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Interrogating Subsurface Structures using Probabilistic1

Tomography: an example assessing the volume of Irish2

Sea basins3

Xuebin Zhao1, Andrew Curtis1and Xin Zhang1
4

1School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom5

Key Points:6

• We use interrogation theory to answer specific questions about the subsurface us-7

ing probabilistic tomography results.8

• In a synthetic example, the method estimates the area of a low velocity anomaly9

accurately, even given coarsely gridded tomographic images.10

• We apply the method to a real data set and evaluate the volume of the East Irish11

Sea sedimentary basins using 3D depth inversion results.12
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Abstract13

The ultimate goal of a scientific investigation is usually to find answers to specific, of-14

ten low-dimensional questions: what is the size of a subsurface body? Does a hypoth-15

esised subsurface feature exist? Existing information is reviewed, an experiment is de-16

signed and performed to acquire new data, and the most likely answer is estimated. Typ-17

ically the answer is interpreted from geological and geophysical data or models, but is18

biased because only one particular forward function is considered, one inversion method19

is applied, and because human interpretation is a biased process. Interrogation theory20

provides a systematic way to answer specific questions by combining forward, design, in-21

verse and decision theories. The optimal answer is made more robust since it balances22

multiple possible forward models, inverse algorithms and model parametrizations, prob-23

abilistically. In a synthetic test, we evaluate the area of a low-velocity anomaly by in-24

terrogating Bayesian tomographic results. By combining the effect of four inversion al-25

gorithms, the optimal answer is very close to the true answer, even on a coarsely grid-26

ded parametrisation. In a field data test, we evaluate the volume of the East Irish Sea27

basins using probabilistic 3D shear wave speed depth inversion results. This example shows28

that interrogation theory provides a useful way to answer realistic questions about the29

Earth. A key revelation is that while the majority of computation may be spent solv-30

ing inverse problems, much of the skill and effort involved in answering questions may31

be spent defining and calculating target function values in a clear and unbiased man-32

ner.33

Plain Language Summary34

This paper shows how to answer specific questions about the subsurface using prob-35

abilistic tomography. Usually tomographic methods are used to estimate images of the36

subsurface; the ’best’ images are then interpreted to answer questions of interest. This37

work shows that by setting up a formal target function that allows any image to be in-38

terpreted automatically, many samples of possible subsurface models can be translated39

into probabilistic answers to the questions, from which a least-biased answer can be con-40

structed. In the real-data examples presented here the subsurface shape of a sedimen-41

tary basin is determined automatically, and a least-biased estimate of its volume is con-42

structed. This method is shown to give accurate answers about high resolution struc-43
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tures even given only low resolution tomographic images; this suggests that the prob-44

abilistic results compensate for the lack of resolution.45

1 Keywords46

Bayesian Inference, Seismic Tomography, Imaging, Probability distribution, Un-47

certainty Analysis48

2 Introduction49

Scientific investigations are usually initiated to answer high-level questions posed50

by investigators. Answers to these questions often lie within low-dimensional spaces: what51

is the depth of the Moho beneath a particular location? What is the best location to place52

a new sensor given locations of pre-existing sensors? Can this subsurface aquifer be used53

for carbon storage? The answers to each of these questions are binary (yes/no) or low-54

dimensional (Moho depth or sensor location), yet they may depend on high-dimensional55

parameter spaces, describing the structure of Earth’s subsurface for example. We usu-56

ally seek answers using information that we know already – so-called prior information,57

and to better constrain the answer we collect new data. This involves designing an ex-58

periment, acquiring new data by experimentation, and interpreting the data to produce59

new and useful information. Finally the question is answered by taking both the prior60

information and the information from new data into account.61

More formally, the new data is used to solve a Bayesian inverse problem in which62

we update the prior information with new information from the data, and seek to de-63

scribe the resultant state of information by a probability distribution (Tarantola, 2005).64

Generally, inversion methods can be divided into two categories: linearised and non-linear65

methods. The former iteratively approximates the possibly complex and non-linear model-66

data relationship (the forward function) by a linear relationship, after which the inverse67

problem can be solved by minimizing a predefined objective function that measures the68

misfit between the observed data and synthetic data simulated from any given Earth model69

