cellular response to stress and nutrient deprivation, and is itself regulated by AKT⁸⁵. In addition, our recent keratoconus transcriptomic analyses 389 390 identified dysregulated expression of NRF2-mediated antioxidant genes⁴⁹, further supporting the 391 connection between impaired resolution of oxidative stress and keratoconus. 392 Our findings of EML6 and CENPF variants reveal a link between keratoconus and cytoskeletal 393 functions. Microtubules have an important, but poorly understood role in protein traffic/export, energy

394 and nutrient dissemination ⁸⁶, of relevance to the avascular, nutrient restricted cornea. Moreover, the

395 stratified epithelium and the mesenchymal keratocytes show tissue-level anterior to posterior polarity

396 where morphogen gradients, cell-cell and cell-matrix communications are regulated by cytoskeletal 397 proteins. Related to the sea urchin EMAP, the mammalian EML family of six MAPs (microtubule 398 associated proteins), are relatively understudied. EML1-4 are known to associate with and regulate 399 microtubule dynamics, but EML5 or 6 have not been demonstrated to associate with microtubules ⁶⁶. 400 Our immunofluorescence staining shows discrete points of overlap between the EML6 cytoskeletal 401 network and microtubules in cultured keratocytes. We detected cytoplasmic and nuclear staining of 402 CENPF in the epithelium and stroma of the cornea, and typical staining of the basal body of primary 403 cilium in cultured stromal keratocytes. In quiescent cells, the primary cilium is a microtubule containing 404 antenna-like organelle near the plasma membrane, and a specialized area of hedgehog, TGF β , Wnt-405 frizzled and other ligand-receptor interactions ^{87; 88}. These signal networks and the primary cilium play important roles in the development and patterning of the cornea ⁷⁹. Rare *CENPF* variants have been 406 407 reported to cause ciliopathies ^{69; 70; 89}, which raises the possibility that the CENPF variants we detected in 408 keratoconus perturb primary cilia functions in the cornea, and that keratoconus falls within the 409 ciliopathy spectrum. Most intriguingly, this implies that multiple genes that regulate planar cell polarity 410 and tissue-level polarity ^{90; 91} in the developing and adult cornea may be important in keratoconus.

411

412 Our genetic and functional data suggest that although single variants can have large impact in 413 some families, keratoconus largely occurs through the effects of multiple variants that disrupt major 414 physiological processes in the cornea. We speculate that the heterozygous non-synonymous variants we 415 detected in the Northern Irish families are likely to impact major biological processes in the cornea 416 through gain of function effects, except for the protein-truncation indel in *ITGAX*. Notably, each affected 417 family member carries more than one genetic variant, and even in families where disease appears 418 Mendelian inheritance compatible, causation is likely oligogenic. Multiple pathogenic variants residing in 419 an individual with a high susceptibility genome, such as individuals with low CCT from polygenic

420	contributions, can result in keratoconus but not when it resides in a low susceptibility genome. This
421	modulation of penetrance by genetic variation could equally occur through environmental factors
422	affecting the same processes. In the future it will be useful to perform whole genome genotyping to
423	assess polygenic background risk in all keratoconus patients to evaluate the genetic contributions of
424	individual variants and genes.
425	Taken together, our findings of pathogenic variants in EML6 and CENPF link microtubule and
426	primary cilia-related functions to keratoconus. On the other hand, variants in <i>PIK3CG</i> are consistent with
427	our previous studies that suggest AKT cell signaling is an important cell survival regulatory network in
428	keratoconus. Finally, pathogenic variants in the leukocyte integrin ITGAX suggests a role for a peripheral
429	blood-derived regulator in keratoconus and a long sought-after potential serum biomarker for some
430	forms of keratoconus.
431	
432	Acknowledgments: Clinical data collection and DNA to CEW from Northern Ireland Research and
433	Development Office RRG (grant number 4.46) and Fight for Sight (grant number 1787).
434	Sequencing and other support from Baylor Hopkins Center for Mendelian Genomics to NS and NIH
435	support (EY026104) to SC
436	
437	Conflict of Interest: No conflict of interests for any of the authors.
438	
439	
440	
441	
442	
443	
445	

444			
445			
446			
447			
448			
449			
450			
451			
452			
453			
454			
455			
456			
457			
458			
459			
460			

