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Deep Recurrent Dictionary Learning- A Dynamical tool for Stock
Trading

Shalini Sharma , Angshul Majumdar, Émilie Chouzenoux, and Víctor Elvira
(The abstract should not exceed 250 words. It should briefly summarize the essence of the paper and address the following areas

without using specific subsection titles.): Objective: Briefly state the problem or issue addressed, in language accessible to a general
scientific audience. Technology or Method: Briefly summarize the technological innovation or method used to address the problem.
Results: Provide a brief summary of the results and findings. Conclusions: Give brief concluding remarks on your outcomes. Clinical
Impact: Comment on the translational aspect of the work presented in the paper and its potential clinical impact. Detailed discussion
of these aspects should be provided in the main body of the paper.

(Note that the organization of the body of the paper is at the authors’ discretion; the only required sections are Introduction,
Methods and Procedures, Results, Conclusion, and References. Acknowledgements and Appendices are encouraged but optional.)

Index Terms—Stock Trading, Kalman filter, signal processing, Deep learning.

Note: There should no nonstandard abbreviations, acknowledgments of support, references or footnotes in in the abstract.

I. INTRODUCTION

ONe classical problem in stock trading is to predict when
to buy / sell / hold a stock given a future window (say

a week or a month) so as to maximize gain or minimize
losses. In signal processing / machine learning this turns
out to be a time series classification problem[8]. This is
the problem we intend to address in this work. The general
problem of stock trading or the associated problem of stock
price forecasting has always been challenging[3]. This is
mainly because of the non-stationerity and non-linearity of the
underlying dynamical process. Financial markets are not only
influenced by consumer behaviour but also by many external
factors like natural disasters, administrative policies, political
decisions, international relations, to name a few. Therefore
developing reliable algorithmic models for stock trading has
always remained as a challenging yet interesting topic from
the point of view of both finance and signal processing[4], [5],
[6], [7].

There are studies on financial markets that uses Box
Jenkins type techniques like auto regressive moving average
(ARMA)[1],[9] and its variants (like ARIMAX [12]) for
modeling the dynamic nature of the process. For a long time,
classical techniques like based on state space models (SSM)
are being used for modeling the financial markets, e.g. the
Kalman filter solution to the linear SSM has been widely
used [13]. Non-linear extensions of the SSM like the extended
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Kalman filter [14], unscented Kalman filter [15] and particle
filter [16] are also used for financial time series analysis. The
advantage of these signal processing type approaches was that,
they not only able to give a point estimate but also generated
the uncertainty around the estimate. Uncertainty is crucial for
financial markets since it gives a measure of the associated
risk [17].

The main drawback of the aforesaid signal processing based
forecasting approaches is that they need specification of the
model. Specifying an underlying model for the stock market
is difficult if not impossible. This is where neural network
based approaches have excelled. Approximation capability of
recurrent neural network (RNN) for dynamical systems is well
known [18]; [19]. Recurrent neural networks are universal
approximators [20]. Given enough data, RNN can learn the
underlying model; this precludes the need for specifying the
dynamical model. Although RNNs of yesteryears suffered
from the problem of vanishing gradients [21], these issues
have been partially accounted for in its new avtaars like the
long short-term memory (LSTM) network or gated recurrent
units (GRU). Both LSTM [22]; [23] and GRU [24]; [25] are
being used for stock forecasting in recent years. Even though
RNN and its variants like LSTM and GRU can model the
dynamical nature of stock markets, they typically yield point
estimates and do not give any uncertainty measure. This is a
major drawback since uncertainty is commensurate with risk.

In this work, we propose to bridge the gap between state
space models and neural networks; keeping the best of both
worlds - the function approximation capability of neural net-
works and uncertainty estimates of state space models. The
problem has been addressed to some extent by assuming the
operators to be unknown in SSMs [26]; [27]. The limitation of
the aforesaid studies is that they can only handle linear SSMs.
To the best of our knowledge, estimation of operators for non-
linear SSMs has not been achieved. In this work, we model
non-linearity via a new kind of deep neural network - deep
dictionary learning[28]; [29]. This deep neural network allows
for function approximation [30] while the inherent nature of
SSM generates uncertainty measures about the estimate. Deep
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dictionary learning has been used in the past for modeling
static functions; this work proposes a recurrent version of it
for modelling dynamical systems. We call our method deep
recurrent dictionary learning (DRDL).

The rest of the paper is organized as follows. Relevant
literature is reviewed in Section 2. The proposed model and in-
ference algorithm are explained in Section 3. The experimental
results are presented and discussed in Section 4. Conclusions
and future directions of research are finally given in section
5.

II. RELATED WORK

A. Signal Processing Techniques

Classical time series modeling techniques mostly assumed
stationary stochastic processes. Based on this assumption one
class of techniques were called auto-regressive moving average
(ARMA) models. There are several studies using these to
model stock market and predict the future trends[36], [37],
[38], [39], [40]. The staionarity assumption of ARMA was too
simplifying and is known not to hold true for stock prices; this
limitation was partially overcome by autoregressive integrated
moving average (ARIMA)[41] models where it was assumed
that the differenced version of the time-series is stationary
even if the original one is not; ARIMA WAS also known
as Box Jenkins MODEL. Such models have been used in
the past for stock forecasting and trading[42], [43], [44]. The
ARIMA model failed in modeling volatility clustering; it also
failed when the noise distribution was fat-tailed[45]. The Box
Jenkins methods could model non-smooth variations in time
series, i.e. could not model such variations as a stationary
process by differencing[46], [47]. To address some of the
limitations with Box Jenkins models, ARIMA with regressors
were introduced [48]; there are a few studies using this class
of techniques for stock forecasting [12]);[104]. Unfortunately
ARIMA with regressor(ARIMAX) introduced other problems
such as over-fitting and under-fitting because of the handling
of extra predictors and variables. Another shortcoming of
ARIMAX stemmed from the linearity assumption between
the predictors and the target variable. ARIMAX also failed
in handling multi-colinearity in the data.

Another classical approach for time series analysis is state-
space model (SSM). There are many studies that used SSMs
for stock forecasting and analysis [49], [50], [51], [52], [53].
The celebrated Kalman filter is a solution to the linear SSM
where the noise is assumed as Gaussian[54]. Kalman filters
found limited use in stock forecasting forecasting [Choudhry,
T. and Wu, H., 2009. Forecasting the weekly time-varying beta
of UK firms: GARCH models vs. Kalman filter method. The
European Journal of Finance, 15(4), pp.437-444] but has been
heavily used in other financial analysis [Wells, C., 2013. The
Kalman filter in finance (Vol. 32). Springer Science Business
Media]. The linear SSM is not an ideal choice for modeling
stock price owing to its inherent non-linearity. To overcome
this limitation extended Kalman filter (EKF) [55], [56] and
Unscented Kalman filter (UKF)[57] have been used. EKF and
UKF were able to model the non-linearity but could not handle
non-Gaussian noise. Particle filters were designed to handle

non-linear SSM with non-Gaussian noise; comprehensive stud-
ies on particle filters for stock forecasting can be found in
papers [58], [59], [60], [61]. The main shortcoming of all
SSMs be it linear or non-linear with Gaussian or non-Gaussian
noise, is that they require prior modeling and specifications
of state and observation operators. Specifying these operators
apriori is difficult if not impossible for challenging scenarios
such as stock price forecasting. However the advantage of
SSMs is that they can model uncertainty in the estimate[61],
[62], [63], [64], [65]; this is crucial in stock forecasting where
the uncertainty is related to the risk.

A partial solution to this problem has been addressed in lin-
ear state space models where the operators were assume to be
unknown and estimated from data [26], [27]. These techniques
keep the best of both worlds; they do not need specification
of the operators and can yield uncertainty estimates. However
they are limited to linear SSM and hence cannot model the
non-linearity associated with stock price forecasting or trading.

