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Abstract: Ransomware attacks against Industrial Internet of Things (IIoT) have catastrophic con-
sequences not only to the targeted infrastructure, but also the services provided to the public. By
encrypting the operational data, the ransomware attacks can disrupt the normal operations, which
represents a serious problem for industrial systems. Ransomware employs several avoidance tech-
niques, such as packing, obfuscation, noise insertion, irrelevant and redundant system call injection,
to deceive the security measures and make both static and dynamic analysis more difficult. In this
paper, a Weighted minimum Redundancy maximum Relevance (WmRmR) technique was proposed
for better feature significance estimation in the data captured during the early stages of ransomware
attacks. The technique combines an enhanced mRMR (EmRmR) with the Term Frequency-Inverse
Document Frequency (TF-IDF) so that it can filter out the runtime noisy behavior based on the weights
calculated by the TF-IDF. The proposed technique has the capability to assess whether a feature in
the relevant set is important or not. It has low-dimensional complexity and a smaller number of
evaluations compared to the original mRmR method. The TF-IDF was used to evaluate the weights
of the features generated by the EmRmR algorithm. Then, an inclusive entropy-based refinement
method was used to decrease the size of the extracted data by identifying the system calls with
strong behavioral indication. After extensive experimentation, the proposed technique has shown
to be effective for ransomware early detection with low-complexity and few false-positive rates. To
evaluate the proposed technique, we compared it with existing behavioral detection methods.

Keywords: crypto-ransomware; Industrial Internet of Things; enhanced maximum Relevance and
minimum Redundancy; TF-IDF; supervised approach

1. Introduction

Recently, the Industrial Internet of Things (IIoT) has witnessed on of the most devastat-
ing ransomware attacks that infected major companies such as the Colonial Pipeline, which
disrupted the pipeline’s operations and causing a serious fuel crisis in the Southeastern
United States on 7 May 2021. This incident was one of the fastest-spreading computer-
world attacks carried out by ransomware that encrypts and/or hijacks the data, making
them inaccessible to the users [1–3]. After encrypting the victim’s assets, the ransomware
author demands a ransom for the restoration of the assets (user’s data) into their original
states [4–6]. If the victim paid the ransom to the attacker through the anonymous currency
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mechanisms such as Bitcoin [1,3], the access to the encrypted assets is made available
again [7,8]. Distribution of the crypto-ransomware can happen by a very large infection
vector, including application and browser vulnerabilities, extraction of ZIP files, malicious
payload, e.g., cryptoWall, JRE vulnerability, e.g., DMA locker, exploit kits, such as neutrino,
eternal blue, eternal romance, etc.

The ransomware analysis is commonly divided by the static and dynamic approach.
The most common detection method used by the antivirus is the signature-based detec-
tion; it is based on the characterization of the knowledge in its repository. When a new
malicious piece is discovered, the anti-virus vendors need to catch its binary signature
through analyzing the instructions of the executable code [9–11]. This signature technique
is becoming more difficult and detectable, since all recent malicious applications have
intention of stealth techniques to evade the detection [9,11]. Ransomware writers employ
obfuscation technique for automatically modifying themselves to the unknown version
to evade antivirus software detection [4]. This means that the signature-based detection
becomes less efficient and reliable to the new unseen ransomware and easily escapes the
detection by simple defense such as code obfuscation [6,11]. Many researchers employed
the analysis of the ransomware executable binary files using a dynamic approach [12].
To extract the real behavior of the malicious file, samples are executed in controlled an
environment such as sandbox [13–15]. In this approach, the changes of the file systems,
such as registry modification, file deletion and encryptions, are monitored.

Many researchers are concerned about the detection of executable binary files using
machine learning algorithms to test different methods [14]. The authors in [15] presented
a method for detecting previously unseen polymorphic computer viruses. Their model
was based on Support Vector Machine (SVM) algorithm using the system API to detect
malicious codes. Although the sample dataset size was small, they showed the model’s
detection accuracy and performance by comparing the result of SVM with other learning
algorithms. Similarly, Kolter and Maloof [16] introduced a text classification method that
detected and identified malicious binary executable files. They compared machine learning
classifiers, such as, naive Bayesian, decision tree, boosted decision tree and SVM, and
the result showed that the boosted decision tree had a perfect performance. Another
work of Singhal and Raul [17] proposed an advanced machine learning-based method for
malware detection. Their module extracted API calls made by various normal and harmful
executables and implemented an enterprise gateway level to act as a supplement anti-virus
present on end-user computers.