461 References

- 462
- 463 1. Jhanji, V., Sharma, N., and Vajpayee, R.B. (2011). Management of keratoconus: current
 464 scenario. Br J Ophthalmol 95, 1044-1050.
- 2. Cassidy, D., Beltz, J., Jhanji, V., and Loughnan, M.S. (2013). Recent advances in corneal
 transplantation for keratoconus. Clinical & experimental optometry : journal of the
 Australian Optometrical Association 96, 165-172.
- 468 3. Ihalainen, A. (1986). Clinical and epidemiological features of keratoconus genetic and
 469 external factors in the pathogenesis of the disease. Acta Ophthalmol Suppl 178, 1-64.
- 470 4. Rabinowitz, Y.S. (1998). Keratoconus. Survey of ophthalmology 42, 297-319.
- 5. Soiberman, U., Foster, J.W., Jun, A.S., and Chakravarti, S. (2017). Pathophysiology of
 Keratoconus: What Do We Know Today. Open Ophthalmol J 11, 252-261.
- 473 6. Wollensak, G., Spoerl, E., and Seiler, T. (2003). Riboflavin/ultraviolet-a-induced collagen
 474 crosslinking for the treatment of keratoconus. Am J Ophthalmol 135, 620-627.
- 475 7. Godefrooij, D.A., de Wit, G.A., Uiterwaal, C.S., Imhof, S.M., and Wisse, R.P. (2017). Age476 specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. Am
 477 J Ophthalmol 175, 169-172.
- 8. Hashemi, H., Heydarian, S., Hooshmand, E., Saatchi, M., Yekta, A., Aghamirsalim, M.,
 Valadkhan, M., Mortazavi, M., Hashemi, A., and Khabazkhoob, M. (2019). The
 Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis.
 Cornea.
- 482 9. Nielsen, K., Hjortdal, J., Aagaard Nohr, E., and Ehlers, N. (2007). Incidence and prevalence of
 483 keratoconus in Denmark. Acta Ophthalmol Scand 85, 890-892.
- 484 10. Assiri, A.A., Yousuf, B.I., Quantock, A.J., and Murphy, P.J. (2005). Incidence and severity of
 485 keratoconus in Asir province, Saudi Arabia. Br J Ophthalmol 89, 1403-1406.
- 486 11. Jonas, J.B., Nangia, V., Matin, A., Kulkarni, M., and Bhojwani, K. (2009). Prevalence and
 487 associations of keratoconus in rural maharashtra in central India: the central India eye
 488 and medical study. Am J Ophthalmol 148, 760-765.
- 489 12. Cingu, A.K., Cinar, Y., Turkcu, F.M., Sahin, A., Ari, S., Yuksel, H., Sahin, M., and Caca, I. (2013).
 490 Effects of vernal and allergic conjunctivitis on severity of keratoconus. Int J Ophthalmol
 491 6, 370-374.
- 492 13. Bawazeer, A.M., Hodge, W.G., and Lorimer, B. (2000). Atopy and keratoconus: a
 493 multivariate analysis. Br J Ophthalmol 84, 834-836.
- 494 14. Krachmer, J.H. (2004). Eye rubbing can cause keratoconus. Cornea 23, 539-540.
- 495 15. Balasubramanian, S.A., Pye, D.C., and Willcox, M.D. (2013). Effects of eye rubbing on the
 496 levels of protease, protease activity and cytokines in tears: relevance in keratoconus.
 497 Clinical & experimental optometry : journal of the Australian Optometrical Association
 498 96, 214-218.
- 499 16. Macsai, M.S., Varley, G.A., and Krachmer, J.H. (1990). Development of keratoconus after
 500 contact lens wear. Patient characteristics. Arch Ophthalmol 108, 534-538.
- 17. Parker, J., Ko, W.W., Pavlopoulos, G., Wolfe, P.J., Rabinowitz, Y.S., and Feldman, S.T. (1996).
 Videokeratography of keratoconus in monozygotic twins. Journal of refractive surgery
 12, 180-183.