B. Machine learning Techniques

The main shortcoming of signal processing techniques in
dynamical modeling is that they require specification of certain
parameters; for example the orders in ARMA and its variants
or operators in SSMs. Neural networks on the other hand do
not require specification of the model; they are known for
their function approximation capabilities[72]. The relationship
with Neural network’s function approximation capability with
Kolmogorov’s work on expaning functions on a sigmoid bassis
was shown by Kurkova [73]; later Kurkova and Sanguineti
extended the analysis of function approximation capability to
other basis [105], [106] Some of the comprehensive studies
can be found in papers [66], [67], [68], [69], [70]. Recent
studies have extended the analysis of function approximation
to deep neural networks [19]. Function approximation of dy-
namical systems has been analysed in the context of recurrent
neural network (RNN) [18], [19], [20]. RNN and its variants
have been used in several studies for stock price forecasting
[21], [22], [23], [24], [25], [82], [83], [84], [86], [87]. To
summarize, the advantage of neural network techniques is that
they do not apriori specification of the underlying function
and can yiueld reasonably good estimates. However, the main
shortcoming of neural network based approaches is that they
do not yield the uncertainty estimate, which, as mentioned
before is necessary for stock forecasting in order assess risks.

There exists hybrid approaches that comprises of classical
time series modeling techniques coupled with neural networks
for stock forecasting. For example [71] uses ARIMA and
support vector machine; another work [74] uses a combination
of ARIMA and random forests for the same task. There are
many studies such as [75], [76], [77], [78], [79], [80], [81]
that use a combination of numerical data (stock prices) and
textual information garnered via natural language processing
from blogs and news sources for predicting stock prices. These
studies are not directly comparable to our work since they
are not completely artificial intelligence driven; the textual
information comes from human intelligence. Such methods
will not be discussed any further.
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III. PROPOSED WORK

As discussed earlier the limitations of SSM based ap-
proaches, we need to define and structure prior assumptions of
the observation and state modeling matrices before predicting
the trends. This becomes very difficult to assume in chal-
lenging applications like stock market modeling as the state
matrices and observations matrices evolve dynamically over
different timestamps. This is due to the fact that the stock
markets are highly chaotic and dynamic in nature. Whereas
this limitation was seen to be fulfilled by machine learning
and deep learning approaches, as these models are black-
box models with fewer assumptions. These models try to
learn parametric functions and mappings from the data. But
these models rarely provide the uncertainty scores associated
with a point-wise estimate. This novel proposed work Deep
Recurrent Dictionary Learning method aims to predict a stock
trading decision, by combining advantages from both SSM
and Deep learning approaches. In this section, we present in
detail our DRDL method for multivariate time series prediction
along with an associated inference technique relying on the
expectation-majorization (EM) approach. We will later explain
in detail how we used the proposed approach to the problem of
stock trading, and we will also describe a windowing strategy
allowing for on-the-fly prediction and decision making.

A. Deep Recurrent Dictionary Learning

Let us consider (xk)1≤k≤K the observed time-series of
vectors of size Nx and (zk)1≤k≤K is the sequence of vectors
of size Nz that we want to infer/estimate, (vk)1≤k≤K models
the noise. Note that we consider here possibly multivariate
signals and feature vectors, i.e., Nx and Nz can be greater
than 1. Our DRDL model is expressed as follows. For every
k ∈ {1, . . . ,K}:{

zk = D0D1D2zk−1 + v1,k,
xk = H0H1H2zk + v2,k.

(1)

We assume that the process noise (v1,k)1≤k≤K is zero-mean
Gaussian with covariance matrix Q, and that the observation
noise (v2,k)1≤k≤K is zero-mean Gaussian with covariance
matrix R. Then, Eq. (1) describes a first-order Markovian
non-linear-Gaussian model where (zk)1≤k≤K is the sequence
of K unknown states. The goal is the joint inference, from
the observed sequence (xk)1≤k≤K , of the dictionaries D0 ∈
RNz×Nz , D1 ∈ RNz×Nz , D2 ∈ RNz×Nz and H0 ∈ RNx×Nz ,
H1 ∈ RNz×Nz , H2 ∈ RNz×Nz and of the predicted sequence
(zk)1≤k≤K .We take care of non-linearity by introducing
positivity constraints on dictionaries D0,D1,D2,H0,H1,H2

which is equivalent to relu activation. function.

B. DRDL inference algorithm

Under Gaussianity assumptions, the inference problem can
be viewed as a blind Kalman filtering problem where both the
predicted sequence and some model parameters (the observa-
tion and state non-linear operators) must be inferred/estimated
from the data. We propose to solve the problem in an alter-
nating manner, following the expectation-majorization scheme

introduced in [96, chap.12] (see also [97]). We alternate iter-
atively between (i) the estimation of the state, the dictionaries
D0,D1,D2,H0,H1,H2 being fixed and (ii) the update of the
dictionaries, assuming fixed state.

1) State update
At this step we considered the dictionaries

D0,D1,D2,H0,H1,H2 to be fixed and known, and
the goal is the inference of the hidden state. Assume that the
initial state follows z0 ∼ N (z̄0,P0), where P0 is a symmetric
definite positive matrix of RNz×Nz and z̄0 ∈ R. Then, (1)
reads as a first-order Markovian non-linear-Gaussian model
where (zk)1≤k≤K is the sequence of K unknown states. The
Kalman filter provides a probabilistic estimate of the hidden
state at each time step k, conditioned to all available data up
to time k, through the filtering distribution:

p(zk|x1:k) = N (zk; z̄k,Pk). (2)

For every k ∈ {1, . . . ,K}, the mean zk and covariance matrix
Pk can be computed by means of the Kalman filter recursions
given as follows.
For k = 1, . . . ,K
Predict state:{

z−k = D0D1D2z̄k−1,
P−k = D0D1D2Pk−1(D0D1D2)> + Q.

(3)

Update state:
yk = xk −H0H1H2z

−
k ,

Sk = H0H1H2P
−
k (H0H1H2)> + R,

Kk = P−k (H0H1H2)>S−1k ,
z̄k = z−k + Kkyk,
Pk = P−k −KkSkK

>
k .

(4)

The Rauch-Tung-Striebel (RTS) smoother makes a backward
recursion on the data which makes use of the filtering distri-
butions computed by the Kalman filter in order to obtain the
smoothing distribution p(zk|x1...K).

In the following we summarize the RTS recursions:

For k = K, . . . , 1
Backward Recursion (Bayesian Smoothing):


z−k+1 = D0D1D2z̄k,
P−k+1 = D0D1D2Pk(D0D1D2)> + Q,
Gk = Pk(D0D1D2)>[P−k+1]−1,
zsk = zk + Gk[zsk+1 − z−k+1],
Ps
k = Pk + Gk[Ps

k+1 −P−k+1]G>k .

(5)

As a result, the smoothing distribution at each time k has a
Gaussian closed-form solution given by

p(zk|x1...K) = N (zk; zsk,P
s
k). (6)

2) Dictionary Update
In this step, we derive the update of

D0,D1,D2,H0,H1,H2 given the sequence of states
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estimated in previous step. Let us introduce the following
function:

D
[i+1]
0 = argminD0

(
K

2
tr
(
Q−1(Σ[i] −C[i](D0D

[i]
1 D

[i]
2 )>

−D0D
[i]
1 D

[i]
2 C> + D0D

[i]
1 D

[i]
2 Φ[i](D0D

[i]
1 D

[i]
2 )>))
(7)

D
[i+1]
1 = argminD1

(
K

2
tr
(
Q−1(Σ[i] −C[i](D

[i+1]
0 D1D

[i]
2 )>

−D
[i+1]
0 D1D

[i]
2 C>[i]

+ D
[i+1]
0 D1D

[i]
2 Φ[i](D

[i+1]
0 D1D

[i]
2 )>)) (8)

D
[i+1]
2 = argminD2

(
K

2
tr
(
Q−1(Σ[i] −C[i](D

[i+1]
0 D

[i+1]
1 D2)>

−D
[i+1]
0 D

[i+1]
1 D2C

>[i]

