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Abstract: The study of the dynamics or the progress of science has been widely explored with
descriptive and statistical analyses. Also this study has attracted several computational approaches
that are labelled together as the Computational History of Science, especially with the rise of data
science and the development of increasingly powerful computers. Among these approaches, some
works have studied dynamism in scientific literature by employing text analysis techniques that
rely on topic models to study the dynamics of research topics. Unlike topic models that do not
delve deeper into the content of scientific publications, for the first time, this paper uses temporal
word embeddings to automatically track the dynamics of scientific keywords over time. To this end,
we propose Vec2Dynamics, a neural-based computational history approach that reports stability of
k-nearest neighbors of scientific keywords over time; the stability indicates whether the keywords are
taking new neighborhood due to evolution of scientific literature. To evaluate how Vec2Dynamics
models such relationships in the domain of Machine Learning (ML), we constructed scientific corpora
from the papers published in the Neural Information Processing Systems (NIPS; actually abbreviated
NeurIPS) conference between 1987 and 2016. The descriptive analysis that we performed in this
paper verify the efficacy of our proposed approach. In fact, we found a generally strong consistency
between the obtained results and the Machine Learning timeline.

Keywords: scientific literature; computational linguistics; temporal word embedding; k-NN stability;
machine learning

1. Introduction

Over the past few years, the computational history of science—as a part of big scholarly
data analysis [1]—has grown into a scientific research area that is increasingly being
applied in different domains such as business, biomedical, and computing. The surge in
interest is due to (i) the explosion of publicly available data on scholarly networks and
digital libraries, and (ii) the importance of the study of scientific literature [2], which is
continuously evolving. In fact, the recent literature is rich in dealing with the enigmatic
question of the dynamics of science [3–12].

Most of these proposed approaches focus on citation counts to detect the popularity
and the evolution of research topics [13]. Despite their importance to show the interesting-
ness and the scientific impact of published work, citations fail to analyse the paper content,
which could potentially provide more accurate computational history of science. Therefore,
some emerging works [4,6,9] relied on topic models to analyse the dynamics of research
topics. Topic models generally extract semantics at a document level, which ignores the
detection of pairwise associations between keywords, where keywords refer to the words
of interest in scientific publications.

Big Data Cogn. Comput. 2022, 6, 21. https://doi.org/10.3390/bdcc6010021 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc6010021
https://doi.org/10.3390/bdcc6010021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-0185-103X
https://orcid.org/0000-0003-0339-4474
https://orcid.org/0000-0002-4013-5415
https://orcid.org/0000-0002-1160-9140
https://doi.org/10.3390/bdcc6010021
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc6010021?type=check_update&version=2


Big Data Cogn. Comput. 2022, 6, 21 2 of 17

Going beyond these approaches, our aim in this paper is to train word embeddings
across time in order to obtain a fine-grained computational history of science. For instance,
the basic idea of word embedding is words that occur in similar context tend to be closer
to each other in vector space. This means that word neighbours should be semantically
similar. The choice of word embedding models is justified by the ability they have shown
to capture and represent semantic relationships from massive amounts of data [14].We
intend in this study to uncover the dynamics of science by studying the change in pairwise
associations between keywords over time. Our examination is, therefore, intended to be
descriptive rather than normative following the approaches that studied the computational
history of science [4,6,7]. As a matter of fact, no standard has been provided to conduct
a comparative study because expert opinions should be taken into consideration in such
descriptive analyses [8]. The subject area studied in this work is Computer Science and
more precisely Machine Learning. The choice of this subject is based on two main reasons:
(i) the authors’ background in this subject area, and (ii) the fact that Machine Learning has
seen remarkable successes in the recent decades and has been applied in different domains
including bioinformatics, cyber security, and neuroscience.

To obtain a fine-grained computational history, we introduce Vec2Dynamics—a neural-
based approach to computational history that uses temporal word embeddings in order
to analyse and explore over time the dynamics of keywords in relation with their nearest
neighbours. To detect the dynamics of keywords, we learn word vectors across time. Then,
based on the similarity measure between keywords embedding vectors, we define the
k-nearest neighbors (k-NN) of each keyword over successive time windows. The change
in stability of k-NN over time refers to the dynamics of keywords and accordingly the
research area.

We evaluate our proposed approach Vec2Dynamics with 6562 publications from the
Neural Information Processing Systems (NIPS) conference proceedings between the years
1987 and 2016 that we divided into ten time windows of 3-years each. As explained below,
we adopt both numerical and visual methods to perform our descriptive analysis and
evaluate the effectiveness of Vec2Dynamics in tracking the dynamics of scientific keywords.

• Numerically, we compute the average stability of k-nearest neighbours of keywords
over all the time windows and detect the stable/unstable periods in the history of
Machine Learning.

• Visually, we illustrate the advantages of temporal word embeddings that show the
evolvement of scientific keywords by drawing Venn diagrams showing k-NN keywords
over each two subsequent time periods. All visualisations show that our approach is
able to illustrate the dynamics of Machine Learning literature.