Due to resource limitations, most ransomware detection solutions proposed to protect
the IIoT focus on reducing the data dimensionality and extract a compact representation
of attack patterns [18–21]. The common characteristic of these solutions is the reliance on
the autoencoder to derive a reduced set of features for model training. The autoencoder
transforms the high-dimensional data into another set with a lower dimension. However,
this approach focuses on capturing more information regardless of its relevancy. Although
several solutions have used variances of the minimum Redundancy Maximum Relevancy
(mRMR) for ransomware early detection, they are not suitable for the IIoT environment as
they assume that the APIs are noise-free, which does not hold for the IIoT environment
where heterogeneous components are co-located and many of those API are not compatible
with each other. Therefore, there is a need for models that can be trained by low-dimensional
yet informative features.

In order to enhance the early detection of ransomware in Industrial IoT, this paper
examines several machine learning techniques for classifying benign and maliciousness
executables programs using API call features, and then presents a comparison of their
effectiveness with the existing methods in a controlled environment. In summary, this
paper presents three main contributions:

1. A filtering method for API call noisy reduction was proposed that reduces the size of
the API call logs based on the indication of a malicious file.
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2. A Weighted Enhanced maximum-Relevance and minimum-Redundancy (WEmRmR)
technique that selects the most informative API calls with small number of compu-
tations. Unlike the original mRmR, the weighted mRmR avoids the limitation for
ranking the features based on their importance in the collection. Therefore, we applied
the term frequency-inverse document frequency (TF-IDF) method to evaluate the
weights of these features to produce the proposed WEmRmR technique.

3. The performance of the proposed technique was evaluated on different datasets with
several feature-sets. We also compared our proposed WEmRmR method with the
original mRmR to measure the computational complexity and number of evaluations.

The remaining of this paper is organized as follows; the second section discusses
the related works. Section 3 presents the proposed methodology. Section 4 presents the
experimental result of the research. Finally, in Section 5, the conclusion of the research
is presented.

2. Related Work

Recently, supervised and unsupervised machine learning methods were suggested to
detect and classify the ransomware and benign application. Ahmed et al. [13] proposed a
highly survivable ransomware (HSR) early detection approach with supervised machine
learning classifiers. They employed behavioral-based analysis of HSR to extract the in-
tegrated features through Term Frequency-Inverse document frequency (TF-IDF). Their
experimental results achieved high accuracy and less false-positive rate for detecting HSR
in the early phases of the attack. The authors employed seven features to distinguish the
ransomware from the benign executable files. However, there are some common features
that share the malicious and benign application, which can lead to poor characterization of
the ransomware behavior and caused more false-positive alarms. Dynamic behavior-based
crypto-ransomware was introduced by Sgandurra et al. [8] to capture the characteristics
of ransomware by proposing the EldeRan framework. The authors applied a machine
learning algorithm such as the Regularized Logistic Regression classifier that achieved a
96.3% detection rate with an area under the ROC curve of 0.995%. However, identifying a
fixed time for ransomware detection is not appropriate to all ransomware samples, since
some variants display their malicious activities after human interaction [22,23]. Iglesias
and Zseby [24] proposed mRmR, WMR SAM, and LASSO for a multi-stage feature reduc-
tion with 41 traffic features. In their work, they reduced and selected the most important
features into 16 features. For classification purpose, different algorithms, such as Decision
Tree (DT), k-Nearest Neighbor (kNN), Naïve Bayes (NB), Least Absolute Shrinkage and Se-
lection Operator and the Least Angle Regression (LASSO-LAR), Artificial Neural Network
(ANN) and Support Vector Machine (SVM), are employed with five-fold cross-validation.
However, the complexity and the number of evaluations of mRmR generated features are
clearly experimented in this work.

Similar to traditional systems, the IIoT are targeted by ransomware attacks, whose
effect mostly is catastrophic as it disrupts the critical infrastructures and industrial oper-
ations. In their study, [18] investigated the likelihood that targeted ransomware attacks
disturb the edge layer of IIoT. The attack vectors have been explored and both dynamic
and static analysis were carried out. The study pinpointed the importance of the inclusion
of kernel-related parameters in detecting the ransomware. However, no solution has been
proposed for mitigating such attacks. In the study conducted by [19], the authors proposed
a deep learning-based technique to extract the latent representation of ransomware attack
patterns in IIoT. The solution relies on a deep autoencoder to reduce data dimensionality.
However, one of the major limitations of the autoencoder is that it learns to capture as
much information as possible rather than as much relevant information as possible. Con-
sequently, the ability of the model to perceive the attack patterns is negatively affected.
The high data dimensionality was also investigated [20], and a solution based on stacked
variational autoencoder (VAE) was proposed. The data were augmented using the VAE
and new artificial observations have been generated. However, the autoencoder sacrifices
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the relevancy of the extracted features. The same approach has also been used by [21] as
they built the detection model based on the Constructive Denoising Auto-Encoder (CDAE)
coupled with the Convolutional Neural Network (DNN). The model, however, tries to
preserve less information at the cost of losing the representativeness.

