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Abstract

In this paper, we study the invariance of quasi-arithmetic means in monotonic
series of numbers. We show that if two distributions of weights are ordered
under first stochastic order then, for any monotonic series of numbers, all
their weighted quasi-arithmetic means share the same order direction. This
implies for instance that the arithmetic and harmonic means for two different
distributions of weights always have to be aligned if the weights are stochas-
tic ordered, i.e., either both means increase or both decrease. Moreover,
we explore the invariance properties when convex (concave) functions define
both the quasi-arithmetic mean and the series of numbers. We situate our
work with existing previous invariance results and present an example that
illustrate the usefulness and transversality of our approach.

Keywords: stochastic order, weighted mean, arithmetic mean, harmonic
mean, Kolmogorov mean, quasi-arithmetic mean

1. Introduction and motivation

Stochastic orders [1], [2] are defined in probability theory and statistics,
to quantify the concept of one random variable being bigger or smaller than
another one. Discrete probability distributions on unidimensional values are
sequences of n-tuples of non-negative values that add up to 1, and can be
thus interpreted as weights for averaging the set of possible values taken by
the random variable, or even as equivalence classes of compositional data [3].
Stochastic orders have found application in decision and risk theory, and in
economics in general, among many other fields [2]. Some stochastic orders
have been usually defined based on the order invariance, when we consider
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any possible increasing sequence of results, of the expected values of the ran-
dom variables they compare, and consequently of their weighted arithmetic
mean. This raises the question whether this invariance might also hold for
other kind of means beyond the arithmetic mean. To our knowledge, only
the works [4] [5] in the economics literature, have studied the invariance un-
der generalized means defined by strictly increasing utility functions. In our
recent work on mathematical inequalities [6] we have found order invariance
properties that hold for all generalized or quasi-arithmetic means, defined by
strictly monotonic, increasing or decreasing, functions. We generalize here
these invariance properties and study its relationship to several stochastic
orders.

For a long time, economists have discussed which mean should be used
for a given problem [7], e.g., some problems are represented by harmonic
mean rather than arithmetic mean, like the price earning ratio, P/E. Also,
the power mean, depending on a parameter η > 0 which gives the elastic-
ity of substitution among different types of labor, is implicitly1 used for the
aggregate labor demand (power mean with power equal to η−1

η
), and for its

corresponding wage (power mean with power equal to 1 − η) [8]. For in-
stance, when η = 2 we have the square root mean for the aggregate labor
and the harmonic mean for its wage. Interesting examples of two mean repre-
sentations, arithmetic and harmonic, of a problem come from physics, where
springs (helical metal coils) added in series combine harmonically, and in par-
allel arithmetically, while resistors in parallel combine harmonically, and in
series arithmetically. These are examples that show that combining the same
utilities in different ways will result in different means. Another example is
traffic flow [9] where two different means for speeds are meaningful for the
problem at hand, the arithmetic mean, or time mean speed, and harmonic
mean, or space mean speed. And in [10] both geometric and harmonic mean
are used in addition to arithmetic mean to improve noise source maps.

In this paper, we show that the order invariance is a necessary and suffi-
cient condition for first stochastic order. We also show that invariance holds
under any kind of quasi-arithmetic means, defined by strictly monotonic func-
tions, and we also explore invariance under other stochastic orders. We also
show the applicability of these results beyond the pure theoretical interest by

1By implicitly, here we refer to the fact that it is used without any reference to being
a power mean
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introducing an example in Section 7 where multiple quasi-arithmetic means
are used to characterize a problem.

The rest of the paper is organized as follows. We introduce the stochas-
tic order in Section 2, and the arithmetic mean and its relationship with
stochastic order in Section 3. In Section 4, we present the invariance theo-
rems discussing them in Section 5 in the case of concave (convex) functions,
and in Section 6 in their application to stochastic orders. In Section 7, we
show an example based on the linear combination of Monte Carlo estimators,
and in Section 8 we discuss the relationship of our work to the work in [4]
[5]. Finally conclusions and future work are given in Section 9.