The major contributions of this paper are summarized as follows:

1. To detect the dynamics of keywords, word vectors are learned across time. Then,
based on the similarity measure between the embedding vectors of keywords, the
k-nearest neighbors (k-NN) of each keyword are defined over successive timespans.

2. The change in stability of k-NN over time refers to the dynamics of keywords and
accordingly the dynamics of the research area.

3. Vec2Dynamics is evaluated in the area of Machine Learning with the NIPS publications
between the years 1987 and 2016.

4. Both numerical and visual methods are adopted to perform a descriptive analysis and
evaluate the effectiveness of Vec2Dynamics in tracking the dynamics of scientific keywords.

5. Machine Learning timeline has been proposed as standard for descriptive analysis.
A generally good consistency between the obtained results and the machine learning
timeline has been found.

6. Venn diagrams have been used in this paper for qualitative analyses to highlight the
semantic shifts of scientific keywords by showing the evolvement of the semantic
neighborhood of scientific keywords over time.



Big Data Cogn. Comput. 2022, 6, 21 3 of 17

The rest of the paper is organised as follows. Section 2 presents a summary of the
existing computational history approaches that focus on the Computer Science research
area. Section 3 details the Vec2Dynamics framework and its different stages. Section 4
describes the NIPS dataset we have used, and presents and discusses the obtained results.
Finally, in Section 5 we conclude the paper and draw future directions.

2. Related Work
2.1. Computational History of Science: Approaches and Disciplines

Due to the rapid growth of scientific research, the Computational History of Science
has emerged [1] recently to understand the scientific evolution. For this reason, several
approaches have been presented in the literature relying on different features such as
citations, paper content (mainly keywords), or both of them. Accordingly, these approaches
can be categorised into three categories based on the features they have been using [15]:
bibliometrics-based approaches [3,8,10–12]; content-based approaches [4,6,9,16]; and hybrid
approaches [5,7] that combine both citations and paper content.

These approaches dealing with the computational history of science have been applied
to a broad range of disciplines ranging from business, relations and economy [3,10–12,17]
to medicine [18], biology [19], geoscience [20], and computer science [4,5,7–9,21–25].

2.2. Computational History of Computer Science

This paper concerns a discipline within Computer Science; therefore, it is pertinent to
discuss previous works concerning computational history of Computer Science (CS) [15].

2.2.1. Bibliometrics and Hybrid Approaches

Hoonlor et al. [7] did some of the early work that investigated the evolution of CS
research. They have analysed data on grant proposals, ACM (https://dl.acm.org/, (ac-
cessed on 12 October 2017) ) and IEEE (https://ieeexplore.ieee.org/, accessed on 12 October
2017) publications using both sequential pattern mining and emergent word clustering.
Similarly, Hou et al. [8] studied the progress of research topics using Document-Citation
Analysis (DCA) of Information Science (IS). To do so, they used dual-map overlays of the
IS literature to track the evolution of IS research based on different academic factors such
as H-index, citation analysis and scientific collaboration. In the same context, Effendy and
Yap [5] obtained the computational history using the Microsoft Academic Graph (MAG)
(https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/, ac-
cessed on 12 October 2017) dataset. In addition to the citation-basic method, they used a
content-based method by leveraging the hierarchical FoS (Field of Study) given by MAG
for each paper to determine the level of interest in any particular research area or topic,
and accordingly general publication trends, growth of research areas and the relationship
among research areas in CS.

Both the aforementioned approaches to computational history in CS can be classified as
hybrid approaches. They use both citation analysis and content analysis to detect research
dynamics. The content analysis only studies bursty keywords—that are the new emerging
keywords, which become suddenly frequent in a short time—in [7] and fields of studies
in [5] without providing any fine-grained analysis of the paper content. Alternatively, they
concentrate on citation analysis to uncover citation trends and accordingly the evolution of
research areas. While citation counts are accounted to be crucial to assessing the impor-
tance of scientific work, they take time to stabilise enough to bring out research trends,
which makes this technique more effective for retrospective analysis than descriptive or
predictive analysis.

2.2.2. Content-Based Approaches

For the reasons detailed in Section 2.2.1 and because citation-based approaches neglect
to delve into the paper content, the work presented in this paper can be classified in the

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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category of content-based approaches because it provides a fine-grained content analysis
of research papers.

Some work on coarse-grained content analysis exists. Glass et al. [26] provided a
descriptive analysis of the state of software engineering (SE) research by examining 369 re-
search papers in six leading SE journals over the period 1995–1999. Similarly, Schlagen-
haufer and Amberg [27] provided a structured, summarised as well as organised overview
of research activities conducted on gamification literature by analysing 43 top ranking IS
journals and conferences. The authors followed a descriptive analysis using a classification
framework with the help of the Grounded Theory approach [28]. Both of these approaches
are too coarse-grained in that they follow only a descriptive analysis where no fine-grained
content analysis of research papers is provided.