An enhanced mRMR feature selection technique was proposed by Al-rimy et al. [23],
which relies on the Redundancy Coefficient Gradual Upweighting (RCGU) technique to
capture the discriminative features from ransomware pre-encryption data. By evaluating
each feature individually, the RCGU overcomes data insufficiency and provides robust
features. Regarding the feature selection approach, filter methods are proposed for detection
of a ransomware sample by selecting the informative runtime characteristics of ransomware.
Huda et al. [1] employed a non-signature-based framework with API calls using hybrids of
a support vector machine wrapper and a filter-based approach. Authors combined filters
with the wrapper approach to identify the selective features. In the experimental results,
the mRmR was used with API call’s scores to feed SVM-based wrapper heuristics algorithm
that reaches an accuracy of 94.362% with 291 APIs.

The supervised learning was also used to build ransomware detection models. These
models are trained using data collected during ransomware analysis [25–27]. Such an
analysis takes place either statically or dynamically [28]. For ransomware analysis, the
feature selection is a main step that many of existing research works employ to introspect
the latent characteristics of the malicious program [29–32]. For static analysis, ransomware’s
Portable Executable (PE) file is unpacked, and the source code is introspected to extract
the malicious patterns. Several studies followed this approach [33–35]. Although static
analysis is fast, safe and accurate in identifying previously known ransomware samples,
this approach suffers from several flaws [36–38]. Particularly, static analysis is unable to
deal with evasive strains that leverage obfuscation and packing techniques to change their
structures and/or protect the code from being analyzed [38–43]. In addition, the static
analysis is not suitable for crypto-ransomware early detection as the detection relies on
runtime data which cannot be provided by the static analysis.

On the other hand, the dynamic analysis captures runtime data generated during
the execution of ransomware samples [28]. Such data represent the behavioral aspect
of the malicious software, hence can be used to detect the attacks [34,44]. Like static
data, dynamic data can be introspected, and malicious patterns can be extracted [45].
Due to its efficacy for countering the sophisticated ransomware families that employ
polymorphic techniques to deceive detection, the dynamic analysis gained popularity in
the research community [23,41,42,46–50]. During the dynamic analysis, several types of
data are collected, including API calls, PE contents, and file systems; memory; CPU and
I/O statistics [2]. The collected data are used to extract several attack patterns by which
detection models are built. However, the main drawback of ransomware dynamic analysis
is the inclusion of many irrelevant data and noise due to the overlapping between runtime
data generated by ransomware process and other applications running simultaneously
in the system. As such, it is important to distinguish between the patterns pertaining to
ransomware behavior and other applications.

3. Methodology

In this section, we present the research methodology of the proposed technique that can
detect the ransomware in the earlier phases using supervised machine learning. We discuss
the general architecture that contains four main steps, including data acquisition, analysis
of data, feature extraction, selecting the informative features using Enhanced maximum-
Relevance and minimum-Redundancy (EmRmR) ranked with the TF-IDF algorithm. Finally,
supervised machine learning algorithms with an integrated number of prominent features
are utilized.
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3.1. Dataset Collection, Pre-Processing and Analysis

In this study, the dataset that contains benign and ransomware samples is employed.
Figure 1 shows the workflow of the environmental dynamic sample execution. It consists
of a dataset that combines benign and ransomware samples, ground truth represented by
Virustotal, Cuckoo Sandbox, and API corpus. Similar to [19,21], the sandbox simulates the
edge gateway for the IIoT system. Both dataset instances are in the format of Windows
Portable Executable (PE) file binaries. We collected and acquired a total of 1500 unique
samples both benign and malicious files. The benign samples of 450 executable files
collected from the file systems in the “System32” directory of a fresh installation of Windows
64-bit environment. We also acquired a total of 1050 ransomware executable files from the
publicly computer virus websites, such as VirusShare, Maltrieve and VirusTotal. These
samples are representative of the real world crypto-ransomware that is gathered from
16 different families, such as Petya, Kovter, WannaCry, Cerber, Citroni, Reveton, Kollah,
Torrent Locker, Dirty Decrypt, Crypt-Locker, Crypto-Wall, Trojan-Ransom, Tesla-Crypt,
and Pgpcoder.

Figure 1. The Environmental Dynamic Sample Execution.

To determine the maliciousness of the files, we double-checked the MD5 hash values
of the samples. To do this, we employed Virus Total service to compare the obtained hashes
with 57 common different antivirus software. The collected samples contain redundant
MD5 hash instances with other ransomware names that may lead to a poor detection of
the model and increase the false-positive rate. To remove these redundancies, again, we
rechecked the sample’s hash through online Virus Total service. For ransomware family
categorization, we employed antivirus vendors’ labelling scheme to classify the sample’s
names. Once the data acquisition and labelling process are finished, the pre-processing tasks
begin to clean the dataset such as file type identification, and removal of duplicate files.