- 18. Weed, K.H., MacEwen, C.J., and McGhee, C.N. (2006). The variable expression of
 keratoconus within monozygotic twins: dundee University Scottish Keratoconus Study
 (DUSKS). Cont Lens Anterior Eye 29, 123-126.
- 507 19. Tuft, S.J., Hassan, H., George, S., Frazer, D.G., Willoughby, C.E., and Liskova, P. (2012).
 508 Keratoconus in 18 pairs of twins. Acta Ophthalmol 90, e482-486.
- 20. Szczotka-Flynn, L., Slaughter, M., McMahon, T., Barr, J., Edrington, T., Fink, B., Lass, J., Belin,
 M., and Iyengar, S.K. (2008). Disease severity and family history in keratoconus. Br J
 Ophthalmol 92, 1108-1111.
- 512 21. Wang, Y., Rabinowitz, Y.S., Rotter, J.I., and Yang, H. (2000). Genetic epidemiological study of
 513 keratoconus: evidence for major gene determination. American journal of medical
 514 genetics 93, 403-409.
- 22. Lu, Y., Vitart, V., Burdon, K.P., Khor, C.C., Bykhovskaya, Y., Mirshahi, A., Hewitt, A.W., Koehn,
 D., Hysi, P.G., Ramdas, W.D., et al. (2013). Genome-wide association analyses identify
 multiple loci associated with central corneal thickness and keratoconus. Nature genetics
 45, 155-163.
- 519 23. Nielsen, K., Hjortdal, J., Pihlmann, M., and Corydon, T.J. (2012). Update on the keratoconus
 520 genetics. Acta Ophthalmol.
- 521 24. Chang, H.Y., and Chodosh, J. (2013). The genetics of keratoconus. Seminars in522 ophthalmology 28, 275-280.
- 523 25. Bykhovskaya, Y., Margines, B., and Rabinowitz, Y.S. (2016). Genetics in Keratoconus: where
 524 are we? Eye and vision 3, 16.
- 525 26. Mas Tur, V., MacGregor, C., Jayaswal, R., O'Brart, D., and Maycock, N. (2017). A review of
 526 keratoconus: Diagnosis, pathophysiology, and genetics. Survey of ophthalmology 62,
 527 770-783.
- 528 27. Dash, D.P., George, S., O'Prey, D., Burns, D., Nabili, S., Donnelly, U., Hughes, A.E., Silvestri,
 529 G., Jackson, J., Frazer, D., et al. (2010). Mutational screening of VSX1 in keratoconus
 530 patients from the European population. Eye (Lond) 24, 1085-1092.
- 531 28. Stabuc-Silih, M., Strazisar, M., Hawlina, M., and Glavac, D. (2010). Absence of pathogenic
 532 mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea 29, 172-176.
- 533 29. Saee-Rad, S., Hashemi, H., Miraftab, M., Noori-Daloii, M.R., Chaleshtori, M.H., Raoofian, R.,
 534 Jafari, F., Greene, W., Fakhraie, G., Rezvan, F., et al. (2011). Mutation analysis of VSX1
 535 and SOD1 in Iranian patients with keratoconus. Mol Vis 17, 3128-3136.
- 30. Bykhovskaya, Y., Li, X., Epifantseva, I., Haritunians, T., Siscovick, D., Aldave, A., SzczotkaFlynn, L., Iyengar, S.K., Taylor, K.D., Rotter, J.I., et al. (2012). Variation in the lysyl oxidase
 (LOX) gene is associated with keratoconus in family-based and case-control studies.
 Invest Ophthalmol Vis Sci 53, 4152-4157.
- 540 31. Kokolakis, N.S., Gazouli, M., Chatziralli, I.P., Koutsandrea, C., Gatzioufas, Z., Peponis, V.G.,
 541 Droutsas, K.D., Kalogeropoulos, C., Anagnou, N., Miltsakakis, D., et al. (2014).
 542 Polymorphism analysis of COL4A3 and COL4A4 genes in Greek patients with
 543 keratoconus. Ophthalmic Genet 35, 226-228.
- 32. Lechner, J., Porter, L.F., Rice, A., Vitart, V., Armstrong, D.J., Schorderet, D.F., Munier, F.L.,
 Wright, A.F., Inglehearn, C.F., Black, G.C., et al. (2014). Enrichment of pathogenic alleles
 in the brittle cornea gene, ZNF469, in keratoconus. Human molecular genetics 23, 55275535.

- 33. Lucas, S.E.M., Zhou, T., Blackburn, N.B., Mills, R.A., Ellis, J., Leo, P., Souzeau, E., Ridge, B.,
 Charlesworth, J.C., Brown, M.A., et al. (2017). Rare, Potentially Pathogenic Variants in
 ZNF469 Are Not Enriched in Keratoconus in a Large Australian Cohort of European
 Descent. Invest Ophthalmol Vis Sci 58, 6248-6256.
- 34. Tilghman, J.M., Ling, A.Y., Turner, T.N., Sosa, M.X., Krumm, N., Chatterjee, S., Kapoor, A.,
 Coe, B.P., Nguyen, K.H., Gupta, N., et al. (2019). Molecular Genetic Anatomy and Risk
 Profile of Hirschsprung's Disease. N Engl J Med 380, 1421-1432.
- 35. Kriszt, A., Losonczy, G., Berta, A., Vereb, G., and Takacs, L. (2014). Segregation analysis
 suggests that keratoconus is a complex non-mendelian disease. Acta Ophthalmol 92,
 e562-568.
- 36. Efron, N., and Hollingsworth, J.G. (2008). New perspectives on keratoconus as revealed by
 corneal confocal microscopy. Clinical & experimental optometry : journal of the
 Australian Optometrical Association 91, 34-55.
- 37. Erie, J.C., Patel, S.V., McLaren, J.W., Nau, C.B., Hodge, D.O., and Bourne, W.M. (2002).
 Keratocyte density in keratoconus. A confocal microscopy study(a). Am J Ophthalmol
 134, 689-695.
- 38. Shetty, R., Vunnava, K.P., Dhamodaran, K., Matalia, H., Murali, S., Jayadev, C., Murugeswari,
 P., Ghosh, A., and Das, D. (2019). Characterization of Corneal Epithelial Cells in
 Keratoconus. Transl Vis Sci Technol 8, 2.
- 39. Hayes, S., Boote, C., Tuft, S.J., Quantock, A.J., and Meek, K.M. (2007). A study of corneal
 thickness, shape and collagen organisation in keratoconus using videokeratography and
 X-ray scattering techniques. Exp Eye Res 84, 423-434.
- 40. Mikula, E., Winkler, M., Juhasz, T., Brown, D.J., Shoa, G., Tran, S., Kenney, M.C., and Jester,
 J.V. (2018). Axial mechanical and structural characterization of keratoconus corneas. Exp
 Eye Res 175, 14-19.
- 573 41. Nielsen, K., Vorum, H., Fagerholm, P., Birkenkamp-Demtroder, K., Honore, B., Ehlers, N., and
 574 Orntoft, T.F. (2006). Proteome profiling of corneal epithelium and identification of
 575 marker proteins for keratoconus, a pilot study. Exp Eye Res 82, 201-209.
- 576 42. Joseph, R., Srivastava, O.P., and Pfister, R.R. (2011). Differential epithelial and stromal
 577 protein profiles in keratoconus and normal human corneas. Exp Eye Res 92, 282-298.
- 43. Chaerkady, R., Shao, H., Scott, S.G., Pandey, A., Jun, A.S., and Chakravarti, S. (2013). The
 keratoconus corneal proteome: Loss of epithelial integrity and stromal degeneration. J
 Proteomics 87, 122-131.
- 44. Shinde, V., Hu, N., Renuse, S., Mahale, A., Pandey, A., Eberhart, C., Stone, D., Al-Swailem,
 S.A., Maktabi, A., and Chakravarti, S. (2019). Mapping Keratoconus Molecular Substrates
 by Multiplexed High-Resolution Proteomics of Unpooled Corneas. OMICS.
- 45. Chakravarti, S., Salzberg, S., Gabriel, S., Daoud, Y., Foster, JW., Jun, AS. and Stark, W. (2015).
 Keratoconus transcriptome analysis by RNA-Seq of individual corneas identifies
 dysregulated cell survival and mesenchymal regulatory programs. Investigative
 Ophthalmology and Visual Sciences ARVO Annual Conference Abstract.
- 46. Kabza, M., Karolak, J.A., Rydzanicz, M., Szczesniak, M.W., Nowak, D.M., GinterMatuszewska, B., Polakowski, P., Ploski, R., Szaflik, J.P., and Gajecka, M. (2017). Collagen
 synthesis disruption and downregulation of core elements of TGF-beta, Hippo, and Wnt