To overcome this problem, some computational approaches have been proposed,
namely topic modeling approaches. For instance, Hall et al. [6] applied unsupervised topic
modeling to the ACL (Association for Computational Linguistics) Anthology (CoLING,
EMNLP and ACL) to analyse historical trends in the field of computational linguistics from
1987 to 2006. They used Latent Dirichlet Allocation (LDA) to extract topic clusters and
examine the strength of each topic over time. In the same context, Anderson et al. [4] have
proposed a people-based methodology for computational history that traces authors’ flow
across topics to detect how some sub-areas flow into the next to form new research areas.
This methodology is founded on a central phase of topic modelling that detects papers’
topics and identifies the topics the people author in. Mortenson et al. [9] offered a software
called Computational Literature Review (CLR) that evaluates large volumes of the existing
literature with respect to impact, structure and content using LDA topic modeling. They
applied their approach to the area of IS and more precisely to the Technology Acceptance
Model (TAM) theory. Similarly, Salatino et al. [29] have recently proposed Augur, which
analyses the temporal relationships between research topics and clusters topics that present
dynamics of already established topics in the area of CS.

2.3. Limitations

Although the aforementioned approaches [4,6,9] have the intention to conduct a content
analysis of research papers by using topic modelling, they still experience some issues that
show its limitations. Actually, both the flow of authors across topics and the dynamics of
recognised topics need time to take place. Furthermore, topic modelling fails to detect pairwise
associations between words, while the investigation of these associations at a local space could
lead to the detection of evolving research patterns—topics or keywords—timely.

To overcome the two problems just described, this paper proposes a temporal word
embedding technique that digs deep into the paper content to instantly detect how the
semantic neighbourhood of keywords evolves over time. To the best of our knowledge,
only three recent works have explored word embedding techniques to model scientific
dynamics. The first work was by He et al. [30] and aimed to track the semantic changes
of scientific terms over time in the biomedical area. The second and the third are our
recent works that introduced DeepHist [31] and Leap2Trend [15] respectively, which are
word embedding based approaches for computational history applied to Machine Learning
publications during the time period 1987–2015. The first approach DeepHist detects the
converging keywords that may result in trending keywords by computing the acceleration
of similarities between keywords over successive timespans. However, the second approach
Leap2Trend tracks the dynamics of similarities between pairs of keywords, their rankings
and respective uprankings (ascents) over time to detect the keywords that start to frequently
co-appear in the same context, which may lead to emerging scientific trends.

Therefore, this work employs temporal word embeddings, namely word2vec, to track
the dynamics of scientific keywords. Unlike DeepHist and Leap2Trend that aim to detect
only new trends, our current approach aims to track the dynamics of scientific literature in
general by detecting the stability of the nearest neighbors keywords over time.
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3. Vec2Dynamics

In order to understand and uncover the dynamics of scientific literature, we propose
Vec2Dynamics—a fine-grained text mining approach that follows a temporal paradigm to
delve into the content of research papers.

First, our Vec2Dynamics digs into the textual content by applying word embedding
techniques, namely word2vec [32]. Word2vec has been chosen because it is the long
standing word embedding techniques in the area. However, any other word embedding
technique could be applied such as GloVe [33] and FastText [34]. Then, Vec2Dynamics
grasps dynamic change in interest and popularity of research topics by iteratively applying
k-NN stability to the keywords/topics of interest over time and accordingly capturing
the recurrent, non-recurrent, persistent and emerging keywords. Formal definitions of these
types of keyword dynamics are given later in this section. We first describe the general
architecture of Vec2Dynamics and then detail the functionalities of its different stages.

3.1. Vec2Dynamics Architecture

The architecture of Vec2Dynamics is depicted in Figure 1. The whole model can be
divided into four different stages.

Figure 1. Vec2Dynamics architecture.

i Data preprocessing. At this stage, we preprocess and clean up the textual content of
research papers taking into account the specificity of scientific language. For instance,
we consider the frequent use of bigrams in scientific language such as “information
system”, and “artificial intelligence”, and we construct a bag of keywords where
keywords are either unigrams or bigrams. Unigram or 1-gram represents a one-word
sequence, such as “science” or “data”, while a bigram or 2-gram represents a two-word
sequence of words like “machine learning” or “data science”. Data preprocessing
consists then of two steps: (a) the removal of stop words, which refer to the words
that appear very frequently like “and”, “the”, and “a”; and (b) the construction of
bag of words where words are either unigrams or bigrams. More details on the data
preprocessing stage are given in our previous work [15].
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ii Word embedding. At this stage, we adopt the skip-gram neural network architecture
of the word2vec embedding model [32] to learn word vectors over time. This stage
is repeated for each corpus Pt,t=1,...,T that corresponds to the corpus of all research
papers in the tth time window. More details will be given in Section 3.2.

iii Similarity computation. After generating the vector representation of keywords, we
apply cosine similarity between embedding vectors to find the k-nearest neighbors of
each keyword. Recall that cosine similarity between two keywords wi and wj refers
to the cosine measure between embedding vectors uwi and uwj as follows:

similarity(wi, wj) = cosine(uwi , uwj) =
uwi · uwj

‖uwi‖ · ‖uwj‖
(1)

As with the previous stage, this stage of similarity computation is also repeated at
each time window t.

iv Stability computation. At this stage, we study the stability of k-NN of each keyword
of interest over time in order to track the dynamics of the scientific literature. To do
so, we define a stability measure (Equation (4)) that could be computed between the
sets of k-NN keywords over two subsequent time windows t and (t + 1). Based on
the obtained stability values, we define four types of keywords/topics: recurrent, non
recurrent, persistent and emerging keywords. More details will be given in Section 3.3.