Since ransomware writers disguise themselves by employing evasion techniques, such
as obfuscation, compression, and encryption to subvert the static analysis approach, we
used a dynamic analysis approach to gain valuable information related to ransomware
behavior. In this method, malware instances are executed inside a guest virtual machine
with a host-sandbox to expose the dynamic malicious activities of the samples. To capture
the runtime characteristics of samples, we employed Cuckoo Sandbox, a free open-source
tool for automation of malware analysis [25]. Cuckoo monitored and recorded information
in terms of the API calls, network traffic, changes of files and folders, processes and
memory dumps.

We installed Cuckoo sandbox in Ubuntu 16.04 LTS Desktop fully updated version
as host operating system. The guest machine was WindowsXp_server_Pack3 32bit as it
has less security protections that provides more ransomware activities. We executed every
sample in the Sandbox up to a range of 4 until 9 min to exhibit its malicious behavior, but
modern ransomware pauses its execution until human interaction such as a mouse event
or a key is pressed. Therefore, we employed a python script that works under the Sandbox
to do the normal user’s activities, such as clicking, creating and deleting documents and
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folders on the desktop. Once the sample execution is completed, the output of the sandbox
is a human-readable file with extension of JavaScript Object Notation (JSON) format.

The framework for the ransomware detection-based supervised-approach with WEm-
RmR is shown in Figure 2. The framework is composed of five components, namely data
collection, sample extraction, API gathering, API refinement, and detection engine. During
data collection, the ransomware and benign samples are collected to build the dataset and
labels are added for each sample based on the decision of the Virustotal. During sample
execution, both benign and ransomware samples are submitted to the sandbox for analysis.
The APIs are captured and stored into trace files. Then, the refinement is conducted where
the APIs are purified, and the failed ones are identified. During this phase, the features are
extracted using the N-gram technique and then selected using the proposed EmRmR. The
selected features are then used in the detection engine to train the model.

Figure 2. The general framework for Ransomware detection-based supervised-approach with WEmRmR.

3.2. Run-Time Feature Extraction

The behavioral JSON log files generated by the sandbox are then moved into the
extraction phase to gain the valuable API calls. Table 1 shows samples of runtime API calls
used by the ransomware during the execution. Although this output log file contains several
groups of analyzed malware activities, we focused only the behavioral part that defines the
runtime characteristics of the malicious samples. API Call features are generated from the
malicious log files and fed into machine learning algorithms for detection purposes. These
effective API Calls are considered to be the most promising approach for the detection and
classification of ransomware by providing a valuable behavior of suspicious activities and
the attack patterns [16]. To expose the malicious activities, a ransomware file requires a
service from the operating system through an application program interface (API) call that
represents the essential behavior of the malware [27].

The collected log files contain a huge number of runtime features that occupy hun-
dreds of MBs of memory, so retrieving the most important elements from these JSON
files manually is experimentally infeasible. Therefore, we employed a parsing algorithm
to convert JSON-formatted string representations to the appropriate machine learning
format objects as shown in Algorithm 1. The parsing algorithm reads the content of the
output JSON file of every process and extracts the entire trace that consists of the API
call parameters and its values. To reduce the size of the traces, the parameters and the
return-values of the API calls were eliminated from the log files. The names of the related
API calls were extracted to create a feature vector based on the process timestamp.
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Algorithm 1: API Calls Feature Extraction

Input: Set path JR that contains a static feature f.
Output: Extracted files
1. for process in json_data[‘behavior’] [‘processes’] do
2. if json_data_process is equal to states then
3. set FST = process_first_seen
4. if FS is greater than FST or equal to zero
5. set first_seen = first_seen_temp
6. for features in json_data_process[F] do
7. if features [F] not in _Dict_features then
8. set _Dict[F] and timestamps = f and _time
9. Our_Dict [F][count] = 1
10. Else set _Dict [F] and timestamps = _F_timeappend_F
11. Dict [F][count]+1, return FS, Dict_ [F]}
12. Function ParsedJson_Files (JR, PR)
13. for (JR, PR) in G_file() do
14. for i, name in enumerate [all_files] do
15. If name ends with (‘json’) then
16. Fname = initialize files that matches (name)
17. Open the json data (JR+Fname) as (jsonf)
18. Set Sdata = load (jsonf)
19. GetFeature ( Sdata , true)
20. Print(PR)}
21. In the main function {
22. Input JR ← parse_directory
23. Input PR ← F
24. Store the user’s input in the (JR, PR ) variables
25. Parsed Json_Files(JR, PR)
26. if name is equal to main then terminate