2. Stochastic orders

Stochastic orders are pre-orders (i.e, binary relationships holding sym-
metric and transitive properties) defined on probability distributions with
finite support. Note that equivalently, one can think of sequences (i.e., or-
dered sets) of non-negative weights/values that sum up to one. Observe that
any sequence {αk} of M positive numbers such that

∑M
k=1 αk = 1 can be

considered a probability distribution. While several interpretations hold and
hence increase the range of applicability, in the remaining of this paper, we
will talk of sequence without any loss of generality.
Notation. We use the symbols ≺,� to represent orders between two se-
quences {αk} and {α′k} of size M , e.g., and we write {αk} � {α′k} or equiv-
alently {α′k} ≺ {αk}. We will denote the elements of the sequences without
the curly brackets, e.g., the first element of the sequence {αk} is denoted as
α1, while the last one is αM . Moreover, the first and last elements of the se-
quence receive special attention, since when α1 ≤ α′1, we can write this order
as {αk} �F {α′k} (where �F stands for first) and whenever αM ≥ α′M , we can
write {αk} �L {α′k} (where �L stands for last). The case with both α1 ≤ α′1
and αM ≥ α′M , can we denote as {αk} �FL {α′k}. The orders �F ,�L,�FL
are superorders of first stochastic dominance order, {αk} �FSD {α′k}, that
will be studied in Section 6. We denote as {αM−k+1} the sequence with the
same elements of {αk} but in reversed order.

Toy example. Given sequences {αk} = {0.5, 0.1, 0.2, 0.2}, and {α′k} =
{0.4, 0.1, 0.2, 0.3}, we have both {αk} ≺F {α′k}, {αk} ≺L {α′k}, and thus
{αk} ≺FL {α′k}. On the other hand for sequences {αk} and {α′′k} = {0.4, 0.3, 0.2, 0.1},
we have {αk} ≺F {α′′k}, {αk} 6≺L {α′′k}, and thus {αk} 6≺FL {α′′k}.
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Mirror property. One desirable property of stochastic orders is such that
when reversing the ordering of the sequence elements, the stochastic order
should be reversed as well, i.e., if {αk} � {α′k} then {α′M−k+1} � {αM−k+1}.
This is similar to the invariance of physical laws to right and left hand. We
call this property mirror property.

Definition 1 (Mirror property). We say that a stochastic order has the
mirror property if

{α′k} ≺ {αk} ⇒ {αM−k+1} ≺ {α′M−k+1}. (1)

Observe that the simple orders defined before, �F , �L, do not hold this
property, but �FL holds it. We will see in Section 6 that usual stochas-
tic orders do hold the mirror property. But an order that is insensitive to
the permutation of the elements of a sequence, like majorization or Lorentz
orders, does not hold the mirror property.

3. Quasi-arithmetic mean

As we have told before, many stochastic orders are justified by invariance
to arithmetic mean, and we want to investigate in this paper invariance to
more general means. We define here the kind of means we are interested in.

Definition 2 (Quasi-arithmetic or Kolmogorov mean). A quasi-arithmetic
generalized weighted mean (or Kolmogorov mean)M({bk}, {αk}) of sequence

{bk}Mk=1is of the form g−1
(∑M

k=1 αkg(bk)
)

, where g(x) is an invertible strictly

monotonic function, with inverse function g−1(x) and {αk}Mk=1 are positive
weights such that

∑M
k=1 αk = 1.

Examples of such mean are arithmetic weighted mean (g(x) = x), har-
monic weighted mean (g(x) = 1/x), geometric weighted mean (g(x) = log x)
and in general the weighted power means (g(x) = xr).

Lemma 1. Consider the sequences of M positive weights {αk}Mk=1 and {α′k}Mk=1,∑M
k=1 αk = 1,

∑M
k=1 α

′
k = 1, g(x) a strictly monotonic function and f(x) a

function such that the sequence {f(k)}Mk=1 is increasing. The following con-
ditions a),b),a’),b’),c) and d) are equivalent. If {f(k)}Mk=1 is decreasing, the
inequalities in a) through b’) are reversed.
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a) for g(x) increasing, for any function f(x) such that the sequence {f(k)}Mk=1

is increasing the following inequality holds:

M∑
k=1

α′kg(f(k)) ≤
M∑
k=1

αkg(f(k)) (2)

b) for g(x) increasing, for any function f(x) such that the sequence {f(k)}Mk=1

is increasing the following inequality holds:

M∑
k=1

αM−k+1g(f(k)) ≤
M∑
k=1

α′M−k+1g(f(k)) (3)

a’) for g(x) decreasing, for any function f(x) such that the sequence {f(k)}Mk=1

is increasing the following inequality holds:

M∑
k=1

αkg(f(k)) ≤
M∑
k=1

α′kg(f(k)) (4)

b’) for g(x) decreasing, for any function f(x) such that the sequence {f(k)}Mk=1

is increasing the following inequality holds:

M∑
k=1

α′M−k+1g(f(k)) ≤
M∑
k=1

αM−k+1g(f(k)) (5)

c) the following inequalities hold:

α′1 ≥ α1

α′1 + α′2 ≥ α1 + α2

...