+ D
[i+1]
0 D

[i+1]
1 D2Φ[i](D

[i+1]
0 D

[i+1]
1 D2)>)) (9)

And:

H
[i+1]
0 = argminH0

(
K

2
tr
(
R−1(∆[i] −B[i](H0H

[i]
1 H

[i]
2 )>

−H0H
[i]
1 H

[i]
2 B>[i] + H0H

[i]
1 H

[i]
2 Σ[i](H0H

[i]
1 H

[i]
2 )>)))

(10)

H
[i+1]
1 = argminH1

(
K

2
tr
(
R−1(∆[i] −B[i](H

[i+1]
0 H1H

[i]
2 )>

−H
[i+1]
0 H1H

[i]
2 B>[i]

+ H
[i+1]
0 H1H

[i]
2 Σ[i](H

[i+1]
0 H1H

[i]
2 )>))) (11)

H
[i+1]
2 = argminH2

(
K

2
tr
(
R−1(∆[i] −B[i](H

[i+1]
0 H

[i+1]
1 H2)>

−H
[i+1]
0 H

[i+1]
1 H2B

>[i]

+ H
[i+1]
0 H

[i+1]
1 H2Σ

[i](H
[i+1]
0 H

[i+1]
1 H2)>)))

(12)

where (Σ,Φ,B,C,∆) are defined from the outputs of the
previously described RTS recursion:

Σ =
1

K

K∑
k=1

Ps
k + zsk(zsk)> (13)

Φ =
1

K

K∑
k=1

Ps
k−1 + zsk−1(zsk−1)> (14)

B =
1

K

K∑
k=1

xk(zsk)> (15)

C =
1

K

K∑
k=1

Ps
kG
>
k−1 + zsk(zsk−1)> (16)

∆ =
1

K

K∑
k=1

xkx
>
k (17)

The update for D0,D1,D2,H0,H1,H2 amounts for maxi-
mizing this lower bound, so as to increase value the marginal
log-likelihood. Due to the quadratic form of function Q(D0,
D1, D2, H0, H1, H2), the maximization step takes a closed
form, leading to the dictionaries updates: The updates have
closed forms1:

D
[i+1]
0 = C[i](D

[i]
2 )>(D

[i]
1 )>(D

[i]
1 D

[i]
2 Φ(D

[i]
2 )>(D

[i]
1 )>)−1

(18)

D
[i+1]
1 = ((D

[i+1]
0 )>Q−1D

[i+1]
0 )−1(D

[i+1]
0 )>Q−1C[i](D

[i]
2 )>

(D
[i]
2 Φ[i](D

[i]
2 )>)−1 (19)

D
[i+1]
2 = ((D

[i+1]
1 )>(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 )−1(D

[i+1]
1 )>

(D
[i+1]
0 )>Q−1C[i]Φ−1[i] (20)

And:

H
[i+1]
0 = B[i](H

[i]
2 )>(H

[i]
1 )>(H

[i]
1 H

[i]
2 Σ(H

[i]
2 )>(H

[i]
1 )>)−1

(21)

H
[i+1]
1 = ((H

[i+1]
0 )>R−1H

[i+1]
0 )−1(H

[i+1]
0 )>R−1B[i]H

[
2i]>

(H
[i]
2 Σ[i](H

[i]
2 )>)−1 (22)

H
[i+1]
2 = ((H

[i+1]
1 )>(H

[i+1]
0 )>R−1H

[i+1]
0 H

[i+1]
1 )−1(H

[i+1]
1 )>

(H
[i+1]
0 )>R−1B[i]Σ−1[i] (23)

The DRDL method finally reads as the alternation of the
Kalman filter/smoother, with assuming parameters to be fixed
initially (Estep) and once we learn the state matrices we find
the update of the dictionaries (M-Step) [96][Alg.12.5]. The
advantage of the proposed method, as compared to alternating
minimization strategies more commonly used in dictionary
learning literature is that it allows to make a probabilistic
inference of the states and thus accounts explicitly on the
uncertainty one may have on the estimates [98], while ben-
efiting from the assessed monotonic convergence guarantees
provided by the EM framework [99], and more generally from
the majorization-minimization principle [100].

C. Application to Stock Trading

Let us now focus on the stock market problem, particu-
larly with the aim of performing trading tasks from daily
observations. We describe in this section how to adapt the
DRDL model and implementation to map with the specific
characteristics of the considered application.

1For the proof of the update form please refer the Appendix section.
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1) Online implementation
Focusing on the challenging problem of the finance mar-

ket, the DRDL approach presents methodology to learn the
updates of non-linear operators dynamically over time. Other
statistical and mathematical models assume static values of
these operators for different time stamp during the course of
processing the whole sequence. This assumption is difficult or
we can say impossible to think upon as the market evolutes
unpredictably and so the operators. Therefore, keeping in
mind the kind of rapid feedback users may want on the
evolution of trading decisions, to immediately decide about
to hold, buy, or sell. We thus propose here an innovative
yet simple strategy to make the DRDL approach suitable
for online trading, reminiscent of online implementations of
majorization-minimization algorithms [101].

We use windowing strategy while implementing DRDL
model to problem to stock forecasting and trading. We set
a window size (or mini-batch) τ . At each time step k, the
static parameters are estimated using the last τ observations
contained in the set Xk = {xj}kj=k−τ+1. We then run the
smoothening process which Kalman/filter smoother, only on
the τ recent observed data, then we update the dictionaries
using the smoothing results. The sliding window strategy
provides two advantages over the idea of giving entire data
to the model. First, choosing τ number of data points in one
window allows for a faster processing. Second, it also allows
better modeling piece wise operators and help in mapping the
evolution of operators over different timestamps. The price to
pay is that a smaller number of observations sometimes limits
the estimation capabilities.

Hence , it is very important to configure the tradeoff in the
seek of an optimal τ , that is process and data dependent. It
is interesting to see how we learn the mappings and optimal
window size τ from the data itself with very few prior details
about the modeling process which we shall see in the exper-
iments later. For implementing windowing strategy, we also
used warm start strategy for the Kalman iteration initialization.
More precisely, we will set the dictionaries to their last updated
value, and we initialize the mean and covariance of the state
at k − τ + 1 using the last smoothing results from the last
update of the dictionaries in this window. Note that if τ = K,
the algorithm goes back to the original offline version.

2) Forecasting vs trading
Stock trading involves estimating quick decisions on buy,

hold, or sell signals for an asset(stock) for the next day, based
on the availability of the past data. Along with decisions on
these signals, stock trading focuses on maximizing the returns
which is of the utmost importance to the firm. In order to
address the problem, we devised two different approaches
to understand stock behaviour. Forecasting viewpoint, this
approach considers the prediction problem of estimating the
next day close price for each stock. Second, trading viewpoints
consider the decision making on three signals (buy, sell or
hold) which can be seen as a classification problem. Both the
approaches bring well informed decisions which are required
for interpretation and model assessment. Regression helps us
in analysing the evolution of future stock prices and Classifica-
tion in contrast may help in analyzing the method empirically

with metric analysis, and trading simulation. DRDL is engi-
neered to adapt to both the methods, as we explain hereafter.

a) Observation model for Forecasting: In order to ad-
dress the problem of forecasting the value of a given quan-
tity of the market, we will consider the following obser-
vation model. For each k ∈ {0, . . . ,K − τ}, we observe
(xj)k≤j≤k+τ ∈ R14 where xj [1] is the Relative Strength
Index(RSI), xj [2] is the William percentage range, xj [3] is
the Absolute price Oscillator(APO), xj [4] is the Commodity
channel Index, and xj [5] is the Chande momentum oscilla-
tor(CMO), xj [6] is the Directional movement Indicator(DMI),
xj [7] is the Ultimator oscillator, xj [8] is the WMA, xj [9] is
the Exponential Moving Average(EMA), xj [10] is the Simple
Moving Average(SMA), xj [11] is the Triple EMA, xj [12]
is the Moving Average Convergence (MAC), xj [13] is the
Percentage Price Oscillator, xj [14] is the Rate of Change
(ROC). As explained earlier, running our DRDL within this
window allows us to provide the mean estimate.