3.2. Dynamic Word Embedding

Vec2Dynamics relies on a central stage of word embedding that learns word vectors in
a temporal fashion in order to track the dynamics of scientific literature over time. To this
end, we adopt skip-gram architecture of word2vec [32] that aims to predict the context
given a word wi. Note that the context is the span of words within a certain range before
and after the current word wi [35].

3.2.1. Notation

We consider corpora of research papers collected across time. Formally, let P represent
our corpora, P = (P1, P2, . . . , PT) where each Pt is the corpus of all papers in the tth time
window, and V = (w1, w2 . . . , wV) the vocabulary that consists of V words present in P. It
is possible that some wi ∈ V do not appear at all in some Pt. This happens because new key-
words emerge while some old keywords die, something that is typical of scientific corpora.
Let Vt denote the vocabulary that corresponds to Pt and |Vt| denote the corresponding
vocabulary size used in training word embeddings at the tth time window.

Given this time-tagged scientific corpora, our goal is to find a dense, low-dimensional
vector representation ut

wi
∈ RN, N � Vt for each word wi ∈ Vt at each time window

t = 1, . . . , T. N is the dimensionality of word vectors that corresponds to the length of
the vector representations of words.

3.2.2. Skip-Gram Model

The architecture of the Skip-Gram model is shown in Figure 2. the main idea of
skip-gram is to predict the context c given a word w. Note that the context is a window
around w of maximum size L. More formally, each word w ∈ W and each context c ∈ C
are represented as vectors −→w ∈ Rd and −→c ∈ Rd, respectively, where W = {w1, · · · , wV} is
the words vocabulary, C is the context vocabulary, and d is the embedding dimensionality.
Recall that the vectors parameters are latent and need to be learned by maximising a
function of products −→w · −→c .
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Figure 2. Skip-Gram Architecture, V here corresponds to Vt in our text.

More specifically, given the word sequence W resulted from the scientific corpus,
the objective of skip-gram model is to maximise the average log probability:

L(W) =
1
V

V

∑
i=1

∑
−l≤c≤l,c 6=0

logProb(wi+c|wi) (2)

where l is the context size of a target word. Skip-gram formulates the probability Prob(wc|wi)
using a softmax function as follows:

Prob(wc|wi) =
exp(−→wc · −→wi )

∑wi∈W exp(−→wc · −→wi )
(3)

where −→wi and −→wc are, respectively, the vector representations of target word wi and con-
text word wc, and W is the word vocabulary. In order to make the model efficient for
learning, the hierarchical softmax and negative sampling techniques are used following
Mikolov et al. [36].

The hyperparameters of skip-gram model have been tuned followed our approach de-
tailed in [37]. This outcomes of this approach revealed that the optimal hyperparameters for
word2vec in a similar scientific corpora are respectively 200 and 6 for vector dimensionality
N and the context window.

3.3. k-NN Stability

After learning word embeddings on the scientific corpora in a temporal fashion,
Vec2Dynamics uses the stability of k-nearest neighbors (k-NN) of word vectors as the
objective to measure while tracking the dynamics of research keywords/topics. The k-NN
keywords of a target keyword wi correspond to the k keywords similar to wi. Recall that
cosine similarity is the measure used to calculate the similarity between two keywords wi
and wj.

3.3.1. Notation

Let St−1
wi

and St
wi

denote respectively the sets of k-NN of the keyword wi over two
successive time windows t− 1 and t. We define Ψt

wi
the k-NN stability of wi at the time
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window t as the logarithmic ratio of the intersection between the two sets St−1
wi

and St
wi

to
the difference between them. Formally, Ψt

wi
is defined as follows:

Ψt
wi

= logk
( |St

wi
∩ St−1

wi
|

0.5× |St
wi
	 St−1

wi |
)

(4)

Recall that the two sets St−1
wi

and St
wi

are equal and their differences are symmetric as
|St−1

wi
| = |St

wi
| = k, which justifies the multiplication by 0.5 in the denominator.