α′1 + . . .+ α′M−1 ≥ α1 + . . .+ αM−1

α′1 + . . .+ α′M−1 + α′M = α1 + . . .+ αM−1 + αM (6)

d) the following inequalities hold:

αM ≥ α′M
αM + αM−1 ≥ α′M + α′M−1

...

αM + . . .+ α2 ≥ α′M + . . .+ α′2
α′1 + . . .+ α′M−1 + α′M = α1 + . . .+ αM−1 + αM (7)
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Proof. The proof is in the Appendix.

Note 1. Lemma 1 can be extended to any real sequences {yk} and {xk},
such that

∑M
k=1 yk =

∑M
k=1 xk. It is enough to observe that the order of all

the inequalities are unchanged by adding a positive constant, so that {yk}
and {xk} can be brought to be positive, and also they are unchanged by the
multiplication of a positive constant, so that the resulting {yk} and {xk}
sequences can be normalized.

Theorem 1. Given a mean M with strictly monotonic function g(x) and
two distributions {α′k}, {αk}, the following propositions are equivalent:
a) for all increasing functions f(x)

M({f(k)}, {α′k}) ≤M({f(k)}, {αk}) (8)

b) for all decreasing functions f(x)

M({f(k)}, {αk}) ≤M({f(k)}, {α′k}) (9)

c) for all increasing functions f(x)

M({f(k)}, {αM−k+1}) ≤M({f(k)}, {α′M−k+1}) (10)

d) for all decreasing functions f(x)

M({f(k)}, {α′M−k+1}) ≤M({f(k)}, {αM−k+1}) (11)

Proof. It is a direct consequence of Lemma 1 and the definition of quasi-
arithmetic mean.

4. Invariance

Theorem 2 (Invariance). Given two distributions {α′k}, {αk}, and two quasi-
arithmetic means M, M?, the following propositions are equivalent:
a) for all increasing functions f(x)

M({f(k)}, {α′k}) ≤M({f(k)}, {αk}) (12)

b) for all increasing functions f(x)

M?({f(k)}, {α′k}) ≤M?({f(k)}, {αk}) (13)

6



Proof. It is a direct consequence of the observation that conditions c) and d)
in Lemma 1 do not depend on any particular g(x) function considered, and
thus the order of inequalities does not change with the mean considered as
long as {αk} and {α′k} are kept fixed.

Observe that Theorem 2 can be generalized to consider all possible cases
by simple application of Theorem 1.
The following property relates stochastic order with weighted mean. Be I a
set of increasing functions.

Definition 3 (preserve mean order). We say that a stochastic order preserves
mean order for a given mean M and a set I of increasing functions when,
for all functions f(x) ∈ I and any distributions {α′k}, {αk},

{αk} ≺ {α′k} ⇒M({f(k)}, {α′k}) ≤M({f(k)}, {αk}). (14)

The following proposition and theorem show that if a stochastic order
holds the preserve mean order property for a given mean and for the set of
all increasing functions than it holds too the antisymmetric property, and it
is thus a partial order.

Proposition 1. Given distributions {α′k}, {αk} and a mean M, suppose
that for all increasing (respectively decreasing) functions f(x) it holds that
M({f(k)}, {α′k}) =M({f(k)}, {αk}), then {α′k} = {αk}.

Proof. If g(x) is the strictly monotonic function that defines the mean,

M∑
k=1

αkg(f(k)) =
M∑
k=1

α′kg(f(k))⇒
M∑
k=1

(αk − α′k)g(f(k)) = 0. (15)

Suppose first the case of f(x) increasing. Taking as f(x) successively in
Eq. 15 {f(k)} = {1, 1, . . . , 1}, {f(k)} = {1, 1, . . . , 2}, . . ., {f(k)} = {1, 2, . . . , 2}
and subtracting we obtain that for all k, αk = α′k. For f(x) decreas-
ing we consider instead the decreasing sequences {f(k)} = {1, 1, . . . , 1},
{f(k)} = {2, 1, . . . , 1}, . . ., {f(k)} = {2, 2, . . . , 1}.

Theorem 3 (Antisimmetry). A stochastic order that preserves mean order
for the set of all increasing functions is antisymmetric.
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Proof. We have to show that

{αk} � {α′k} ∧ {α′k} � {αk} ⇒ {αk} = {α′k},

which is immediate by the preserve mean order hypothesis and Proposition 1.

Observe that holding antisymmetric property makes the stochastic order
a partial order.

Theorem 2 together with the preserve mean order property allows us to
state the following invariance property:

Theorem 4 (preserve mean order invariance). For any stochastic order that
preserves mean order for a given mean and for the set of all increasing func-
tions, then it preserves mean order for any mean. In other words, the preserve
mean order property is invariant with respect to the mean considered.