x̂k+τ+1 = H0H1H2z
−
k+τ (24)

associated with a covariance matrix Sk+τ , for the next day
(i.e., the day coming right after the end of the observed
window) indexed by k+τ+1. Note that, though our model will
perform prediction on the whole fourteen-dimensional vector,
we will particularly be interested in the ability of our model to
perform prediction on a single entry of the vector of interest,
in practice the adjusted close price.

b) Observation model for trading: In the case of trading,
we will consider a different set of observed inputs. For each
k ∈ {0, . . . ,K − τ}, we will observe (xj)k≤j≤k+τ ∈ R17,
where xj [i], i = 1, . . . , 14 are the same as in the previous
case. Moreover, [xj [15], xj [16], xj [17]] ∈ {0, 1}3 represents
the decision “hold”, “buy”, or “sell”, computed daily for each
stocks so as to maximize annualized returns. Soft hot encoded
scores are used to represent the retained label, e.g., if the
decision “hold” is considered for instance at time j, we will
observe xj [15] = 1, xj [16] = 0 and xj [17] = 0. Here again,
our method is able to provide mean and covariance estimates,
for the next day. The class label for the next day trading
decision will be simply defined as

`k+τ+1 = argmaxi∈{1,2,3} x̂k+τ+1[i+ 14], (25)

using the same notation as in (24).
3) Probabilistic Validation
The probabilistic approach in the Kalman framework pro-

vides the distribution of the next observation conditioned
to previous data (the so-called predictive distribution of the
observations), given by

p(xk|x1:k−1) = N
(
xk; H0H1H2z

−
k ,Sk

)
(26)

with xk the observation at time k, Sk =
H0H1H2(D0D1D2Pk−1(D0D1D2)> + Q) + R, and
z−k , Pk are defined in Sec. III-B1 (see [96, Section 4.3]
for more details). We can then evaluate the method in a
probabilistic manner by inspecting, for each time step, the
probability that we had assigned for the events that finally
happen. More precisely, from the Gaussian predictive pdf
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of the observations in Eq. (26) provided by the Kalman
filter, let us compute the probability mass function (pmf)
pk in the two-dimensional simplex, i.e., 0 ≤ pk[i] ≤ 1,
i ∈ {1, 2, 3}, and

∑3
i=1 pk[i] = 1. The component pk[i]

contains the probability, estimated by the Kalman filter, that
the observation xk[i + 14] will be larger than xk[j + 14],
with j = {1, 2, 3} \ i. This can be done by marginalizing
the first fourteen components on the predictive distribution
Eq. (26), obtaining the three dimensional marginal predictive
distribution p(xk[15 : 17]|x1:k−1) (slightly abusing the
notation). Then, for each dimension, we can compute the
probability of the Gaussian r.v. being larger than the other
two dimensions. This requires the evaluation of an intractable
integral, but can be easily approximated with high precision
by direct simulation from p(xk[15 : 17]|x1:k−1). In practice,
we will use 104 samples from a 3-dimensional standard
normal, that can be easily recycled for all time steps (by
simply coloring and shifting according to the covariance and
mean, respectively). Once we have determined pk, we can
validate the method by using the standard cross-entropy loss
as

log-loss =
1

K

K∑
k=1

3∑
i=1

−(Lk[i] log(pk[i])), (27)

where Lk ∈ {0, 1}3 represents the ground truth labels at time
k (again using soft hot encoding representation).

IV. EXPERIMENTAL RESULTS

A. Dataset Description

We consider a dataset obtained from Yahoo finance repos-
itory 2 comprising of daily stock prices on a period of about
20 years (between 01/01/1998 to 01/10/2019), for 180 stocks,
and gathering stocks from developed markets (USA, UK) and
developing markets (India and China). The financial markets
of the USA and UK are considered the most advanced markets
in the world, while the financial markets of India and China
are regarded as new emerging markets. Such a mix of stocks
sources is interesting, as the investors are always curious to
invest in a blend of advanced markets (i.e., developed mar-
kets) and emerging markets (i.e., developing markets)[1]. The
investments in developed markets promise some fixed good
returns, whereas investments in developing markets hold the
potential of higher growth and higher risks. Sampling the stock
market with varying market scenarios such as keeping a mix
of advanced markets (top performers), and developing market
(mid performers), also aims at limiting the issue of occurrence
of bias in the compared computational models, while testing
their robustness to different trends. The diversification helps
investors and researchers to explore the market and observe
model behaviour at critical points with highly non-stationary
data [2].

We will focus on Time series forecasting and classification
of trading signal : we try to estimate next day adjusted close
price and predict signal(buy,hold or sell) for the next day.

2https://yahoo.finance.com

In this regard, we observe the values of 14 technical indi-
cators namely Williams, Relative Strength Index(RSI), Abso-
lute Price Oscillator (APO), Commodity Channel Index(CCI),
Chande momentum oscillator(CMO), Directional Movement
Indicator(DMI), Ultimate Oscilator, Weighted Moving Av-
erage(WMA), Exponential Moving Average(EMA), Simple
Moving Average(SMA), Triple EMA, Moving Average Con-
vergence, Percentage Price Oscillator, Rate of Change(ROC).
These technical indicators are evaluated using daily values of
five features of each stock, namely its close price, opening
price, low price, high price, and net asset volume.
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Fig. 1. Technical indicator data used by DRDL to forecast and trade for
future time series.

B. Practical Settings

1) Software and hardware specifications
Data pre-processing and RDL model simulations are con-

ducted in Python 3.6, equipped with the Sklearn, NumPy
packages and pandas libraries. CNN-TA is developed with
Keras, while MFNN, LSTM, are developed with PyTorch.
We will also rely on Sklearn, Ta-lib 3 and Ta4j 4 libraries
for evaluating the quantitative(technical) indicators. All the
experiments are carried on using a Dell T30, Xeon E3-1225V5
3.3GHz with GeForce GT 730, and Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz 16GB RAM, 200GB HDD, equipped with
an Nvidia 1080 8GB and Ubuntu OS.

2) Compared methods
The DRDL method can be utilised using either the regres-

sion model which estimates the next day adjusted closing price
forecast (ie., Nx = 14) or the classification of three signals
[‘buy’, ‘hold’ or ‘sell’] for the next day trading (ie.,Nx = 17 )
utilizing the model behaviour described in Sec III-C2. In order
to implement the aforementioned technique we use sliding
window approach which is discussed in Sec. III-C1, where

3http://ta-lib.org
4http://www.ta4j.org

https://yahoo.finance.com
http://ta-lib.org
http://www.ta4j.org
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we experimented the model behavior for different values of τ .
Discussing about the very particular details, z̄0 is initialized as
a zero vector, and P0, Q and R are set as multiple of identity
matrix with scale values 10−7, 10−2 and 10−2, respectively.
We set Nz = 14 for the dimensionality of the hidden state,
also corresponding to the number of features considered per
observation, as it was observed empirically to yield the best
results. We set D0 = Id, D1 = Id, D2 = Id and will
focus on the estimation of H0, H1, H2. The entries of the
latter matrix are randomly initialised at time 0 from a uniform
random distribution on [0, 10−1]. Warm start strategy is used
to initialize for the next processed windows, as explained in
Sec. III-C1. All presented results are averaged on 10 random
trials.

For the comparison, we use state if the art methods
from the field of machine learning and signal processing,
namely RDL[111], CNN-TA[107], MFNN[108], LSTM[109]
and ARIMA[110].