3.3. Weighted Enhanced Maximum Relevance and Minimum Redundancy (WEmRmR)

The output of the JSON files includes a huge amount of unrelated runtime API calls.
The ransomware authors inject many API calls into the flow execution of the program
and this leads to a noisy characteristic of the feature vector. The detection results of
machine learning becomes poor due to the hard monitoring and analysis of the real runtime
ransomware activities. Therefore, many researchers employed the Maximum Relevance and
Minimum Redundancy (mRmR) algorithm that was suggested by Peng [31]. The mRmR
is a popular filter method that is used to select the informative characteristics with high
relevance of the class target, and reduces the redundancy features with a supplementary
feature set [29]. The implementation of mRmR has been effectively employed in many
different fields, such as video processing, microarray gene expression and data analysis [30].
In the mRmR approach, the maximum relevance (mR) selects the dynamic runtime features
correlated to the characteristics of ransomware types without considering the relationships
among features. If S is a set of ransomware features, MI( fi, C) is the mutual information
between the features fi and the malicious target class, the mR is calculated as:

Max_Relevance( fi, C) =
1
|S| ∑

fi∈S
MI( fi, C) (1)

MI( f , f ) = ∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)
(2)
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The maximum relevance (mR) describes the runtime characteristics related to the
malicious file, but mR causes redundancies [18]. To address this replication issue in mR, the
minimum Redundancy (mR) criterion is employed and illustrated as:

Min_Redundance( fi, C) =
1

|S|2 ∑
fi, f j∈S

MI
(

Fi, Fj
)

(3)

Therefore, the combination of Max_Relevance( fi, C) and Min_Redundance( fi, C) into
one function is described by mRMR using the mutual information difference (mRMR MID)
explained as follows:

MID = MAXS

MI( fi, C)− 1
|S| ∑

fi, f j∈S
MI
(

Fi, Fj
)  (4)

The disadvantage of mRmR is the redundant calculations of mutual information (MI)
among pairs of features, so, we proposed a slight version of the Enhanced (EmRmR) method
that employs with an empty set. This approach identifies the most informative features{

fi . . . . . . fq
}

from the original feature set F and eliminates the noise. This repletion does
not finish until all subset features are equal to q. Due to the repetition, the mRmR algorithm
calculates the MID value on the (n− q + 1) feature at each iteration.

The generated featurWes by the EmRmR are not ranked, therefore, we need to weight
the selected features based on their importance in the document collection. We employed
the term frequency-inverse document frequency (TF-IDF) method to weigh the features as
expressed, as follows:

Wi = TF(ωi, d)× IDF(ωi) (5)

where Wi is the scoring method of word ωi in the feature pooling d∈D, and TF (ωi, d) is the
frequency of term of ωi in document d, and IDF (Inverse Document Frequency). Algorithm
2 presents the pseudocode of the proposed Weighted Enhanced maximum Relevance and
minimum Redundancy (WEmRmR).

Algorithm 2: Weighted API Call Extracted using Enhanced maximum Relevance and minimum
Redundancy (WEmRmR)

Input: Discretised data d, number of features in d is F, subset features
{

fi . . . . . . fq
}
∈ F , class C,

number of features to select q, Sf selected features
Output: selected output features F

Initialization
27. Sf ← 0;
28. for fi ∈F do
29. Relevance (S) ← Mutual_Info (fi, C);
30. Aggregate_ Redun = 0;
31. end for
32. Sf = Max (Relevance (S))
33. l ∈ {s1s2s3 . . . . . . st} ← [fi∈F | S ]//To store the highest scorer
34. for t1: q − 1 do
35. size← len (l ∈ {s1s2s3 . . . . . . st} )
36. while ν ++ < size do
37. for fj∈F do
38. Relf ← Relevance (S)
39. Aggregate_ Redun =

(
k + 1 + MI

(
fi, fj + 1

))
40. end for
41. Rf ← Relf -Aggregate_Redun;
42. end for
43. return selected feature subset

{
fi . . . . . . fq

}
;
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Table 1. Runtime API Call behaviors.

API Calls API Category

System Information GetSystemWindowsDirectoryW, GetUserNameA, GetSystemInfo,
GetSystemDirectoryA, GetSystemDirectoryA, GetNativeSystemInfo

Process and Thread WriteProcessMemory, CreateRemoteThread,
SetThreadContext, NtResumeThread

Registry RegNotifyChangeKeyValue,
RegCreateKeyExA, NtAllocateVirtualMemory

Cryptography CryptGenKey, EncryptMessage, CryptEncrypt, CryptHashData,
CryptCreateHash, CryptAcquireContextW

File Management DeleteFileW, CreateFileW, FindNextFileW, WriteFile, CopyFileA

4. Experimental Results

In this section, we present the experimental results of the several machine learning
algorithms, such as Logistic Regression (LR), k-Nearest Neighbor (kNN), Random Forest
(RF), Decision Tree (DT), AdaBost (AD) and Support Vector Machine (SVM) on various
feature dimensions generated by the Enhanced EmRmR and, then, we weighted the Em-
RmR. To evaluate the proposed detection scheme, the accuracy of the model, F-measure,
precision and recalls, and the Area Under the Curve are depicted. The definitions of these
performance metrics have been defined in Table 2. To reduce the dimensionality of the
features, we selected the Top-k feature set: 30, 60, 90, 120 and 150.