- 591 pathways in keratoconus corneas. European journal of human genetics : EJHG 25, 582-592 590.
- 47. Szczesniak, M.W., Kabza, M., Karolak, J.A., Rydzanicz, M., Nowak, D.M., GinterMatuszewska, B., Polakowski, P., Ploski, R., Szaflik, J.P., and Gajecka, M. (2017).
- 595 KTCNIncDB-a first platform to investigate IncRNAs expressed in human keratoconus and 596 non-keratoconus corneas. Database (Oxford) 2017.
- 48. You, J., Corley, S.M., Wen, L., Hodge, C., Hollhumer, R., Madigan, M.C., Wilkins, M.R., and
 Sutton, G. (2018). RNA-Seq analysis and comparison of corneal epithelium in
 keratoconus and myopia patients. Sci Rep 8, 389.
- 49. Shinde, V., Hu, N., Mahale, A., Maiti, G., Daoud, Y., Eberhart, C.G., Maktabi, A., Jun, A.S., AlSwailem, S.A., and Chakravarti, S. (2020). RNA sequencing of corneas from two
 keratoconus patient groups identifies potential biomarkers and decreased NRF2antioxidant responses. Sci Rep 10, 9907.
- 50. Xu, L., Yang, K., Fan, Q., Gu, Y., Zhang, B., Pang, C., and Ren, S. (2020). Exome sequencing
 identification of susceptibility genes in Chinese patients with keratoconus. Ophthalmic
 Genet, 1-8.
- 51. Khaled, M.L., Bykhovskaya, Y., Gu, C., Liu, A., Drewry, M.D., Chen, Z., Mysona, B.A., Parker,
 E., McNabb, R.P., Yu, H., et al. (2019). PPIP5K2 and PCSK1 are Candidate Genetic
 Contributors to Familial Keratoconus. Sci Rep 9, 19406.
- 52. Lin, Q., Zheng, L., Shen, Z., and Jie, L. (2019). A Novel Splice-Site Variation in COL5A1 Causes
 Keratoconus in an Indian Family. J Ophthalmol 2019, 2851380.
- 53. Lechner, J., Bae, H.A., Guduric-Fuchs, J., Rice, A., Govindarajan, G., Siddiqui, S., Abi Farraj, L.,
 Yip, S.P., Yap, M., Das, M., et al. (2013). Mutational analysis of MIR184 in sporadic
 keratoconus and myopia. Invest Ophthalmol Vis Sci 54, 5266-5272.
- 54. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria,
 A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis of protein-coding
 genetic variation in 60,706 humans. Nature 536, 285-291.
- 55. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
 transform. Bioinformatics 25, 1754-1760.
- 56. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K.,
 Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: a
 MapReduce framework for analyzing next-generation DNA sequencing data. Genome
 Res 20, 1297-1303.
- 57. DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A.,
 del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery
 and genotyping using next-generation DNA sequencing data. Nature genetics 43, 491498.
- 58. Sobreira, N., Schiettecatte, F., Boehm, C., Valle, D., and Hamosh, A. (2015). New tools for
 Mendelian disease gene identification: PhenoDB variant analysis module; and
 GeneMatcher, a web-based tool for linking investigators with an interest in the same
 gene. Hum Mutat 36, 425-431.
- 59. Genomes Project, C., Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M.,
 Handsaker, R.E., Kang, H.M., Marth, G.T., and McVean, G.A. (2012). An integrated map
 of genetic variation from 1,092 human genomes. Nature 491, 56-65.