For the forecasting problem, we compare the proposed
RDL with both ARIMA and LSTM. We set up the ARIMA
parameters to (p, d, q) = (5, 1, 5) as it was observed to lead to
the best practical performance. LSTM has been modified from
its original version, in order to perform forecasting instead of
classification. We have removed the softmax output layer and
include instead a fully-connected layer to obtain a one node
output. Adam optimizer with learning rate 10−4, 200 epochs
and batch-size 16 is used to minimize the mean square error
(MSE) loss function. The performance are compared in terms
of mean absolute error (MAE) and root mean square error
(RMSE), on the prediction of the next day adjusted close price,
in the test period, averaged over all stocks.

For the trading problem, we compared DRDL(3-layer) with
its 2-layer and 1layer architecture, CNN-TA, MFNN and
LSTM, using their original implementations and settings,
described respectively in [107], [108] and [109]. The per-
formance of the methods will be evaluated considering the
empirical performance of the model, i.e., how well the model
is able to distinct between the three classes. We will also assess
the performance of the models in terms of trading efficiency by
measuring and comparing their annualised returns. Finally, we
will show how the uncertainty quantification provided by RDL
(see Sec. III-C3) can be used efficiently to let the trader decide
where to invest in the market, and diversify his portfolio.

All presented scores in both problems are averaged on 10
random initializations for all methods.

C. Numerical results for the forecasting model

We first present the analysis for stock forecasting (regres-
sion). We will evaluate the methods in their ability to predict
a single feature value, here the daily adjusted close price.
The fourteen input features are normalized so that their values
range in the same scale, to limit bias towards one features such
as the adjusted closing price. We analyse the performance of
DRDL approach for different window size and we compare it
with two state of the art methods for stock forecasting, namely
LSTM and ARIMA.

1) Influence of window size
The choice of window size is a very important aspect as it

can enhance and also limit the potential of the methodology.
In order to understand the model behaviour , we present
table I which provides detailed information on the perfor-
mance of the model on varying window size. The table pro-
vides analysis of various metrics like Pearson correlation (r),
RMSE(Root Mean Square Error), MAE(Mean Absolute Error)
and SMAPE(Symmetric mean absolute percentage error) for
different window sizes τ . To understand how window size
influence the model behaviour in Online implementation(see
Sec. III-C1). The performance of the model is observed to
be improving as the window size increases, until reaching
a convergence point. It is clear that τ = 250, 300 or 350
may not be sufficient to learn appropriately the model, we can
observe that from τ = 500, the forecasting results start getting
satisfying. In the further experiments on forecasting, we will
set τ = 650, as it leads to a good compromise between time
complexity and prediction accuracy.

Window size r RMSE ↓ MAE (%) ↓ SMAPE (%) ↓
250 0.45 29.43 0.47 31.8
300 0.49 27.81 0.23 28.6
350 0.53 21.61 0.29 25.5
500 0.69 13.79 0.13 23.4
650 0.71 13.35 0.11 18.4
700 0.72 13.62 0.10 18.5

TABLE I
FORECASTING RESULTS OF RDL FOR DIFFERENT WINDOW SIZE

2) Comparison with benchmark models
To understand better, we present table II which pro-

vides comprehensive analysis on performance estimation
of next day closing price feature using the methodologies
DRDL with its different layer architecture, LSTM(Long Short
Term Memory) and ARIMA. Table II presents compari-
son on very crucial metrics such as Pearson correlation(r),
RMSE(Root Mean Square Error), MAE(Mean Absolute Er-
ror) and SMAPE(Symmetric mean absolute percentage error).
After comprehensive analysis on the results we conclude
that DRDL with 3-layer architecture outperforms its 2-layer,
shallow RDL architecture along with the two benchmarks
models. Fig 3 represents the pearson correlation analysis of
evolution of ground truth daily closing price with predicted
closing price by DRDL for four representive cases.

Discussing the performance of the LSTM approach, we
noticed that LSTM models are highly data hungry and suffer
from vanishing gradients which is hard to handle when dealing
with large datasets such as finance. Also note, the LSTM
approach is computationally expensive as it took 8 days to
train for 180 stocks for a 10 years dataset, in contrast with
DRDL and ARIMA which requires around 2-3hours for the
same task. Fig. 2 illustrates the closing price prediction results,
using the proposed DRDL with different layer architecture,
LSTM and ARIMA method for four representative cases.
It is very much evident that LSTM model fails to perform
in cases () due to model being overfitting the data due to
vanishing gradient when processing large sequences. ARIMA
performs well on cases () but has difficulty to track the price
evolution in other cases (). In contrast, DRDL with 3-layer is
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Fig. 2. Forecasting results for Ground truth closing price and Predicted closing
price for (a)ANF, (b)Reliance, (c)Tatamotors, (d) ONGC
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Fig. 3. Pearson correlation graph between Ground truth closing price and
predicted closing price for (a)AAPL, (b)ALOKTEXT.BO, (c)BHEL.BO, (d)
ANF

Model r RMSE↓ MAE(%) ↓ SMAPE(%)↓
ARIMA 0.13 78.6 1.23 65.5
LSTM 0.24 297.5 6.12 47
DRDL(1 layer) 0.65 23.24 0.19 35.3
DRDL(2 layers) 0.69 14.2 0.15 23.2
DRDL(3 layers) 0.71 13.35 0.11 18.4

TABLE II
COMPARISON OF METHODS FOR THE FORECASTING PROBLEM: PEARSON
CORRELATION SCORE(R), MAE, RMSE AND SMAPE SCORES , OVER 10

RANDOM INITIALIZATION

.

estimates satisfactory. DRDL-2 layer outperformed DRDL-1
layer and benchmark methods(LSTM and ARIMA) but doesn’t
estimates approximate as compared to its 3-layer architecture.

D. Numerical results for the trading model

We now present the results when focusing on the trading
problem, that is the prediction for the decision “hold”, "buy”

or “sell” for next day.
1) Influence of the window size

The window size plays an important role as it is essential
to analyze the apt window size to produce optimal predictions
while preserving a reasonable computational time. Table IV
depicts the experimental performance of DRDL for 3-Layer
architecture, Table V depicts the experimental performance
of DRDL for 2-layer architecture, Table VI depicts the ex-
perimental performance of DRDL for 1-layer architecture for
different window sizes. The performance tends to improve
as the window size increases, since the model incorporates
more data. We notice then a stabilization of the performance,
from τ = 650. This value will be retained in the upcoming
experiments.

2) Classification metrics
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Fig. 4. Confusion matrices for trading decision for state of the art methods
and DRDL.

In the Fig. 4, we present the confusion matrices which
depicts the summarized classification performance for the 180
stocks by the proposed approach -Deep Recurrent Dictionary
learning, as well as for the three competitors. We can see
the comparison of metric performance for different layers of
DRDL and three state of the art methods. First we see that
Hold class is better predicted than the other two classes. The
finance Dataset is an imbalanced dataset, due to which we
have more number of hold data points and very few critical
"Buy and Sell" class datapoints. The neural network models(
LSTM, CNN-TA and MFNN) used as a benchmark generated



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 9

Method Precision Recall F1 Score
Hold Sell Buy Hold Sell Buy Hold Sell Buy

Deep RDL(3 Layer) 0.85 0.26 0.29 0.51 0.54 0.54 0.61 0.30 0.29
Deep RDL(2 Layer) 0.83 0.23 0.26 0.48 0.51 0.53 0.61 0.32 0.34

RDL(Shallow) 0.88 0.15 0.12 0.45 0.52 0.51 0.59 0.19 0.23
MFNN 0.79 0.11 0.04 0.47 0.37 0.16 0.58 0.11 0.06
LSTM 0.84 0.07 0.06 0.89 0.05 0.05 0.86 0.05 0.05

CNN-TA 0.84 0.11 0.09 0.85 0.07 0.10 0.85 0.08 0.09
TABLE III

COMPARISON OF METHODS FOR THE TRADING PROBLEM.