The k-NN stability Ψt
wi

ranges from −1 to +1. We refer to −1 (logk(
1
k )) where no inter-

section exists between St−1
wi

and St
wi

(|St
wi
∩ St−1

wi
| = 0) in order to prevent the indeterminate

case where the numerator is null. On the other hand, we refer to +1 (logk(k)) to prevent
the indeterminate case where the denominator is null when we have fusion of the two sets
St−1

wi
and St

wi
. More formally, we define the stability Ψt

wi
as follows:

Ψt
wi

=


logk(

1
k ), if St

wi
∩ St−1

wi
= ∅

logk(k), if St
wi

= St−1
wi

= k
Equation (4), otherwise

(5)

After computing Ψt
wi

corresponding to each keyword of interest wi over all time
windows T, we compute the average of stability Ψt of n selected keywords of interest,
where n ≤ |Vt| at a time window t as follows:

Ψt =
∑n

i=1 Ψt
wi

n
(6)

3.3.2. Interpretation

The computation of k-NN stability is based on the dynamism of the keywords appear-
ing and disappearing in St−1

wi
and St

wi
. We can differentiate five types of keywords based

on their dynamism: recurrent keywords, non-recurrent keywords, persistent keywords, emerging
keywords and dying keywords. Algorithm 1 highlights the steps of finding these five types
of keywords.

Definition 1 (Recurrent keyword). A word wj is called recurrent if it appears recurrently in the
k-NN subsequent sets St

wi
and Str

wi , tr ≥ 2.

Definition 2 (Non-Recurrent keyword). Contrary to recurrent keyword, a non-recurrent key-
word does not appear in the k-NN subsequent sets; it appears in St

wi
, but never appears in Str

wi , tr ≥ 2.

Definition 3 (Persistent keyword). A word wj is persistent if it appears in St
wi

and at least in
St+1

wi
.

Definition 4 (Emerging keyword). A word wj is called emerging if it appears in the k-NN set
St+1

wi
\ St

wi
.

Definition 5 (Dying keyword). A word wj is called dying if it it appears in the k-NN set
St

wi
\ St+1

wi
.

We use these definitions to provide a fine-grained analysis of the main streams of
keywords based on their appearance/disappearance and frequency of appearance. This
helps to fully understand the evolution of scientific keywords over time.
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Algorithm 1: Finding the types of keywords based on their dynamism.
Input : set of k-NN of a keyword wi, time windows t and tr, number of nearest

neighbors k, number of keywords of interest n
Output : the k-NN stability Psi, the class of keyword’s dynamism Cwi {recurrent;

non-recurrent; persistent; emerging; dying}

1 for i← 1 to T do
2 Ψt

wi
← 0;

3 Ψt ← 0;
4 for j← 1 to n do
5 if (St

wj
∩ StrS

wj
= ∅ & tr = t− 1) then

6 Ψt
wj
← logk(

1
k );

7 end
8 else if (St

wj
∩ St−1

wj
= ∅ & tr = t− 1) then

9 Ψt
wj
← logk(

1
k );

10 end
11 else

12 Ψt
wj
← logk

( |St
wj
∩St−1

wj
|

0.5×|St
wj	St−1

wj |

)
;

13 end
14 end

15 Ψt ← ∑n
i=1 Ψt

wi
n ;

16 if (wi ∈ St
wi

& wi ∈ Str
wi

& tr ≥ 2) then
17 Cwi ← “recurrent′′;
18 end
19 if (wi ∈ St

wi
& wi /∈ Str

wi
& tr ≥ 2) then

20 Cwi ← “non-recurrent” ;
21 end
22 if (wi ∈ St

wi
& wi ∈ Str

wi
& tr ≥ 1) then

23 Cwi ← “persistent′′;
24 end
25 if (wi ∈ Str

wi
\ St

wi
& tr = t+1) then

26 Cwi ← “emerging′′;
27 end
28 if (St

wi
\ St+1

wi
& tr = t+1) then

29 Cwi ← “dying′′;
30 end
31 end

4. Experiments

To track the dynamics of the scientific literature in the area of Machine Learning,
we evaluate Vec2Dynamics on a time-stamped text corpora extracted from NIPS (Neural
Information Processing Systems)—recently abbreviated as NeurIPS—conference proceed-
ings. The NIPS conference has been chosen because it is a long standing venue in the
area of machine learning with more than 30 editions. This is important for the work pro-
posed in this paper that requires history in publications to perform the computational
history of science. NIPS is ranked top 2 conference in the area of machine learning and
artificial intelligence, according to Guide2Research rankings (https://www.guide2research.
com/topconf/machine-learning, accessed on accessed on 2 February 2021). It comes
after IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), which is
more specialised in computer vision applications. NIPS is then a more generic venue
and covers a wide range of machine learning topics including computer vision. It can

https://www.guide2research.com/topconf/machine-learning
https://www.guide2research.com/topconf/machine-learning
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be then considered the top 1 conference in generic machine learning conferences like the
International Conference on Machine Learning (ICML), International Conference on Learning
Representations (ICLR) and European Conference on Machine Learning and Knowledge Discovery
in Databases (ECMLPKDD) that are ranked top 6, top 17 and top 104, respectively. Fi-
nally, aligning with its reputation, the NIPS dataset is made publicly available on Kaggle
(https://www.kaggle.com/benhamner/nips-papers/data, accessed on 20 October 2017),
where the papers database is easily manageable, with the papers’ features, such as the title,
the abstract and the paper text, which is time-stamped. The availability of this database
makes from the task of data collection an efficient task.