Table 2. Performance Criteria.

Metrics Description

True Positive (TP) The ransomware samples that are predicted as ransomware

False Positive (FP) The number of benign which are predicted as ransomware

True Negative (TN) The samples that are correctly classified as benign programs

False Negative (FN) The number of ransomware samples that are misclassified as
benign programs

Accuracy The ratio of properly identified samples, either malware or benign

Precession Proportion of predicted ransomware which is real ransomware

Recall Proportion of actual ransomware which is predicted ransomware

F-Measure The balance between the precision and the recall on the selected
subset features

ROC Area Under the curve

4.1. Accuracy

The accuracy of the classifiers describes the performance of the trained and the tested
models. To evaluate the accuracy, we experimented the sub-selected k features from the
EmRmR and present the results in Tables 3 and 4. The accuracy variation among the
classifiers ranging from 57.61% to 98.63 for the top-k feature sets: 30, 60, 90, 120, 150 and
180, with 10-fold cross-validation. Table 3 illustrates the classifiers’ performance on the
accuracy of the selected k features without ranking. The lowest accuracy (75.10–89.92%)
among the selected k dimensions showed by the classifiers when k = 30 is employed to
train and evaluate the detection model. This poor detection accuracy is probably due to the
short ransomware behavior characteristic that is not important for describing the pattern
of the malicious file from normal files. That is why some ransomware families tend to
carry out the entire attack within a short time to inflict the maximum damage before the
detection takes place. Such behavior is challenging as it does not give enough time to
capture sufficient data needed for accurate detection.
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Table 3. The accuracy of classifiers on EmRmR k features.

kNN LR SVM RF DT AD

K_30 0.853 0.899 0.773 0.751 0.865 0.782
K_60 0.674 0.958 0.912 0.861 0.949 0.949
K_90 0.769 0.956 0.986 0.853 0.974 0.917

K_120 0.798 0.965 0.853 0.926 0.899 0.912
K_150 0.752 0.782 0.892 0.847 0.909 0.881

Table 4. The accuracy of classifiers on WEmRmR features.

kNN LR SVM RF AD DT

WK_30 0.371 0.625 0.948 0.932 0.033 0.952
WK_60 0.041 0.959 0.976 0.971 0.007 0.988
WK_90 0.006 0.993 0.977 0.976 0.012 0.987

WK_120 0.071 0.935 0.974 0.959 0.035 0.962
WK_150 0.160 0.839 0.951 0.936 0.035 0.964

The highest accuracy (76.93–98.64%) was achieved by the classifiers when the top 90 k
of the feature set was employed. However, when we expanded the k feature dimensionality
to k = 150 and k = 180, the classifiers’ detection has dramatically declined to (78.23–89.14%).
This is because the effect of overfitting using high-dimensional data, which adversely
affects the accuracy of the detection. Particularly, adding more features leads to feed the
model with less relevant and noise input that confuses the model and makes it less sensitive
to the actual attack patterns.

On the other hand, we also evaluated the accuracy of the classifiers based on the
WEmRmR method on same k feature dimensionality as shown in Table 4. Overall, the
results of this experiment are nearly similar to the previous one, but were quite satisfac-
tory. Interestingly, the accuracy of the classifiers significantly outperformed compared the
previous experiment when the k = 30, k = 60 and k = 180 is used. This is attributed to
the ability of WEmRmR to filter out the noise, irrelevant as well as the redundant features,
which contribute to improve the discriminative capability of the detection model.

4.2. F-Measure

In this section, we evaluated the F-measure to convey the balance between the precision
and the recall on the selected subset features. This overcomes the problem of biasness
towards the major class in imbalanced datasets as it is the case for a ransomware dataset
used in this study. Figure 3 compares the F-measure of each classifier trained and evaluated
with different k− Features dimensions without ranked scheme. The highest F-measure
values were achieved by the SVM (0.988), and DT (0.986) on a subset feature of k = 90,
followed by the LR (0.964), RF (0.917) on k = 120. The classifier of AD and kNN showed
a fairly good F-measure of 0.903 and 0.842 with k = 90 and k = 30 feature dimensions,
respectively. We observed the lowest F-measure presented by the AD (0.554) when k = 60
of the feature set was employed to train and test the detection model. This is due to the
lack of diverse features that AdaBoost needs to build the base estimators that introspect the
data from different perspectives.

Figure 4 shows that the classifiers on differently weighted feature dimensions have
good/better F-measure compared to the previous unranked feature dimension. From the
result in Figure 4, it is obvious that the classifiers on k = 120 performed the highest with
an F-measure ranging from 0.727 to 0.989. More specifically, the LR Classifier showed the
highest F-measure of 0.989% on k = 120, but presented a poor F-measure on the weighted
subset feature of k = 150. This is again the result of overfitting that high-dimensional data
normally cause.
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Figure 3. Classifier’s F-measure with EmRmR k feature dimensions.