Window τ Precision Recall F1 Score
Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.91 0.15 0.12 0.46 0.51 0.50 0.61 0.23 0.19
300 0.91 0.15 0.12 0.46 0.50 0.51 0.61 0.23 0.19
350 0.89 0.18 0.19 0.47 0.53 0.52 0.61 0.26 0.27
500 0.89 0.18 0.19 0.47 0.52 0.53 0.61 0.26 0.27
650 0.85 0.26 0.29 0.51 0.54 0.54 0.61 0.30 0.29
700 0.87 0.21 0.20 0.48 0.53 0.54 0.61 0.30 0.29

TABLE IV
COMPARISON RESULTS OF 3-LAYER RDL FOR DIFFERENT WINDOW SIZE (AVERAGED OVER 180 STOCKS IN DATATSET).

Window τ Precision Recall F1 Score
Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.91 0.14 0.12 0.47 0.49 0.48 0.61 0.21 0.19
300 0. 90 0.16 0.13 0.47 0.50 0.49 0.61 0.24 0.20
350 0.89 0.17 0.16 0.48 0.51 0.52 0.62 0.25 0.24
500 0.89 0.17 0.16 0.48 0.52 0.51 0.62 0.25 0.24
650 0.83 0.23 0.26 0.48 0.51 0.53 0.61 0.32 0.34
700 0.84 0.20 0.23 0.46 0.53 0.51 0.59 0.33 0.32

TABLE V
COMPARISON RESULTS OF 2-LAYER RDL FOR DIFFERENT WINDOW SIZE (AVERAGED OVER 180 STOCKS IN DATATSET).

Window τ Precision Recall F1 Score
Hold Sell Buy Hold Sell Buy Hold Sell Buy

250 0.85 0.10 0.10 0.85 0.12 0.12 0.84 0.10 0.10
300 0.85 0.10 0.10 0.74 0.17 0.14 0.80 0.10 0.12
350 0.82 0.10 0.10 0.62 0.30 0.31 0.68 0.15 0.15
500 0.86 0.15 0.14 0.46 0.51 0.51 0.59 0.18 0.22
650 0.88 0.15 0.12 0.45 0.52 0.51 0.59 0.19 0.23
700 0.90 0.16 0.14 0.46 0.51 0.52 0.59 0.24 0.22

TABLE VI
COMPARISON RESULTS OF 1-LAYER RDL FOR DIFFERENT WINDOW SIZE (AVERAGED OVER 180 STOCKS IN DATATSET).

Stock symbols DRDL-3
layers

DRDL-
2layer

DRDL-1
layer

CNN-TA MFNN LSTM

WIPRO.BO -13.89 -23.26 -29.14 -18.14 -27.81 -47.74
AAPL 19.12 11.3 10.14 0 12.92 0
AMZN -13.23 -11.92 21.23 30.64 -20.85 -0.15
IOC.BO -13.48 -23.28 -2.68 -3.03 -26.42 -3.1
TATACHEM.BO 1.23 3.83 2.19 -1.54 -8.32 0
SPICEJET.BO 11.92 10.17 -8.63 -24.08 -28.21 0
ATML -4.13 -5.78 -10.19 -33.25 -27.07 -33.82
DOM.L 4.56 9.34 2.83 0.11 8.22 0.47
INDRAMEDCO.BO -5.78 -10.34 -3.65 -14.22 -3.53 -50.86
Average on all 180 stocks 3.87 2.67 2.34 -5.08 -11.45 -13.02

TABLE VII
ANNUALIZED RETURNS

many false alarms for non-existence entry and exit points.
LSTM getting the best scores over the competitors in terms
of false negative. However, LSTM (and to a mild extent,
CNN-TA and MFNN) present a large number of false positive

for the Hold class. Those methods seem to adopt an over-
conservative strategy privileging the Hold class over the others.
In comparison, our model captured most of the entry and exit
points intelligently. This can be understood as hold class has
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more number of samples, neural network labeled most of the
data points as hold class at the time of the testing phase.
Whereas DRDL framework is based on extracting meaningful
information from the data and giving it as a feedback to model
along with current input. DRDL model doesn’t take into ac-
count any prior assumptions. The financial data is highly non-
linear and DRDL handles it by imposing positivity constraints
on the dictionaries. From the Table. III and Fig. 4 we can say
that DRDL could handle the imbalanced dataset and resulted in
better sensitivity score(Recall) for critical class(Buy and Sell).
This contrasts with the results obtained by DRDL, which is
able to preserve a certain balance among classes. This can be
seen in the confusion matrices, by noticing that the maximum
values are taken in the diagonal, as it should be expected
by a valid classifier. To complete this analysis, we present in
Table III other classification metrics, namely recall, precision,
and F1 Score of the proposed approach against the three deep
learning models. DRDL clearly outperforms the competitors,
which is consistent with the previous observations.

3) Annualized Returns
The ultimate goal of every firm is to analyse and evaluate the

return on investment for a stock. This phase is engineered to
understand more insights about the model behaviour. Since the
aim of every firm is to maximize returns from an investment.
We tried to simulate market scenarios [107] by evaluating the
annualized returns by the predicted signals from DRDL with
its different layer architectures as well as the signal predicted
from the benchmark models. We wanted to study compre-
hensively the model behaviour and analyse the annualized
returns achieved from the predicted signals. Table VII presents
a detailed study of nine stocks for DRDL methodology and
state of the art methods. Note that, due to space constraints
we present detailed empirical values for nine stocks and
average results for 180 stocks. The best-annualized returns are
highlighted in bold. One can notice that the proposed method
leads to higher returns in averaged during the test period of
10 years when compared to AR obtained using the trading
predictions from the deep learning techniques.

4) Portfolio diversification
Diversification of portfolio is sometimes referred to as key

to smart trading [102]. Diversification helps to divide our
funds under different sections where some asset require higher
risk and offer better returns, while others require fixed returns
and lower risk associated with them. There are different types
of pros and cons associated with these types of diversifica-
tion. Diversification allows investors to maximize returns by
investing in different domains that would react differently in
the same market events, thus managing better the risk. Ideally,
a diversified portfolio would contain stocks with various levels
of market capitalization. Market capitalization refers to the
total market value of all outstanding shares [103]. Companies
can be divided according to their market capitalization value,
into small-cap, mid-cap, large-cap, as we will explain hereafter
in detail. It is always beneficial to have a diversified portfolio
that includes stocks from the three classes of companies.
Small-cap companies are young and seek to expand ag-
gressively. As comes the growth potential, the risk factor
follows in a direct proportion. Small-caps are more volatile

and vulnerable to losses during the negative trends (downtime)
of the financial market.
Mid-cap is a pooled investment that focuses on including
stocks with a middle range of market capitalization. Mid-cap
offers investors more enormous growth potential than large-
cap stocks, but with less volatility and risk as compared to
small-caps.
Large-cap companies are typically large, well established, and
financially sound. Large-cap is the market leader, relatively
less volatile, and has a steady risk-return factor with relatively
lower risk compared to mid-cap, small-cap.

As explained in Sec. III-C3, the proposed DRDL method-
ology allows to provide through probabilistic quantification,
a piece of information that can be used by a knowledgeable
practitioner to trade accordingly to have a diversified portfolio.
Such probabilistic validation can help maximize the returns by
having a mix of small-cap, mid-cap, large-cap stocks.

We provide in Table VIII the log-loss value (the smaller,
the better), computed as described in Sec. III-C3, computed
for DRDL results for different layers architecture, for the
few stocks of the dataset for which the market capitalization
categories were available.5 The log-loss quantifies the accu-
racy of the probabilistic predictions of the proposed method,
penalizing more the situations where the method assigns a
low probability to an event that finally occurs. One can
notice that the log-loss value can reach very low value (i.e.,
good prediction accuracy) when trading the large cap stocks,
probably due to the less volatile nature of such stocks. In
contrast, the log-loss is in average higher for small caps, as
they are highly volatile.