We demonstrate that our approach delves into the content of research papers and
provides a deep descriptive analysis of the literature of Machine Learning over 30 years
by following a temporal embedding and analysing the resulting dynamic k-NN keywords
over time.

4.1. NIPS Dataset

The dataset used in this analysis represents 30 years of NIPS conference papers pub-
lished between 1987 and 2016, with a total of 6562 papers. The dataset is available on
Kaggle (https://www.kaggle.com/benhamner/nips-2015-papers/data, accessed on 20 Oc-
tober 2017) and stores information about papers, authors and the relation (papers-authors).
The papers database—that defines six features for each paper: the id, the title, the event
type, i.e., poster, oral or spotlight presentation, the PDF name, the abstract and the paper
text—is used.

The dataset was first preprocessed following the steps described in Section 3.1. Then,
in order to study the dynamics of the scientific literature of Machine Learning by tracking
the k-NN of keywords/topics over time, we splited the NIPS publications between 1987
and 2016 into ten 3-year time windows. The length of the time window relies on the
study conducted by Anderson et al. [4] on the evolution of the scientific topics. Their
results showed that the interval of three years was successful to track the flow of scientific
corpora. The statistics of the dataset are given in Table 1. This step of dataset splitting into
sub-datasets may justify that there are no potential validation threats because for every
sub-dataset the approach has been applied independently from the other sub-datasets,
which may be considered as a new dataset.

Table 1. Statistics of NIPS dataset.

Time Window Papers Words Vocabulary

From 1987 to 1989 288 16,273 9147
From 1990 to 1992 417 465,169 169,728
From 1993 to 1995 453 914,871 166,954
From 1996 to 1998 456 1,387,070 173,341
From 1999 to 2001 499 1,943,821 197,845
From 2002 to 2004 615 2,716,271 264,241
From 2005 to 2007 631 3,595,398 292,681
From 2008 to 2010 807 4,847,535 379,086
From 2011 to 2013 1037 6,501,435 480,440
From 2014 to 2016 1386 8,732,443 610,383

Table 1 shows an increase in the number of papers per 3-years in the period 1987–2016.
The average 3-annual growth rate of publications is around 20%, exceeding 33% in the time
window 2014–2016. The findings revealed that there are a potential or possible emerging
research keywords/topics within the new evolving papers. This could be justified by
the constant growth rate of unique words that reaches 29.52% in the timespan 2008–2010,
with an average rate of 17.98% overall, excluding the first time window 1987–1989 where
the vocabulary size was very small and may bias the result.

https://www.kaggle.com/benhamner/nips-papers/data
https://www.kaggle.com/benhamner/nips-2015-papers/data
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4.2. Results and Discussion

We evaluate Vec2Dynamics on tracking the dynamics of Machine Learning litera-
ture. To do so, we study the impact of the use of temporal word embeddings on tracing
the evolution of the main streams of Machine Learning keywords. To this end, NIPS
publication—published between 1987 and 2016—have been used.

For each time window t, we generated a corpus Pt of all publications published during
this time period. Then, after preprocessing as described in Section 4.1, we trained the
skip-gram model of word2vec at every t with the hyperparameters vector dimensionality
N = 200 and context window = 6. The choice of these hyperparameters is supported by
our previous findings [37] that concluded after investigation that these hyperparameters
are optimal for NIPS corpora.

After each training at time window t, we computed the similarities of keywords of
interest following Equation (1). The keywords of interest correspond to the top 100 bigrams
extracted from the titles of the publications [15]. From these 100 bigrams, we kept only
the bigrams that appeared in the highest two levels of the Computer Science Ontology
(CSO) (http://skm.kmi.open.ac.uk/cso/, accessed on 5 September 2019) [38]. These two
levels correspond to the upper level of the taxonomy that represent the general terms
and categories in Computer Science. This is justified by our aim to keep the keywords as
generic as possible reflecting the topics rather than the fine-grained sub-topics and detailed
techniques that the ontology illustrates. This restricted our keywords of interest to only 20
bigrams. The choice of the knowledge-based resource (CS ontology) to evaluate the output
of word embeddings has been inspired by the work performed by [20] that enhanced
word2vec with geological ontology for knowledge discovery in the area of geoscience
and minerals.

At every time window t and for each keyword of interest w∗i ∈ Vt, we selected the
k-NN based on cosine similarity. In this study, k is set to 10. This choice is motivated by
the study performed by Hall et al., on the history trends in computational linguistics. Their
investigation showed that the set of 10 words was successful to represent each topic.