Figure 4. Classifiers’ F-measure with WEmRmR k feature dimensions.

Likewise, although the size of the weighted k features is enlarged to 150, the classifiers
showed the lowest F-measure; this reveals that the small size of weighted features does not
indicate the runtime characteristics of the malicious file.

4.3. Area under the Curve

To measure the performance of the classifiers, we evaluated the Area Under the Curve
(AUC), precision and recall on the sub-selected k features. Tables 5 and 6 demonstrate the
AUC values, precision and recall of different classifiers on both weighted and unweighted
k−feature sets. From Table 5 (A,B), the classifiers on k_90 and k_120 feature sets achieved
the highest AUC values of all the k-feature dimensions, ranging from 0.996 to 0.724, with a
lesser false-positive rate of 0.016. The lowest AUC values were obtained by the classifiers
when k_30 feature sets were employed. This demonstrates that less k-selected attributes do
not determine the dynamic characteristics of the malicious file. Moreover, the AUC values
of the detection model increased, whereas the size of k was set to 120. This is attributed to
the ability of the proposed feature selection technique to pick discriminative features and
filter out the irrelevant redundant features.
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Table 5. TPR, FPR, Precision, Recall, and AUC with EmRmR feature dimensions in different algorithms.

(A)
kNN LR SVM

K_30 K_60 K_90 K_120 K_150 K_30 K_60 K_90 K_120 K_150 K_30 K_60 K_90 K_120 K_150

TPR 0.812 0.647 0.73 0.747 0.751 0.893 0.958 0.978 0.972 0.753 0.76 0.903 0.986 0.862 0.893
FPR 0.246 0.381 0.285 0.284 0.453 0.049 0.049 0.021 0.027 0.205 0.45 0.145 0.016 0.053 0.185

Precision 0.812 0.653 0.687 0.701 0.605 0.864 0.892 0.953 0.958 0.749 0.581 0.903 0.989 0.874 0.832
Recall 0.813 0.647 0.696 0.707 0.615 0.869 0.896 0.958 0.957 0.756 0.583 0.904 0.979 0.879 0.831
AUC 0.834 0.614 0.732 0.782 0.623 0.914 0.921 0.976 0.951 0.772 0.601 0.879 0.996 0.916 0.859

(B)
RF DT AD

K_30 K_60 K_90 K_120 K_150 K_30 K_60 K_90 K_120 K_150 K_30 K_60 K_90 K_120 K_150

TPR 0.751 0.861 0.841 0.917 0.847 0.845 0.945 0.986 0.892 0.915 0.722 0.555 0.872 0.903 0.882
FPR 0.451 0.186 0.346 0.081 0.175 0.081 0.061 0.018 0.049 0.161 0.41 0.399 0.043 0.072 0.134

Precision 0.601 0.862 0.853 0.918 0.849 0.732 0.945 0.986 0.845 0.895 0.719 0.526 0.887 0.879 0.851
Recall 0.602 0.861 0.841 0.917 0.847 0.736 0.945 0.986 0.863 0.896 0.723 0.555 0.896 0.885 0.853
AUC 0.591 0.901 0.848 0.918 0.869 0.753 0.952 0.978 0.914 0.901 0.743 0.551 0.926 0.914 0.864

Table 6. TPR, FPR, Precision, Recall, and AUC with weighted EmRmR feature dimensions in
different algorithms.

(A)
kNN LR SVM

WK_30 WK_60 WK_90 WK_120 WK_150 WK_30 WK_60 WK_90 WK_120 WK_150 WK_30 WK_60 WK_90 WK_120 WK_150

TPR 0.823 0.73 0.705 0.727 0.705 0.921 0.684 0.889 0.895 0.722 0.824 0.553 0.966 0.716 0.893
FPR 0.296 0.285 0.326 0.268 0.326 0.124 0.51 0.049 0.075 0.41 0.203 0.033 0.039 0.316 0.185

Precision 0.801 0.731 0.701 0.731 0.702 0.893 0.687 0.895 0.91 0.696 0.824 0.743 0.969 0.715 0.832
Recall 804 0.732 0.697 0.727 0.705 0.894 0.686 0.892 0.895 0.693 0.828 0.749 0.969 0.716 0.831
AUC 0.805 0.732 0.705 0.732 0.679 0.899 0.695 0.916 0.938 0.743 0.853 0.728 0.986 0.743 0.859

(B)
RF DT AD

K_30 K_60 K_90 K_120 K_150 K_30 K_60 K_90 K_120 K_150 K_30 K_60 W_90 K_120 K_150

TPR 0.806 0.891 0.841 0.903 0.806 0.914 0.903 0.946 0.647 0.861 0.925 0.751 0.852 0.535 0.845
FPR 0.216 0.049 0.146 0.07 0.216 0.132 0.145 0.036 0.381 0.136 0.126 0.451 0.049 0.439 0.08