Stock symbols 3− Layer 2− Layer 1− Layer

Sm
al

l-
ca

p ALOKTEXT.BO 1.04 1.20 1.09
ALKYLAMINE.BO 1.17 1.19 1.34
ZEEMEDIA6.BO 0.89 0.99 0.23

PVP.BO 1.34 1.98 2.78

M
id

-c
ap

IOC.BO 1.02 1.05 0.87
TATACHEM.BO 0.76 0.45 0.94
SPICEJET.BO 0.34 0.65 1.20
BHEL.BO 0.20 0.51 1.15

L
ar

ge
-c

ap

AAPL 1.13 0.98 1.11
AMZN 0.11 0.41 0.43

HINDZINC.BO 0.03 0.65 0.45
ONGC.BO 0.20 0.13 0.09

SIEMENS.NS 0.12 0.02 0.11
TABLE VIII

LOG-LOSS VALUES PROVIDED BY 3− Layer, 2− Layer AND 1− Layer
, FOR THE STOCKS WITH AVAILABLE MARKET CAPITALIZATION

CATEGORIES.
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V. CONCLUSION

Please include a brief summary of the possible clinical
implications of your work in the conclusion section. Although
a conclusion may review the main points of the paper, do not
replicate the abstract as the conclusion. Consider elaborating

5https://finance.yahoo.com/screener

https://finance.yahoo.com/screener


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 11

on the translational importance of the work or suggest appli-
cations and extensions.
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APPENDIX

VI. DETAILED SOLUTION FOR DICTIONARY UPDATE IN
DEEP RDL

Solving for D0
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Derivating the above equation with respect to D0 and equate to
zero. We will derivate each term separately and then combine
the results

Derivating First term :
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Derivating Third Term:
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We will use following derivative rule

∂Tr(AXBX>C ′)

∂X
= A>C ′>XB> + C ′AXB

where

A = Q−1,X = D0,B = D
[i]
1 D

[i]
2 Φ[i](D

[i]
2 )>(D

[i]
1 )>,C’ = 1

= Q−1D0(D
[i]
1 D

[i]
2 Φ[i](D

[i]
2 )>(D

[i]
1 )>)>

+ Q−1D0(D
[i]
1 D

[i]
2 Φ[i](D

[i]
2 )>(D

[i]
1 )>

= 2(Q−1D0(D
[i]
1 D

[i]
2 Φ[i](D

[i]
2 )>(D

[i]
1 )>) (33)

Now put eq. 30, 31, 32, 33 in derivative of eq. 29

= 0− (Q−1C[i](D
[i]
2 )>(D

[i]
1 )>) + (Q−1C[i](D

[i]
2 )>(D

[i]
1 )>)

+ 2(Q−1D0(D
[i]
1 D

[i]
2 Φ[i](

[i]
2 )>(D

[i]
1 )>)

= −2(Q−1C[i](D
[i]
2 )>(D

[i]
1 )>)

+ 2(Q−1D0(D
[i]
1 D

[i]
2 Φ[i](D

[i]
2 )>(D

[i]
1 )>) = 0

− 2(Q−1C(Θ[i])(A
[i]
2 )>(A

[i]
1 )>)

= −2(Q−1A0(A
[i]
1 A

[i]
2 Φ(Θ[i])(A

[i]
2 )>(A

[i]
1 )>)

Right multiply (D
[i]
1 D

[i]
2 Φ[i](D

[i]
2 )>(D

[i]
1 )>)−1 both sides

C[i](D
[i]
2 )>(D

[i]
1 )>(D

[i]
1 D

[i]
2 Φ[i](D

[i]
2 )>(D

[i]
1 )>)−1 = D0

(34)

Solving for D1

D
[i+1]
1 = argminD1

(
K

2
tr
(
Q−1(Σ[i] −C[i](D

[i+1]
0 D1D

[i]
2 )>

−D
[i+1]
0 D1D

[i]
2 C>[i]

+ D
[i+1]
0 D1D

[i]
2 Φ[i](D

[i+1]
0 D1D

[i]
2 )>)) (35)

D
[i+1]
1 = argminD1

(
K

2
tr
(
Q−1Σ[i] −Q−1C[i](D

[i+1]
0 D1D

[i]
2 )>

−Q−1D
[i+1]
0 D1D

[i]
2 C>[i] units

+ Q−1D
[i+1]
0 D1D

[i]
2 Φ[i](D

[i+1]
0 D1D

[i]
2 )>)))

(36)

Derivating the above equation with respect to D1 and equate to
zero. We will derivate each term separately and then combine
the results

Derivating First term :

∂Q−1Σ[i]

∂D1
= 0 (37)

Derivating Second Term:

∂(Q−1C[i](D
[i+1]
0 D1D

[i]
2 )>)

∂D1
=
∂(Q−1C[i](D

[i]
2 )>D>1 (D

[i+1]
0 )>)

∂D1

We will use following derivative rule

∂Tr(AX>B)

∂X
= BA

where

A = Q−1C[i]D
[i]
2
>,X = D1,B = (D

[i+1]
0 )>

∂(Q−1C[i](D
[i+1]
0 D1D

[i]
2 )>)

∂D1
= (D

[i+1]
0 )>(Q−1C [i](D

[i]
2 )>)

(38)

Derivating Third Term:

∂(Q−1D
[i+1]
0 D1D

[i]
2 C>[i])

∂D1
:

We will use following derivative rule

∂Tr(AXB)

∂X
= A>B>

where

A = Q−1D
[i+1]
0 ,X = D1,B = D

[i]
2 C>[i]

∂(Q−1D
[i+1]
0 D1D

[i]
2 C>[i]

∂D1
= (D

[i+1]
0 )>Q−1(D

[i]
2 C>[i])>

∂(Q−1D
[i+1]
0 D1D

[i]
2 C>[i]

∂D1
= (D

[i+1]
0 )>(Q−1C([i])(D

[i]
2 )>)

(39)

Derivating Fourth term :

∂(Q−1D
[i+1]
0 D1D

[i]
2 Φ[i](D

[i+1]
0 D1D

[i]
2 )>)

∂D1

=
∂(Q−1D

[i+1]
0 D1D

[i]
2 Φ[i](D

[i]
2 )>D>1 (D

[i+1]
0 )>

∂D1
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We will use following derivative rule

∂Tr(AXBX>C ′)

∂X
= A>C ′>XB> + C ′AXB

where

A = Q−1D
[i+1]
0 ,X = D1,B = D

[i]
2 Φ[i](D

[i]
2 )>,C’ = (D

[i+1]
0 )>

= (Q−1D
[i+1]
0 )>((D

[i+1]
0 )>)>D1(D

[i]
2 Φ[i](D

[i]
2 )>)>

+ (D
[i+1]
0 )>Q−1D

[i+1]
0 D1(D

[i]
2 Φ[i](D

[i]
2 )>

= (D
[i+1]
0 )>Q−1D

[i+1]
0 D1(D

[i]
2 )Φ[i](D

[i]
2 )>

+ D
[i+1]
0 )>Q−1D

[i+1]
0 D1(D

[i]
2 Φ[i](D

[i]
2 )>

= 2(D
[i+1]
0 )>Q−1D

[i+1]
0 D1(D

[i]
2 )Φ[i](D

[i]
2 )>)

∂(Q−1D
[i+1]
0 D1D

[i]
2 Φ[i](D

[i+1]
0 D1D

[i]
2 )>)

∂D1

= 2(D
[i+1]
0 )>Q−1D

[i+1]
0 D1(D

[i]
2 )Φ[i](D

[i]
2 )>) (40)

Now put eq. 37, 38, 39, 40 in derivative of eq. 36

= 0− (D
[i+1]
0 )>(Q−1C [i](D

[i]
2 )>)

+ (D
[i+1]
0 )>(Q−1C [i](D

[i]
2 )>)

+ 2(D
[i+1]
0 )>Q−1D

[i+1]
0 D1(D

[i]
2 )Φ[i](D

[i]
2 )>)

= 0− 2(A
[i+1]
0 )>(Q−1C(Θ[i])(A

[i]
2 )>)