To select the 10-NN, we followed two steps: first, we took the top 300 similar keywords
returned by cosine similarity, and then we filtered out from these 300 keywords the ones
that belong to the first or the second level of the CSO aiming to keep the keywords as
generic as possible reflecting the topics rather than the fine-grained sub-topics. This aim
justifies the choice of 300 neighboring keywords at the beginning. Indeed, this value
was chosen experimentally; we took different k values in the interval {50, 100, 200, 300}.
Among these values, only 300 guaranteed the existence of at least 10 nearest neighbors
keywords belonging to CSO. Recall that the choice of k values was limited by the satisfaction
of a similarity threshold to fulfill in order to keep the keywords as close as possible.
The choice of this threshold, which is 0.37, was based on the work done by Orkphol and
Yung [39] on cosine similarity threshold with word2vec.

After defining the k-NN of each keyword of interest w∗i at every time window t, we
computed its k-NN stability that corresponds to the logarithmic ratio of (a) the intersection
between the two sets of 10-NN of w∗i over two subsequent time windows to (b) the sym-
metric difference between them as given per Equation (4). Therefore, the k-NN stability of
w∗i at a time window t corresponds to the output of Equation (4) with the two sets of k-NN
of w∗i at t and t− 1 as inputs. For instance, the k-NN stability of w∗i at the time window
2002–2004 describes how the k-NN of w∗i changed between the time window 1999–2001
and the time window 2002–2004.

Table 2 shows the k-NN stability of the top 20 bigrams studied in this paper, as well
as the average stability per time window as defined in Equation (6). The table does
not show the results related to the first two time windows 1987–1989 and 1990–1992
because (i) the first window does not contain the studied keywords of interest, given that
the vocabulary size is too small which justifies the difficulty to build bigrams; (ii) the
second window refers to the window t − 1 that is used to measure the stability at the
time window 1993–1995. The overall results reveal that the k-NN stability was mostly

http://skm.kmi.open.ac.uk/cso/
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negative. For instance, the average stability ranges from −0.24 to −0.531 (which is not
surprisingly) tracing the amount of disruption in the field of Machine Learning. The lowest
stability was detected in the time period 1996–1998. This suggests that the field may have
been more innovative and receptive of new topics/keywords at the time. This is indeed
supported by the timeline of Machine Learning (https://en.wikipedia.org/wiki/Timeline_
of_machine_learning, accessed on 20 September 2019) [40] that shows an interesting amount
of achievements and discoveries in the field during the period of 1995 till 1998 such as
the discovery of Random Forest Algorithm [41], Support Vector Machine [42], LSTM (Long-
Short-Term Memory) [43] and the achievement of IBM Deep Blue in the world champion
at chess [44]. However, the highest stability was shown in the time window 2014–2016.
At that time, it seemed that the field has reached a certain maturity which makes the k-NN
stability high. To see if this was in fact the case, we analysed the k-NN of all keywords
of interest at this time period. Interestingly, we found that 70% of keywords share one of
the following nearest neighbors keywords {“neural_network”, “deep_learning”, “big_data”
}. The shift toward big data analytics and deep learning is well known in the field in the
last years of the analysis. For instance, all discoveries in this period are founded on deep
neural networks and applied to big data such as Google Brain (2012) [45], AlexNet (2012) [46],
DeepFace (2014) [47], ResNet (2015) [48] and U-Net (2015) [49].

Table 2. k-NN stability of top 20 bigrams, n/a means that the keyword does not exist either in this time
window or in the previous time window.

Keywords 93–95 96–98 99–01 02–04 05–07 08–10 11–13 14–16

machine_learning n/a −0.6 −0.95 −0.6 −0.6 0 0.176 0
neural_network −0.6 −0.6 −0.18 −0.95 0 −0.368 −0.18 0
supervised_learning −0.95 −1 −1 −0.368 −0.368 −0.368 −0.368 −0.18
unsupervised_learning −0.18 −0.6 0 −0.95 −0.6 −0.368 −0.368 −0.6
reinforcement_learning −1 0 −0.368 −0.368 −0.18 −0.368 0 0
time_series −0.48 −0.95 −0.95 −1 −1 −1 −1 −0.95
artificial_intelligence n/a n/a n/a n/a −0.3 0 n/a −0.368
gaussian_process n/a n/a 0 0 0 −0.18 −0.368 0.176
semi_supervised n/a n/a n/a n/a −0.18 −0.6 −0.6 −0.6
active_learning n/a n/a n/a −0.18 −1 −1 −1 −1
decision_trees n/a −0.6 −0.6 −0.545 −0.95 −0.368 −0.95 0.176
dimensionality_reduction n/a n/a −1 −0.18 −0.368 −0.368 −0.95 −0.6
dynamic_programming −0.95 0 0.176 −0.368 0 −0.6 −0.6 0
gradient_descent 0.176 −0.18 −0.368 0 −0.368 −0.18 0.602 0.176
hidden_markov 0 −0.6 −0.6 −0.18 −0.18 −0.95 −0.368 −0.368
mutual_information −0.95 −0.397 −1 −0.6 −1 −0.368 n/a −0.552
nearest_neighbor −0.18 −0.18 −0.18 −0.18 −0.18 −0.368 −0.18 0
pattern_recognition −0.18 −0.95 −0.368 −0.18 n/a n/a −0.6 n/a
monte_carlo −0.6 −0.6 −0.18 −0.18 0.176 0 −0.18 0
graphical_model n/a n/a n/a 0.176 −0.18 −0.368 −0.18 0