Precision 0.812 0.869 0.851 0.889 0.812 0.132 0.903 0.936 0.653 0.805 0.923 0.621 0.841 0.612 0.722
Recall 0.806 0.871 0.841 0.876 0.806 0.886 0.903 0.936 0.647 0.801 0.921 0.613 0.835 0.555 0.733
AUC 0.794 0.914 0.848 0.914 0.794 0.906 0.879 0.938 0.614 0.826 0.914 0.591 0.856 0.534 0.753

On the other hand, we evaluated the AUC values of the classifiers on weighted k
feature dimensions on their relevance and ranking by the TF-IDF-EmRmR. Overall, the
results of AUC values, precision and recall improved significantly compared with the
preceding experiment. Regarding to Table 6 (A,B), the highest accuracy of 0.998 to 0.732
presented by the classifiers with a low false-positive rate of 0.017 when the k_120 of the
TF-IDF-EmRmR-based features were employed to train the detection accuracy. When
we increased the number of the selected k feature dimension to K_150, the classifiers
presented the lowest AUC values. This is due the fact that the large size of the k feature
dimension does not differentiate the characteristics of the malicious file from the benign. It
is interesting to note that the k_30 feature set generated by the TF-IDF-EmRmR has shown
fairly better AUC values compared to the EmRmR features.

5. Comparing with Previous Works

In this section, as shown in Table 7, the proposed method is compared with earlier
similar works against the detection performance using different kinds of ransomware.
The aim is to present the effectiveness of the detection model of the supervised classifiers
based on the performance criteria. Vinod et al. [32] proposed a dynamic-based method
for detection of the obfuscated malicious files. This approach applied a hybrid method,
such as Principal Component Analysis (PCA) and Minimum Redundancy and Maximum
Relevance (mRmR) filter with various mnemonic n–grams, to produce informative dynamic
behaviors. The generated features are then fed into several classification algorithms that
showed a detection accuracy of 94.1% with a less false-positive rate. Similar work has been
conducted by Iglesias and Zseby [24] who used a combined feature reduction approach for
the network traffic. They employed SAM, LASSO, WMR, and mRmR selection techniques
to reduce 41 traffic features into 16 predominant features. In their work, the classification
algorithms presented an accuracy (0.27–95.48) with mRmR-generated features. This is
attributed to the ability of the proposed feature selection technique to make the appropriate
trade-off between relevancy and redundancy. Thus, the proposed WEmRmR can select the
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most distinctive features while maintaining the low redundancy between candidate and
already-selected features. This diversifies the detection model’s input, which helps look
into data from many perspectives and understand the data more precisely.

Table 7. Comparing the proposed method with previous works.

Works Classifier(s) Used Detection Rate

Proposed Method (WEmRmR) kNN, LR, SVM, RF, AD and DT 0.993

Vinod et al. [32] NB, SMO, IBK, J48, ADA and RF 0.941

Iglesias and Zseby [24] DT, kNN, NB, LASSO-LAR, ANN
and SVM 0.954

Sgandurra et al. [8] Logistic Regression 0.963

Ye et al. [33] OOA_Apriori, OOA_FP-Growth and
OOA_Fast_FP-Growth 0.931

6. Conclusions

Dynamic behavioral ransomware detection on API call sequences with a supervised
machine learning algorithm are proposed in this study. We used runtime analysis for
673 ransomware samples on Windows platforms. The study focused on the malicious
behaviors of 16 newly emerged ransomware families. To evade the detection, ransomware
authors employ packing and obfuscation methods that make the dynamic behavior analysis
more difficult. The most promising method for ransomware detection is the dynamic
analysis that determines the characteristics of the real ransomware behavior. This method
uses API calls to distinguish the malicious activities done by the ransomware from the
benign files. However, when ransomware executes, a huge amount of irrelevant and
redundant API calls are also invoked. This will lead to poor capability of machine learning
detection. To address this issue, this paper proposed a weighted enhanced maximum
relevance and minimum redundancy (WEmRmR) filter that generates similar features as
the EmRmR but better with ranking. To achieve this, the generated EmRmR features are
then passed into the term frequency-inverse document frequency (TF-IDF) algorithm to
rank the features based on their importance in the feature sets. The experimental results
have shown the effectiveness of the proposed technique that obtains a high classification
accuracy with few false-positive rates. To empirically evaluate the proposed technique
(WEmRmR), we compared the experimental results with the previous similar works and the
results showed the superiority of the WEmRmR technique. Future works can investigate
the effectiveness of this technique on different datasets obtained from Industrial IoT. In
addition, the application of other machine learning and deep learning methods can be
investigated.
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