The following proposition and theorem relate the mirror and preserve
mean order properties.

Proposition 2. Given an order that preserves mean order for the set of all
increasing functions and any two ordered distributions, {αk} � {α′k}, then
{αM−k+1} � {α′M−k+1} ⇒ {αk} = {α′k}.

Proof. As mean order is preserved for any mean by Theorem 4, we can take
a mean function g(x) increasing, and for the mean order hypothesis, for any
increasing function f(x) we have that

M∑
k=1

α′kg(f(k)) ≤
M∑
k=1

αkg(f(k)) (16)

and applying Lemma 1

M∑
k=1

αM−k+1g(f(k)) ≤
M∑
k=1

α′M−k+1g(f(k)). (17)

As the order preserves mean order, {αM−k+1} � {α′M−k+1} means that

M∑
k=1

α′M−k+1g(f(k)) ≤
M∑
k=1

αM−k+1g(f(k)), (18)

thus from 17 and 18, both means are equal for all increasing functions f(x),
and by Proposition 1 {αk} = {α′k}.

8



Theorem 5. Given an order that preserves mean order for the set of all
increasing functions, and suppose that whenever two distributions {αk}, {α′k}
are ordered, the mirror distributions {αM−k+1}, {α′M−k+1} are also ordered,
then the order holds the mirror property.

Proof. It is an immediate consequence from Proposition 2.

5. Concavity and convexity

Lemma 2. Given two distributions {α′k}, {αk}, and a quasi-arithmetic mean
M({f(k)}, {αk}) with convex (respectively concave) function g(x), we have
that if for all increasing concave (respectively convex) function f(x), it holds
that

M({f(k)}, {α′k}) ≤M({f(k)}, {αk}), (19)

and

M({f(k)}, {αM−k+1}) ≤M({f(k)}, {α′M−k+1}) (20)

then both inequalities hold too for any other mean with concave (respectively
convex) g(x) function.

The proof is in the Appendix.

Theorem 6. Given an order that holds the mirror property, and a quasi-
arithmetic mean M({f(k)}, {αk}) with convex (respectively concave) func-
tion g(x), we have that, if for any increasing concave (respectively convex)
function f(x), if {α′k} ≺ {αk} it holds that

M({f(k)}, {α′k}) ≤M({f(k)}, {αk}), (21)

then it holds too for any other mean with concave (respectively convex) g(x)
function.

Proof. By the mirror property and by the hypothesis we can state that

M({f(k)}, {αM−k+1}) ≤M({f(k)}, {α′M−k+1}) (22)

and then we apply Lemma 2.

9



What Theorem 6 tells us is that if we are able to find a mean with g(x)
convex that holds Eq. 21 for all concave f(x) then it holds for any other mean
with concave g(x). And if we are able to find a mean with g(x) concave that
holds Eq. 21 for all convex f(x) then it holds for any other mean with convex
g(x).

Corollary 1. Consider the weighted arithmetic mean A({αkf(k)}). Given
an order that holds the mirror property, we have that if for any increasing
concave (respectively convex) function f(x), given {α′k} ≺ {αk} it holds that

A({α′kf(k)}) ≤ A({αkf(k)}), (23)

then for any other mean M with concave (respectively convex) function g(x)
it holds

M({f(k)}, {α′k}) ≤M({f(k)}, {αk}). (24)

Proof. Arithmetic mean is a quasi-arithmetic mean with function g(x) = x,
which is concave and convex, and thus it is enough to apply Theorem 6.

Functions xp, for p ≥ 1 or p < 0, are convex over R++ , ex over R, while
log x, xp, for 0 < p ≤ 1 are concave over R++. Affine functions are both
concave and convex over R. If g(x) is convex −g(x) is concave and viceversa,
and the composition of concave and concave and increasing is concave, and
convex and convex and increasing is convex.

6. Application to stochastic order

6.1. First order stochastic dominance

Originating in economics risk literature [11], first order stochastic dom-
inance [2], [1], FSD, between two probability distributions, {αk}, {α′k},
{αk} �FSD {α′k}, is defined when for any increasing function f(x),

E[f(k)]α′
k
≤ E[f(k)]αk

.

Remember that expected values are the arithmetic weighted mean. A neces-
sary and sufficient condition for first order stochastic dominance is that the
following inequalities hold:

10



α′1 ≥ α1

α′1 + α′2 ≥ α1 + α2

...