+ 2(D
[i+1]
0 )>Q−1D

[i+1]
0 D1(D

[i]
2 )Φ[i](D

[i]
2 )>) = 0

− 2(D
[i+1]
0 )>(Q−1C [i](D

[i]
2 )>

= −2(D
[i+1]
0 )>Q−1D

[i+1]
0 D1(D

[i]
2 )Φ[i](D

[i]
2 )>)

Left Multiply (D
[i+1]
0 )>Q−1D

[i+1]
0 )−1 both sides

(D
[i+1]
0 )>Q−1(D

[i+1]
0 )−1(D

[i+1]
0 )>(Q−1C[i](D

[i]
2 )>

= D1(D
[i]
2 )Φ[i](D

[i]
2 )>)

Right multiply ((D
[i]
2 )Φ[i](D

[i]
2 )>)−1 both sides

D1 = (D
[i+1]
0 )>Q−1(D

[i+1]
0 )−1(D

[i+1]
0 )>(Q−1C[i](D

[i]
2 )>

((D
[i]
2 )Φ[i](D

[i]
2 )>)−1 (41)

Solving for D2

D
[i+1]
2 = ((D

[i+1]
1 )>(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 )−1(D

[i+1]
1 )>

(D
[i+1]
0 )>Q−1C[i]Φ[i]−1 (42)

D
[i+1]
2 = argminD2

(
K

2
tr
(
Q−1Σ[i] −Q−1C[i](D

[i+1]
0 D

[i+1]
1 D2)>

−Q−1D
[i+1]
0 D

[i+1]
1 D2C

>[i] units

+ Q−1D
[i+1]
0 D

[i+1]
1 D2Φ

[i](D
[i+1]
0 D

[i+1]
1 D2)>)))

(43)

Derivating the above equation with respect to A2 and equate to
zero. We will derivate each term separately and then combine
the results

Derivating First term :

∂Q−1Σ[i]

∂D2
= 0 (44)

Derivating Second Term:

∂Q−1C[i](D
[i+1]
0 D

[i+1]
1 D2)>

∂D2
=
∂(D−1C[i](D2)>(D

[i+1]
1 )>(D

[i+1]
0 )>)

∂D2

We will use following derivative rule

∂Tr(AX>B)

∂X
= BA

Where

A = Q−1C[i],X = D2,B = ((D
[i+1]
1 )>(D

[i+1]
0 )>)

∂Q−1C[i](D
[i+1]
0 D

[i+1]
1 D2)>

∂D2
= ((D

[i+1]
1 )>(D

[i+1]
0 )>)Q−1C[i]

(45)

Derivating Third Term:

∂(Q−1D
[i+1]
0 D

[i+1]
1 D2C

>[i])

∂D2

∂Tr(AXB)

∂X
= A>B>

where

A = Q−1D
[i+1]
0 D

[i+1]
1 ,X = D2,B = C>[i]

∂(Q−1D
[i+1]
0 D

[i+1]
1 D2C

>[i])

∂D2
= ((D

[i+1]
1 )>(D

[i+1]
0 )>)Q−1C [i]

(46)

Derivating Fourth term :

∂(Q−1D
[i+1]
0 D

[i+1]
1 D2Φ

[i](D
[i+1]
0 D

[i+1]
1 D2)>))

∂D2

=
∂(Q−1D

[i+1]
0 D

[i+1]
1 D2Φ

[i](D2)>)(D
[i+1]
1 )>(D

[i+1]
0 )>

∂D2
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We will use following derivative rule

∂Tr(AXBX>C)

∂X
= A>C>XB> + CAXB

where

A = Q−1A
[i+1]
0 A

[i+1]
1 ,X = A2,B = Φ(Θ[i])

C = (A
[i+1]
1 )>(A

[i+1]
0 )>

= (Q−1D
[i+1]
0 D

[i+1]
1 )>((D

[i+1]
1 )>(D

[i+1]
0 )>)>D2Φ

[i]
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[i+1]
1 )>)(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 D2Φ

[i])

= 2((D
[i+1]
1 )>)(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 D2Φ

[i]) (47)

Now put eq. 44, 45, 46, 47 in derivative of eq. 43

= 0− ((D
[i+1]
1 )>(D

[i+1]
0 )>)Q−1C[i]

− ((D
[i+1]
1 )>(D

[i+1]
0 )>)Q−1C [i]

+ 2((D
[i+1]
1 )>)(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 D2Φ

[i])

= −2((D
[i+1]
1 )>(D

[i+1]
0 )>)Q−1C [i])

+ 2((D
[i+1]
1 )>)(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 D2Φ

[i]) = 0

− 2((D
[i+1]
1 )>(D

[i+1]
0 )>)Q−1C[i]

= −2((D
[i+1]
1 )>(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 D2Φ

[i])

Left multiply ((D
[i+1]
1 )>(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 )−1 both

sides

D2(Φ[i]) = ((D
[i+1]
1 )>(D

[i+1]
0 )>Q−1

D
[i+1]
0 D

[i+1]
1 )−1((D

[i+1]
1 )>(D

[i+1]
0 )>)Q−1C[i]

Right multiply (Φ[i])−1 both sides

D2 = ((D
[i+1]
1 )>(D

[i+1]
0 )>Q−1D

[i+1]
0 D

[i+1]
1 )−1

((D
[i+1]
1 )>(D

[i+1]
0 )>)Q−1C [i](Φ[i])−1 (48)

Solving for H0

H
[i+1]
0 = argminH0

(
K

2
tr
(
R−1(∆[i] −B[i](H0H

[i]
1 H

[i]
2 )>

−H0H
[i]
1 H

[i]
2 B>[i]

+ H0H
[i]
1 H

[i]
2 Σ[i](H0H

[i]
1 H

[i]
2 )>)) (49)

H
[i+1]
0 = argminH0

(
K

2
tr
(
R−1∆[i] −R−1B[i](H0H

[i]
1 H

[i]
2 )>

−R−1H0H
[i]
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1 H

[i]
2 Σ[i](H0H

[i]
1 H

[i]
2 )>))) (50)

Derivating the above equation with respect to H0 and equate to
zero. We will derivate each term separately and then combine
the results

Derivating First term :

∂R−1∆[i]

∂H0
= 0 (51)

Derivating Second Term:

∂(R−1B[i](H0H
[i]
1 H

[i]
2 )>)

∂H0
=
∂(R−1B[i](H

[i]
2 )>(H

[i]
1 )>(H0)>)

∂H0

We will use following derivative rule

∂Tr(AX>)

∂X
= A

where

A = R−1B[i](H
[i]
2 )>(H

[i]
1 )>,X = H0

∂(R−1B[i](H0H
[i]
1 H

[i]
2 )>)

∂H0
= R−1B[i](H

[i]
2 )>(H

[i]
1 )> (52)

Derivating Third Term:

∂R−1H0H
[i]
1 H

[i]
2 B>[i]

∂H0
:

We will use following derivative rule

∂Tr(AXB)

∂X
= A>B>

where

A = (R−1,X = H0,B = H
[i]
1 H

[i]
2 B>[i]

∂(R−1H0H
[i]
1 H

[i]
2 B>[i]
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[i]
1 )> (53)

Derivating Fourth term :

∂(R−1H0H
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1 H
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2 )>)
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=
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2 )>(H
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1 )>(H0)>

∂H0

We will use following derivative rule

∂Tr(AXBX>C)

∂X
= A>C>XB> + CAXB
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where

A = R−1,X = H0,B = H
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1 H

[i]
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[i]
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[i]
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2 )>(H

[i]
1 )>) (54)

Now put eq. 51, 52, 53, 54 in derivative of eq. 50

= 0− (R−1B[i](H
[i]
2 )>(H
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[i]
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[i]
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1 )>)

Right multiply (H
[i]
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[i]
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1 )>)−1 both sides

B[i](H
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1 H

[i]
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2 )>(H

[i]
1 )>)−1 = H0

(55)
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