Average −0.491 −0.531 −0.474 −0.392 −0.38 −0.41 −0.395 −0.24

For better interpretation of the rise and decline of k-NN stability over time, Figure 3
illustrates the average of k-NN stability over eight time windows. The sharp increase in
stability is readily apparent in the last time window as discussed above. On the other
hand, we can see the decrease in stability in the period 1996–1998 and then in the period
2008–2010. The former is interpreted previously. However, the later refers to a time window
that represented an important time frame for ImageNet [50] that was the catalyst for the AI
boom of the 21st century. This may justify the decline in stability at that time.

Regarding the time period from 1999 until 2007, Figure 3 shows a steady k-NN stability.
This suggests that the field was stable at that time; it was broadly exploring and applying
what has been discovered in the disrupted period 1993–1995. This suggestion is confirmed
by Machine Learning timeline that does not report any topics or discoveries having been

https://en.wikipedia.org/wiki/Timeline_of_machine_learning
https://en.wikipedia.org/wiki/Timeline_of_machine_learning
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prominent at that time except the release of Torch [51] which is actually a software library
for Machine Learning; it is indeed a tool and does not have anything to do with new topics.

Figure 3. k-NN average stability over time.

For overall results on NIPS publications, Vec2Dynamics shows promising findings in
tracking the dynamics of Machine Learning literature. As a proof of evidence, Vec2Dynamics,
applied to the keyword of interest “machine_learning”, detects interesting patterns as shown
in Figure 4. Each figure (Figure 4a–g) depicts the Venn diagram of two subsequent sets of k-
NN keywords of the keyword “machine_learning”. As these figures show, “machine_learning”
seems to have been stabilised significantly over time. For instance, the overlap of the
two sets St−1

machine_learning and St
machine_learning has increased gradually to pass from only one

keyword between the sets of the time periods 1996–1998 and 1999–2001 (Figure 4b) to six
keywords between the sets of the time periods 2008–2010 and 2011–2013 (Figure 4f).

In addition, the fine-grained analysis of the main streams of keywords reveals the dif-
ferent types of keywords based on their appearance/disappearance and their frequency of
appearance in the subsequent sets of k-NN. For instance, in the case of “machine_learning”,
the keywords “computer_vision”, “bioninformatics”, “robotics” and “economics” for exam-
ple are recurrent as they appeared recurrently in more than four windows. However,
the keyword “html” is non-recurrent because it appeared only in two windows and then
disappeared. On the other hand, “nlp” is considered an emerging keyword in the time
window 2002–2004 due to its first appearance. This is insightful because the field of natural
language processing has seen a significant progress after the vast quantities of text flooding
the World Wide Web in the late 1990s, notably by information extraction and automatic
summarising [52]. However, the keyword “mathematics” is considered a dying keyword
as it completely disappeared after the time period 1996–1998. This could be justified by
the fact that early Machine Learning approaches and algorithms were developed based
on mathematical foundations such as Bayes’ theorem, Markov chains, Least Squares, etc; that
is why early Machine Learning researchers have extensively investigated mathematics in
their literature comparing to the present ones that focus more on the applications.
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(a) 1996-1998 (b) 1999-2001

(c) 2002-2004

(d) 2005-2007 (e) 2008-2010

(f) 2011-2013 (g) 2014-2016

Figure 4. Venn Diagrams of “machine_learning” in the time frame 1996–2016.

Overall, Vec2Dynamics shows a great potential to track and explore the dynamics of
Machine Learning keywords/topics over time. Both numerical and visual analyses show
the effectiveness of our approach to trace the history of Machine Learning literature exactly
as Machine Learning timeline does.

5. Conclusions and Future Work

In this study, we have proposed Vec2Dynamics, a new approach to analyse and explore
the scientific literature. To this end, Vec2Dynamics followed an innovative way by leveraging
word embedding techniques, namely word2vec, to delve into the paper content and track
the dynamics of k-nearest neighbors keywords of a keyword of interest. To do so, our
approach trained temporal embeddings over ten 3-year time windows. Then, after each
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training, it computed the similarities of keywords of interest and accordingly it defined the
k-NN keywords of each keyword of interest. Afterward, it computed the stability of k-NN
over every two subsequent time windows.

By applying the approach in the research area of Machine Learning, we have found
numerical and visual evidence of computing the stability of k-NN keywords over time on
tracking the dynamics in science. A research area with growing k-NN stability is likely to
subsequently gain maturity, while the contrary is also true; it refers to an emerging area
with new topics becoming more prominent.

As future direction, we plan to apply our approach on different disciplines such as
physics, biology and medicine. Then, we plan to explore different clustering techniques,
namely Chameleon [53], for tracking the dynamism of keywords between different clusters
over time in the scientific corpora.
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