α′1 + . . .+ α′M−1 ≥ α1 + . . .+ αM−1

α′1 + . . .+ α′M−1 + α′M = α1 + . . .+ αM−1 + αM . (25)

Observe that Eq. 25 is just the condition c) of Lemma 1, which is equiva-
lent to condition d) of Lemma 1, thus {αk} �FSD {α′k} ⇒ {α′M−k+1} �FSD
{αM−k+1}, i.e., the mirror property holds. From the definition of FSD, and
from Theorem 4, we can redefine FSD, {αk} �FSD {α′k} as there exists a
mean M such that, for any increasing function f(x), Eq. 14 holds. This is,
the definition of FSD is independent of the mean considered, while the origi-
nal definition relied on the expected value (arithmetic mean). The mean con-
sidered can be arithmetic, harmonic, geometric or any other quasi-arithmetic
mean.

6.2. Second order stochastic dominance and increase convex ordering
Second order stochastic dominance between two probability distributions,

{αk}, {α′k}, {αk} �SSD {α′k}, occurs when for any increasing concave func-
tion f(x),

E[f(k)]α′
k
≤ E[f(k)]αk

.

Trivially
{αk} �FSD {α′k} ⇒ {αk} �SSD {α′k}.

Let us consider the cumulative distribution function, Fi = α1 +α2 + . . .+αi,
and the survival function F̄i = 1−Fi = αM +αM−1 + . . .+αi+1. A necessary
and sufficient condition for second order stochastic dominance [2], [1] is the
following:

F ′1 ≥ F1

F ′1 + F ′2 ≥ F1 + F2

...

F ′1 + . . .+ F ′M−1 ≥ F1 + . . .+ FM−1

F ′1 + . . .+ F ′M−1 + F ′M ≥ F1 + . . .+ FM−1 + FM

(26)
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or equivalently,

F̄ ′1 ≤ F̄1

F̄ ′1 + F̄ ′2 ≤ F̄1 + F̄2

...

F̄ ′1 + . . .+ F̄ ′M−1 ≤ F̄1 + . . .+ F̄M−1

F̄ ′1 + . . .+ F̄ ′M−1 + F̄ ′M ≤ F̄1 + . . .+ F̄M−1 + F̄M

(27)

Observe first that {αk} �SSD {α′k} ⇒ {α′M−k+1} �SSD {αM−k+1}, i.e.,
SSD holds the mirror property. Define Gi = αM +αM−1 + . . .+αi+1, and the
survival function Ḡi = 1 − Gi = α1 + α2 + . . . + αi. But Gi = F̄i, Ḡi = Fi,
G′i = F̄ ′i, Ḡ′i = F ′i , and substituting in Eq.26 or Eq.27 we obtain the desired
result.
From Corollary 1 second order stochastic dominance preserves mean order
for all means M defined by a concave function g(x) and for the set of all
increasing concave functions ICV . For instance the geometric mean, or any
mean with g(x) = xp, 0 < p ≤ 1.

Second order stochastic dominance is also called increasing concave order,
ICV. When we consider f(x) a convex instead of a concave function we talk
of increasing convex order, ICX. {αk} is greater in increasing convex order
than {α′k}, {αk} �ICX {α′k}, if and only if the following inequalities hold:

F ′M ≥ FM

F ′M + F ′M−1 ≥ FM + FM−1
...

F ′M + . . .+ F ′2 ≥ FM + . . .+ F2

F ′M + . . .+ F ′2 + F ′1 ≥ FM + . . .+ F2 + F1

(28)

or equivalently,

F̄ ′M ≤ F̄M

F̄ ′M + F̄ ′M−1 ≤ F̄M + F̄M−1
...

12



F̄ ′M + . . .+ F̄ ′2 ≤ F̄M + . . .+ F̄2

F̄ ′M + . . .+ F̄ ′2 + F̄ ′1 ≤ F̄M + . . .+ F̄2 + F̄1

(29)

Trivially
{αk} �FSD {α′k} ⇒ {αk} �ICX {α′k}.

Mirror property is also immediate. From Corollary 1 second order stochastic
dominance preserves mean order for all means M defined by a convex func-
tion g(x) and for the set of all increasing concave functions ICX . For instance
any mean with g(x) = xp, p ≥ 1, as the weighted quadratic mean and, with
p < 0, as the weighted harmonic mean.

6.3. Likelihood ratio dominance

Likelihood ratio dominance, LR, {αk} �LR {α′k}, is defined as

∀(i, j), 1 ≤ i, j ≤M, i ≤ j ⇒ α′i/α
′
j ≥ αi/αj. (30)

as α′i/α
′
j ≥ αi/αj ⇒ αj/αi ≥ α′j/α

′
i, we have that LR holds the mirror

property.
It can be shown that condition 30 implies condition 25, [6], thus

{αk} �LR {α′k} ⇒ {αk} �FSD {α′k},

and then LR order holds Theorem 4 and Eq. 14 holds for any mean M.