- 60. Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins, R.L.,
 Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al. (2020). The mutational constraint
 spectrum quantified from variation in 141,456 humans. Nature 581, 434-443.
- 638 61. MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A.,
 639 Milano, A., Morales, J., et al. (2017). The new NHGRI-EBI Catalog of published genome640 wide association studies (GWAS Catalog). Nucleic Acids Res 45, D896-D901.
- 641 62. Scott, S.G., Jun, A.S., and Chakravarti, S. (2011). Sphere formation from corneal keratocytes
 642 and phenotype specific markers. Exp Eye Res 93, 898-905.
- 63. Foster, J.W., Shinde, V., Soiberman, U.S., Sathe, G., Liu, S., Wan, J., Qian, J., Dauoud, Y.,
 Pandey, A., Jun, A.S., et al. (2018). Integrated Stress Response and Decreased ECM in
 Cultured Stromal Cells From Keratoconus Corneas. Invest Ophthalmol Vis Sci 59, 29772986.
- 647 64. Foster, J., Wu, W.H., Scott, S.G., Bassi, M., Mohan, D., Daoud, Y., Stark, W.J., Jun, A.S., and
 648 Chakravarti, S. (2014). Transforming growth factor beta and insulin signal changes in
 649 stromal fibroblasts of individual keratoconus patients. PloS one 9, e106556.
- 65. Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common
 architecture for diverse functions. Trends Biochem Sci 24, 181-185.
- 652 66. Fry, A.M., O'Regan, L., Montgomery, J., Adib, R., and Bayliss, R. (2016). EML proteins in 653 microtubule regulation and human disease. Biochem Soc Trans 44, 1281-1288.
- 67. Li, Q., Wojciechowski, R., Simpson, C.L., Hysi, P.G., Verhoeven, V.J., Ikram, M.K., Hohn, R.,
 Vitart, V., Hewitt, A.W., Oexle, K., et al. (2015). Genome-wide association study for
 refractive astigmatism reveals genetic co-determination with spherical equivalent
 refractive error: the CREAM consortium. Hum Genet 134, 131-146.
- 658 68. Monda, J.K., and Cheeseman, I.M. (2018). The kinetochore-microtubule interface at a
 659 glance. J Cell Sci 131.
- 660 69. Waters, A.M., Asfahani, R., Carroll, P., Bicknell, L., Lescai, F., Bright, A., Chanudet, E., Brooks,
 661 A., Christou-Savina, S., Osman, G., et al. (2015). The kinetochore protein, CENPF, is
 662 mutated in human ciliopathy and microcephaly phenotypes. J Med Genet 52, 147-156.
- 70. Filges, I., Bruder, E., Brandal, K., Meier, S., Undlien, D.E., Waage, T.R., Hoesli, I., Schubach,
 M., de Beer, T., Sheng, Y., et al. (2016). Stromme Syndrome Is a Ciliary Disorder Caused
 by Mutations in CENPF. Hum Mutat 37, 711.
- 71. Albers, C.A., Cvejic, A., Favier, R., Bouwmans, E.E., Alessi, M.C., Bertone, P., Jordan, G.,
 Kettleborough, R.N., Kiddle, G., Kostadima, M., et al. (2011). Exome sequencing
 identifies NBEAL2 as the causative gene for gray platelet syndrome. Nature genetics 43,
 735-737.
- 670 72. Gunay-Aygun, M., Falik-Zaccai, T.C., Vilboux, T., Zivony-Elboum, Y., Gumruk, F., Cetin, M.,
 671 Khayat, M., Boerkoel, C.F., Kfir, N., Huang, Y., et al. (2011). NBEAL2 is mutated in gray
 672 platelet syndrome and is required for biogenesis of platelet alpha-granules. Nature
 673 genetics 43, 732-734.
- 674 73. Kahr, W.H., Hinckley, J., Li, L., Schwertz, H., Christensen, H., Rowley, J.W., Pluthero, F.G.,
 675 Urban, D., Fabbro, S., Nixon, B., et al. (2011). Mutations in NBEAL2, encoding a BEACH
 676 protein, cause gray platelet syndrome. Nature genetics 43, 738-740.
- 74. Noonan, D., Fulle, A., Valante, P., Cai, S., Horigan, E., Sasaki, S., Yamada, Y., and hassell, J.
 (1991). The complete sequence of perlecan, a basement membrane heparan sulfate