6.4. Hazard rate

A probability distribution {αk} is greater in hazard rate, HR, to {α′k},
{αk} �HR {α′k}, if and only if for all j ≥ i the following condition is filled

F̄ ′i
F̄i
≥ F̄ ′j

F̄j
.

Observe that this can be written as

F̄j
F̄ ′j
≥ F̄i
F̄ ′i

,

or
1− Fj
1− F ′j

≥ 1− Fi
1− F ′i

,

13



If we consider now the sequences written in inverse order, i.e., αM−i+1, α
′
M−i+1,

it is clear that if i ≤ j then M − j + 1 ≤ M − i+ 1, and from 1 − F̄j =
F̄M−j+1, we get

F̄M−j+1

F̄ ′M−j+1

≥ F̄M−i+1

F̄ ′M−i+1

,

which means {α′M−k+1} �HR {αM−k+1}, and HR order holds the mirror
property.
It can be shown that {αk} �HR {α′k} ⇒ {αk} �FSD {α′k} and then HR order
holds Theorem 4 and Eq. 14 holds for any mean M.

7. Example: Linear combination of Monte Carlo techniques

Let us estimate an (intractable) integral µ =
∫
h(x)dx using importance

sampling [12]. There are n techniques (also called proposals) where sampling
from them is possible. Each technique has an associated pdf {pk(x)}, 1 ≤
k ≤ n, and a related primary estimator {Ik,1 = h(x)

pk(x)
}. If for every x where

h(x) > 0 we have that pk(x) > 0, then the technique is unbiased. We
are interested in optimal ways of combining the techniques. One option is
the linear combination of the different estimators {Ii,ni

},
∑M

i=1wiIi,ni
, with

weights {wk} and sampling proportions {ni = αiN}, with N =
∑M

i=1 ni. If
all techniques are unbiased the resulting combination is also unbiased. The
variance is given by

VN =
M∑
i=1

w2
i

vi
ni

=
1

N

M∑
i=1

w2
i

vi
αi

=
1

N
V1, (31)

where vi are the variances for the primary estimators of each technique.
The optimal combination of weights, i.e. the ones that lead to minimum

variance V1, has been studied in [13], [14], [15]. The variance of the combi-
nation depends on two sets of weights, {wi} and {αi}, but there are cases
where it can be reduced to a single set. Several examples can be found:

• when αi = wi, then V1 =
∑M

i=1 αivi, the weighted arithmetic mean of
{vi}.

• when the sampling proportions are fixed, the optimal variance is given
by H({ vk

αk
}), the weighted harmonic mean of {vi}.
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• when weights {wi} are fixed, the optimal variance is given by (
∑M

k=1wk
√
vk)

2,
which is the weighted power mean with exponent r = 1/2.

Observe that the three cases correspond to quasi-arithmetic means. Consid-
ering the sequences α′k = q(vk), q(x) decreasing, and αk = 1/M , we have
that {αk} �LR {α′k} and thus in all cases the variance is less when taking
sampling proportions or coefficients decreasing in vk than for equal sampling
or equal weighting. See [15] for more details.

7.1. Liabilities vs utilities

In many problems in economics, it can be argued that the goal is the
maximization of the utilities instead of the minimization of the liabilities.
However, a liability can be always considered as the inverse of an utility;
Theorem 1 shows that establishing invariance properties on the order between
means of utilities, i.e., increasing f(x), is equivalent to doing the same with
the liabilities with inverted order, i.e., decreasing f(x). As an example, if
we consider the variance V1 in the Monte Carlo problem in Section 7 as a
liability, we can define the efficiency E1 = 1/V1 as a utility, and obtain it as a
weighted mean of individual techniques efficiencies, ei = 1/vi. Consider the
first case above in Section 7, where V1 =

∑M
i=1 αivi. Then,

E1 =
1

V1
=

1∑M
i=1 αivi

=
1∑M

i=1 αie
−1
i

= H({ ei
αi
}),

where H denotes weighted harmonic.
Considering now the second case, we obtain

E1 =
1

H({ vk
αk
})

=
M∑
i=1

αiv
−1
i =

M∑
i=1

αiei.