- 679 proteoglycan, reveals extensive similarity with laminin A chain, LDL-receptorm and N-680 CAM. J Biol Chem 266, 22939-22947.
- 75. Nicole, S., Davoine, C.S., Topaloglu, H., Cattolico, L., Barral, D., Beighton, P., Hamida, C.B.,
 Hammouda, H., Cruaud, C., White, P.S., et al. (2000). Perlecan, the major proteoglycan
 of basement membranes, is altered in patients with Schwartz-Jampel syndrome
 (chondrodystrophic myotonia). Nature genetics 26, 480-483.
- 76. Bilsland, C.A., Diamond, M.S., and Springer, T.A. (1994). The leukocyte integrin p150,95
 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologous beta subunit and
 localization of a ligand recognition site to the I domain. J Immunol 152, 4582-4589.
- 77. Zylka, M.J., Dong, X., Southwell, A.L., and Anderson, D.J. (2003). Atypical expansion in mice
 of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad
 Sci U S A 100, 10043-10048.
- 691 78. Olson, W., Abdus-Saboor, I., Cui, L., Burdge, J., Raabe, T., Ma, M., and Luo, W. (2017). Sparse
 692 genetic tracing reveals regionally specific functional organization of mammalian
 693 nociceptors. Elife 6.
- 694 79. Portal, C., Rompolas, P., Lwigale, P., and Iomini, C. (2019). Primary cilia deficiency in neural
 695 crest cells models anterior segment dysgenesis in mouse. Elife 8.
- 80. Kenney, M.C., and Brown, D.J. (2003). The cascade hypothesis of keratoconus. Cont Lens
 Anterior Eye 26, 139-146.
- 698 81. Cullinane, A.R., Schaffer, A.A., and Huizing, M. (2013). The BEACH is hot: a LYST of emerging
 699 roles for BEACH-domain containing proteins in human disease. Traffic 14, 749-766.
- 82. Mayer, L., Jasztal, M., Pardo, M., Aguera de Haro, S., Collins, J., Bariana, T.K., Smethurst,
 P.A., Grassi, L., Petersen, R., Nurden, P., et al. (2018). Nbeal2 interacts with Dock7,
 Sec16a, and Vac14. Blood 131, 1000-1011.
- 703 83. Klintworth, G.K. (2009). Corneal dystrophies. Orphanet J Rare Dis 4, 7.
- 84. Karolak, J.A., Gambin, T., Rydzanicz, M., Polakowski, P., Ploski, R., Szaflik, J.P., and Gajecka,
 M. (2020). Accumulation of sequence variants in genes of Wnt signaling and focal
 adhesion pathways in human corneas further explains their involvement in keratoconus.
 PeerJ 8, e8982.
- 85. Manning, B.D., and Toker, A. (2017). AKT/PKB Signaling: Navigating the Network. Cell 169,
 381-405.
- 86. Burute, M., and Kapitein, L.C. (2019). Cellular Logistics: Unraveling the Interplay Between
 Microtubule Organization and Intracellular Transport. Annu Rev Cell Dev Biol 35, 29-54.
- 87. Bangs, F., and Anderson, K.V. (2017). Primary Cilia and Mammalian Hedgehog Signaling.
 Cold Spring Harb Perspect Biol 9.
- 88. Wang, L., and Dynlacht, B.D. (2018). The regulation of cilium assembly and disassembly in
 development and disease. Development 145.
- 89. Ozkinay, F., Atik, T., Isik, E., Gormez, Z., Sagiroglu, M., Sahin, O.A., Corduk, N., and Onay, H.
 (2017). A further family of Stromme syndrome carrying CENPF mutation. Am J Med
 Genet A 173, 1668-1672.
- 90. Butler, M.T., and Wallingford, J.B. (2017). Planar cell polarity in development and disease.
 Nat Rev Mol Cell Biol 18, 375-388.
- 91. Lawrence, P.A., and Casal, J. (2018). Planar cell polarity: two genetic systems use one
 mechanism to read gradients. Development 145.

723 Figure Legends

724

725 Figure 1: Serum levels of ITGAX/CD11c in patient and control subjects – ITGAX level in the serum of 10 726 Control and 4 Patient samples were detected using an ITGAX Elisa kit (Biobool, E020155). Each data 727 point represents average ± SEM of ITGAX levels from 3 replicates of 1 individual. Data points in color 728 indicate individual patients with the following family IDs. • - BH8965, •-BH8970, •-BH8966, •-BH8965. 729 Figure 2: Expression of the candidate genes in a human corneal epithelial cell line, HTCEpi, and primary 730 donor corneal cell cultures using Tagman gPCR primers (Table S1). 731 Figure 3: CENPF localizes to the epithelial and stromal layers and to the primary cilia in cultured stromal 732 Keratocytes. (A) CENPF (green) strong staining in the epithelial and stromal cell layers in donor (DN) 733 corneas. A representative of three different DN corneas is shown. (B) CENPF (green) and acetylated 734 tubulin (red) staining in 10-day serum starved DN corneal stromal fibroblasts. CENPF is located at the 735 basal body (arrow) of the cilium. A representative of three independent localization experiments is 736 shown. 737 Figure 4: EML6 localizes to the epithelial and stromal layers of the cornea. (A) EML6 (red) is abundantly 738 expressed in all layers of the DN cornea. A representative of three different DN corneas is shown. E-739 Epithelial layer, S- Stromal layer. (B) EMI6 (green) and alpha tubulin (red) staining in corneal stromal 740 fibroblasts, EML6 forms a cytoskeletal network around the nucleus. A representative image from three 741 different cell cultures is shown. 742 Figure 5: NBEAL2 primarily localizes to the epithelial layers; NBEAL2 is also detectable in cultured 743 stromal fibroblasts. (A) NBEAI2 staining (green) in a representative DN cornea is shown. NBEAI2 localizes 744 to all epithelial layers of the cornea. E- Epithelial layer, S- Stromal layer (B) NBEAL2 (green) and alpha 745 tubulin (red) stained in DN fibroblasts showing some co-localization in the cell periphery.