Finally, the third case yields

E1 =
1

(
∑M

k=1wk
√
vk)

2
= (

M∑
k=1

wke
−1/2
k )−2,

which is the weighted power mean with r = −1/2. Symmetrically to the
variances, taking now the sequences α′k = p(ek), p(x) increasing, and αk =
1/M , we have that {α′k} �LR {αk}. Thus, in all cases, the resulting efficiency
is higher when taking sampling proportions or coefficients increasing in ek
instead for equal sampling or equal weighting.
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8. Related work

Yuji Yoshida has pioneered the study of stochastic orders related to the
invariance of quasi-arithmetic mean. We thus discuss here the relationships
between this paper and his work in [4], [5]. Yuji Yoshida has considered
invariance of continuous generalized or quasi-arithmetic weighted means of
utility functions. The quasi-arithmetic mean has been defined using as its
defining function (i.e., the g(x) function in definition 2) the same utility
function. Several results are obtained, for instance in Theorem 3.1 in [4] it
is shown that a necessary condition for a weighted mean on continuous and
derivable weights v to be greater than the weighted mean on continuous and
derivable weights w is that w′/w ≤ v′/v, where w′, v′ are the derivatives of
w, v, respectively. A necessary and sufficient condition for w′/w ≤ v′/v is
derived in Theorem 3.2 in [4] or Lemma 2 in [5]. Let us now present the
main differences to our work (apart from the fact that we work with discrete
distributions and in [4], [5] with continuous ones) are:

• In [4], [5], the function that defines the quasi-arithmetic mean, i.e. the
g(x) function in definition 2, is the same as the utility function used.
Observe that, on the one hand, this restricts the utility functions to be-
ing strictly increasing, assumption not necessary in our framework. On
the other hand, as the utility function is always an increasing function,
this implies that means such as harmonic mean, which correspond to
decreasing function 1/x, are not considered for invariance. As a con-
sequence, the symmetry between utility and cost, discussed in section
7.1, can not be brought forward.

• Only likelihood-ratio order is considered (implicitly) in [4], [5]. This
is, the condition for mean invariance is w′/w ≤ v′/v, where w and v
are weighting functions. This can be easily shown to be equivalent
to likelihood-ratio dominance, section 6.3. Likelihood-ratio dominance
implies first order stochastic dominance, but not the reverse (see for
instance Proposition 4.2 in [4] that states that w′/w ≤ v′/v implies first
order stochastic dominance). Thus Yoshida considers in Theorem 3.2
in [4] or Lemma 2 in [5] a necessary and sufficient condition for likeli-
hood ratio, while we consider in the present paper the, more general,
necessary and sufficient condition for first order stochastic dominance.
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9. Conclusions and future work

We have presented in this paper the relationship between stochastic or-
ders and quasi-arithmetic means. We have proved several ordering invariance
theorems, that show that given two distributions under a certain stochastic
order, the ordering of the means is preserved for any quasi-arithmetic mean
we might consider, this is, not only for arithmetic mean (or expected value).
We have showed how the results apply to first order, second order, likeli-
hood ratio, hazard-rate, and increasing convex stochastic orders. We have
presented an application example based on the linear combination of Monte
Carlo estimators, and shown that the invariance allows to consider costs or
liabilities as the symmetric case of utilities. We have established too the
relationship of our results with previous work.

In the future we want to generalize our results to spatial weight matrices
[16]. The rows in a spatial weight matrix are weights, that give the influence
of n entities over each other. Different weighted means as arithmetic, har-
monic, or geometric [17] can be used to compute this influence. We can thus
apply to each row our invariance results.
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Appendix. Proof of Lemma 1

We present here the proof of Lemma1.

Proof. Subtracting 1 from both sides of each inequality proves c) ⇔ d). To
prove a) ⇒ c) we proceed in the following way. Consider the increasing
sequence {g(f(1)), . . . , g(f(1)), g(f(M)), . . . , g(f(M))}, f(1) < f(M) (and
thus g(f(1)) < g(f(M)) by the strict monotonicity of g(x)), and where
g(f(1)) is written l times, denote L = a1 + . . . + al, L’ = a′1 + . . . + a′l.
Since al+1 + . . .+ aM = 1− L, a′l+1 + . . .+ a′M = 1− L’ then a) gives

L’g(f(1)) + (1− L’)g(f(M))− Lg(f(1))− (1− L)g(f(M)) ≤ 0,

i.e.,
(L’− L)(g(f(1))− g(f(M))) ≤ 0⇒ L’ ≥ L.
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This proves the first M − 1 inequalities. Observe now that

L’ ≥ L⇒ 1-L ≥ 1-L’

and this accounts for the last M − 1 inequalities, thus a)⇒ d).
To prove that b) implies c) and d), consider the sequence,

{g(f(1)), . . . , g(f(1)), g(f(M)), . . . , g(f(M))},

f(1) < f(M), g(f(M)) is written l times, and the same definitions as before
for L,L’, then b) gives