746

748	Tables Titles
749	Table 1: Phenotypic features of Keratoconus Families
750	Table 2: Filtered variants in 8 genes
751	Table 3: Expression and Localization of 8 genes in the cornea
752	Supplemental Information
753	Table S1: Antibodies, primers and other reagents
754	Table S2: Keratoconus-associated 17 sequence variants with any disease associations
755	Figure S1: PhastCons100way and PhyloP100way scores for 8 selected variants in 5 five genes
756	Figure S2: Family pedigrees
757	Video EML6 and Tubulin localization z-stack
758	Video NBEAL2 and Tubulin localization z-stack
759	
760	
761	
762	
763	
764	
765	
766	
767	
768	
769	
770	
771 772	
-	

Table 1: Phenotypic features of Keratoconus Families

FAM ID	Individual ID	Sex	Age at diagnosis (years)	Corneal surgery *	AK stage†	Keratometry‡	Irregular Retinoscopy Reflex	Stromal thinning	Fleischer Ring	Atopy	Other
BH 8957	Proband	М	17	-	OU:2	OD:50.75 OS:49.65	OU +	OU +	-	-	
	Maternal aunt	F	19	-	OU:2	OD:51.90 OS:49.30	OU +	OU +	OU +	-	
BH 8958	Proband	F	18	-	OD:2 OS:1	OD:49.30 OS:45.50	OD +	OU +	-	-	
	Brother	М	14	-	OD:2 OS:1	OD:49.00 OS:45.85	OU +	OD +	OD +	hay fever	
	Proband	М	19	-	OD:3 OS:1	OD:56.50 OS:45.40	OU +	OU +	OU +	-	
BH 8959	Sister	F	28	-	OD:1 OS:2	OD:46.87 OS:49.60	OU +	OU +	OU +	eczema	Squint surgery
	Proband	М	12	PK OU	NA	NA	NA	NA	NA	eczema	
BH 8960	Mother	F	46	-	OU:1	OD:43.50 OS:43.50	OU +	OU +	OS +	-	Early nuclear sclerotic cataracts
DU 0000	Proband	М	16	-	OU:1	OD:46.80 OS:47.80	OU +	OU +	-	-	
BH 8962	Maternal cousin	М	10	PK OU	NA	NA	NA	NA	NA	asthma	Squint surgery
	Proband	М	21	-	OU:1	OD:47.34 OS:47.50	OU +	OU +	OD +	asthma	
БП 8904	Sister	F	22	-	OU:1	OD:47.75 OS:48.20	OU +	OD +	OD +	asthma	
BH 8965	Proband	F	20	PK OS	OD:1	OD:47.75 OS:postop	OD +	OD +	OD +	-	

	Brother	М	14	-	OU:1	OD:46.40 OS:48.80	OS +	OS +	-	allergy	
BH 8966	Proband	F	13	-	OD:2	OD:50.80 OS:52.65	OU +	OU +	OS +	-	tear duct surgery
	Maternal cousin	М	17	PK OU	NA	NA	NA	NA	NA	-	
BH 8967	Proband	М	21	PK OD DALK OS	OS:3 pre- op	OS:53.00 pre-op	OS + preop	OU + preop	-	eczema	OD hydrops, Dupuytren's contracture, inguinal hernia
	Sister	F	22	PK OD DALK OS	NA	NA	NA	NA	NA	-	
BH 8969	Proband	М	16	-	OU:1	OD:47.95 OS:46.57	OU +	OU +	-	Asthma, eczema, hay fever	
	Sister	F	18	-	OU:2	OD:49.55 OS:50.90	OU +	OU +	OS +	-	
BH 8970	Proband	М	19	OU PK	NA	NA	NA	NA	NA	allergy	OD cataract surgery

⁺AK: Amsler-Krumeich classification for grading Keratoconus; [‡]mean central K readings measured in diopters (D); OD = right eye, OS = left eye, OU = both eyes; ^{*}corneal transplantation: PK = penetrating keratoplasty and DALK = deep anterior lamellar keratoplasty; NA = not applicable as post-surgery.