(1− L)g(f(1)) + Lg(f(M))− (1− L’)g(f(1))− L’g(f(M)) ≤ 0,

and we proceed as above. Thus a)⇒ c). Let us see now that c) implies a).
Define for 1 ≤M , Ak =

∑k
j=1 αk, A

′
k =

∑k
j=1 α

′
k, and A0 = A′0 = 0. Then

M∑
k=1

αkg(f(k))−
M∑
k=1

α′kg(f(k)) =
M∑
k=1

(αk − α′k)g(f(k)) (32)

=
M∑
k=1

(Ak − Ak−1 − A′k + A′k−1)g(f(k))

=
M∑
k=1

(Ak − A′k)g(f(k))−
M∑
k=1

(Ak−1 − A′k−1)g(f(k))

=
M−1∑
k=1

(Ak − A′k)g(f(k))−
M−1∑
k=0

(Ak − A′k)g(f(k + 1))

=
M−1∑
k=1

(Ak − A′k)g(f(k))−
M−1∑
k=1

(Ak − A′k)g(f(k + 1))

=
M−1∑
k=1

(Ak − A′k)(g(f(k))− g(f(k + 1))) ≥ 0,

as c) implies that for all k, A′k − Ak ≥ 0, and {g(f(k))} is an increasing
sequence. Thus c)⇒ a).
Repeating the proof for the sequences {αM−k+1} and {α′M−k+1} we obtain
that d)⇒ b).
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Let now be g(x) decreasing. Observe that

M∑
k=1

αM−k+1g(f(k)) =
M∑
k=1

αM−k+1g(f(m(M − k + 1))) =
M∑
k=1

αkg(f(m(k))),

where m(k) = M − k + 1, and thus a) ⇒ b′) because {g(f(m(k)))} is an
increasing sequence. Now suppose g(x) is increasing, from

M∑
k=1

αkg(f(k)) =
M∑
k=1

αM−k+1g(f(M − k + 1)) =
M∑
k=1

αM−k+1g(f(m(k)))

we have that b′) ⇒ a) because {g(f(m(k)))} is a decreasing sequence. We
can show similarly that b)⇔ a′).
Consider now f(x) decreasing. Reversed a) is

M∑
k=1

αkg(f(k)) ≤
M∑
k=1

α′kg(f(k)) (33)

but it can be written as

M∑
k=1

αM−k+1g(f(M − k + 1)) ≤
M∑
k=1

α′M−k+1g(f(M − k + 1)) (34)

=
M∑
k=1

αM−k+1g(f(m(k))) ≤
M∑
k=1

α′M−k+1g(f(m(k))),

where {g(f(m(k)))} is an increasing sequence, and thus c) ⇒ a) when f(x)
is decreasing and for order of inequality in a) reversed. The other cases for
f(x) decreasing can be analogously proven.

Appendix. Proof of Lemma 2

Proof. Be g(x) the strictly monotonic function associated with mean M.
Consider first g(x) convex and increasing, g−1(x) is concave and increasing,
f(x) concave and increasing. Supposing Eq. 19 holds,

M∑
k=1

α′kg(f(k)) ≤
M∑
k=1

αkg(f(k)), (35)
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Suppose we have another mean with concave function g?(x). Suppose first
g?(x) is increasing. We have to show that

M∑
k=1

α′kg
?(f(k)) ≤

M∑
k=1

αkg
?(f(k)), (36)

as g?−1(x) is also increasing. But Eq. 36 can be written as

M∑
k=1

α′kg(g−1(g?(f(k)))) ≤
M∑
k=1

αkg(g−1(g?(f(k)))), (37)

which holds because g−1(g?(f(x))) is concave and increasing.

Consider now g?(x) is decreasing. As g?−1(x) is also decreasing, we have
to show that

M∑
k=1

α′kg
?(f(k)) ≥

M∑
k=1

αkg
?(f(k)). (38)

Eq. 38 can be written as

M∑
k=1

α′M−k+1g
?(f(m(k))) ≥

M∑
k=1

αM−k+1g
?(f(m(k))), (39)

where m(k) = M − k + 1, or

M∑
k=1

α′M−k+1g(g−1(g?(f(m(k))))) ≥
M∑
k=1

αM−k+1g(g−1(g?(f(m(k))))), (40)

which holds because g−1(g?(f(m(x)))) is concave and increasing function, as
m(x) is both convex and concave.

The case when g(x) is decreasing is dealt with analogously. For g(x)
concave and f(x) convex and increasing we can proceed as above observing
that for g?(x) convex, g−1(g?(f(x))) and g−1(g?(f(m(x)))) are convex and
increasing.
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