Table 2: Filtered variants in 8 genes

Gene symbol	Family ID	rsID (v154)	Variant location	DNA variant	Transcript & exon location	Protein variant Protein domain		Variant frequency	CADD score	phyloP 100way	phastCons 100way	Sanger validation
ENALG	BH8970	rs554072813	2:55056533	c.G766C	NM_001039753:exon6	p.D256H	WD	6.32×10 ⁻⁶	28.5	9.42	1	Yes
EIVILO	BH8960	rs374969726	2:55122149	c.C2840T	NM_001039753:exon19	p.S947L	WD	4.18×10 ⁻⁴	26.7	7.47	1	No
	BH8967	rs747403733ª	1:22176673	c.C7307A	NM_005529:exon57	p.T2436N	NCAM-like Ig	1.60×10 ⁻⁵	21.5	1.76	0.65	Yes
HSPG2	BH8959	rs114015043ª	1:22150130	c.G12982A	NM_005529:exon96	p.A4328T	LG3 (laminin-like globular domain 3)	2.31×10 ⁻³	19.16	3.02	1	Yes
CENIDE	BH8970	rs140399039	1:214795521	c.T965C	NM_016343:exon7	p.L322P	coiled coil	6.05×10 ⁻⁴	25.5	5.02	1	Yes
CENPT	BH8967	rs145858780	1:214819839	c.G6926A	NM_016343:exon13	p.R2309H	coiled coil	9.21×10 ⁻⁴	1.154	-2.22	0	Yes
	BH8959	rs567205565	3:47037281	c.G1976A	NM_015175:exon14	p.R659Q	Con A	5.63×10 ⁻⁵	28.6	7.27	1	Yes
NBEAL2	BH8960	rs201015564	3:47045708	c.C6023T	NM_015175:exon37	p.T2008M		9.91×10 ⁻⁴	7.278	0.36	0	No
	BH8964	rs146270553	3:47046519	c.G6352A	NM_015175:exon39	p.V2118I	BEACH	7.31×10 ⁻⁴	23.9	5.51	1	Yes
	BH8970	•	16:31371639	c.T716C	NM_000887:exon8	p.L239S	VWF domain	n/a	22.8	3.31	0.97	Yes
			16:31382761	c.1948_1954del	NM_000887:exon16	p.650_652del	truncation	n/a	n/a	1.51	0.32	Yes ^b
ITGAX	BH8965		16:31382761	c.1956_1957insTT	NM_000887:exon16	p.S652fs	truncation	n/a	n/a	1.51	0.32	Yes ^b
			16:31382761	c.A1957T	NM_000887:exon16	p.N653Y	truncation	n/a	n/a	1.51	0.32	Yes ^b
	BH8966	rs142434946	16:31391381	c.G3055A	NM_000887:exon26	p.V1019M		4.99×10 ⁻⁴	16.83	1.43	0.93	Yes
	BH8970	rs149573054ª	2:141299431	c.C7304T	NM_018557:exon44	p.T2435I	LDL receptor class B 25 repeat	4.25×10 ⁻⁵	25.5	9.81	1	Yes
10010	BU 80C7	rs149644677ª	2:141032021	c.A13114T	NM_018557:exon85	p.N4372Y	penultimate EGF like	5.43×10 ⁻³	23.4	2.02	1	Yes
LKPIB	BH8907	rs199982265ª	2:141250196	c.A9101G	NM_018557:exon57	p.N3034S	loss of N- glycosylation	1.41×10 ⁻⁵	24.9	7.92	1	Yes
	BH8958	rs759169172ª	2:141208226	c.G9968A	NM_018557:exon63	p.R3323H	LDL-receptor class A 21	1.37×10 ⁻⁴	25.9	2.84	0.99	Yes
	BH8958	rs750447253ª	11:68747795	c.G661A	NM_198923:exon1	p.V221M	Transmembrane	2.86×10-5	12	-3.5	0	Yes
MRGPRD	BH8966	rs143309852 ^a	11:68747507	c.A949C	NM_198923:exon1	p.N317H	Cytoplasmic	3.83×10 ⁻³	2.586	0.14	0.01	Yes
	BH8970	rs143309852ª	11:68747507	c.A949C	NM_198923:exon1	p.N317H	Cytoplasmic	3.83×10 ⁻³	2.586	0.14	0.01	Yes
	BH8965	rs1186998186	7:106508317	c.G311A	NM_002649:exon2	p.G104E	adaptor binding	1.21×10 ⁻⁵	14.47	6.29	1	Yes
PIK3CG	BH8966	rs1484695035	7:106508439	c.G433C	NM_002649:exon2	p.E145Q	adaptor binding	4.07×10 ⁻⁶	12.4	3.24	1	Yes
	BH8970		7:106513176	c.T2080C	NM_002649:exon4	p.F694L	PIK helical	3.98×10 ⁻⁶	26.3	7.96	1	Yes

^a : reverse complemented in dbSNP

^b : deletion

Functional	Gene	L	ocalization of pro	Gene expression (Average Ct)		
relevance to the cornea & keratoconus	Symbol	human cornea	HTcEp1 cultures	Stromal fibroblast	HTcEp1 cultures	Stromal fibroblast
Cytoskeletal protein trafficking; secretory	CENPF	All epithelial layers & stroma cytoplasmic and nuclear	Nuclear and cytoplasmic	Cytoplasmic and nuclear; basal body of primary cilia	32 ± 0.213	26.6 ± 0.745
vesicular	EML6	All epithelial layers & stroma	Nd*	Cytoskeletal network	32.5 ± 0.382	33.5 ± 0.616
	NBEAL2	All epithelial layers & stromal keratocyte cell bodies	Nuclear and cytoplasmic	Cytoplasmic punctate	24.7 ± 0.416	30.4 ± 0.320
Barrier protection	HSPG2	Not tested	Not tested	Not tested	29.8 ± 0.056	27.5 ± 0.706
Injury & Inflammation response	PIK3CG	All epithelial layer cytoplasmic with stronger basal cell staining	Cytoplasmic	Nd	Nd	Nd
	LRP1B	All epithelial layer cytoplasmic	Nuclear	Nuclear	36.7 ± 0.738	34.8 ± 2.35
	ITGAX	Nd	Nd	Nd	36.6 ± 0.429	35.3 ± 1.47
	MRGPRD	Nd	Nd	Nd	Nd	Nd

• Nd: not detected