(Jackson, 1972). This kind of method requires a good initial model to avoid converging70

to local minima. In addition, it is not known how to estimate uncertainty or probabil-71

ity robustly from linearised inversion results, which means that we fail to find the solu-72

tion to the Bayesian inverse problem. This in turn introduces bias when we use the re-73

sults to answer questions of interest.74
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In contrast to linearised methods, fully non-linear inversion methods solve the in-75

verse problems under a probabilistic framework. They estimate or characterise the full76

probabilistic inversion results that describe all information about model parameters given77

the data – the so called posterior probability distribution or density function (pdf). Such78

problems are often solved using Markov chain Monte Carlo (McMC) which generates an79

ensemble of samples of the posterior distribution that fit the observed data to within mea-80

sured data uncertainties. Many different kinds of McMC methods have been introduced81

for geophysical inversion, e.g.: Metropolis Hastings McMC (MH-McMC) (Mosegaard &82

Tarantola, 1995), Reversible Jump McMC (RJ-McMC) (Bodin & Sambridge, 2009; Bodin83

et al., 2012; Galetti et al., 2015, 2017; X. Zhang et al., 2018), Hamiltonian Monte Carlo84

(HMC) (Fichtner & Simutė, 2018; Fichtner et al., 2019; Gebraad et al., 2020), informed85

proposal Monte Carlo (Khoshkholgh et al., 2021) and so on. All of these methods be-86

come very expensive when dealing with high-dimensional inference problems due to the87

curse of dimensionality (Curtis & Lomax, 2001). In an attempt to improve the compu-88

tational efficiency, approaches have been proposed to solve non-linear Bayesian inverse89

problems using an optimization framework. These include neural network (NN) inver-90

sion (Devilee et al., 1999; Meier et al., 2007; Käufl et al., 2014, 2016; Earp & Curtis, 2020;91

Siahkoohi, Rizzuti, & Herrmann, 2021; Singh et al., 2021) and variational inference (Nawaz92

& Curtis, 2018, 2019; Nawaz et al., 2020; X. Zhang & Curtis, 2020a; Zhao et al., 2021;93

X. Zhang et al., 2021; Siahkoohi, Orozco, et al., 2021; Siahkoohi, Rizzuti, Louboutin, et94

al., 2021). However, the relative efficiency of all of the above methods depends on the95

problem at hand (Wolpert & Macready, 1997).96

The probabilistic results of the inverse problem can be used to answer questions.97

For non-linear inversion, a common way to achieve this is to interpret the mean model.98

For example, if we wish to estimate the size of a subsurface structure or feature using99

Bayesian tomographic inversion results, an intuitive way to proceed is to estimate its size100

using the mean seismic velocity map. However, answering questions using the mean model101

alone can be inaccurate since the mean model is only a single statistic of the posterior102

distribution and may not even represent a model that fits the observed data. In addi-103

tion, human interpretation is a biased process, which sometimes leads to incorrect an-104

swers as we show in an example below. In addition, since uncertainty in the result of the105

inverse problem is not considered, we cannot estimate uncertainty in the answers. In-106

deed, most of the information within the posterior distribution is summarily discarded107
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when answering questions in this manner, which is extremely wasteful considering the108

computational cost of Bayesian inversion in non-linear problems.109

To address the above deficiencies, we suggest to answer questions using interroga-110

tion theory, a structured framework to design scientific investigations (Arnold & Cur-111

tis, 2018). It combines inverse theory, decision theory and the theory of experimental de-112

sign to optimise scientific investigations so as to find information that best answers sci-113

entific questions of interest. In this paper, we test one component of interrogation the-114

ory on real data, by using Bayesian non-linear inversion results from multiple algorithms115

and parametrisations to answer a specific type of question: what is the size of a near-116

surface geological body? In our test the result is compared to the answer estimated from117

surface geological mapping. We then apply the method to assess the volume of a sed-118

imentary basin, for which no independent estimate exists.119

The rest of this paper is organized as follows. In the next section, we summarise120

the key components of interrogation theory and how we augment that theory in this pa-121

per, and show how optimal answers may be derived using Bayesian inversion results. In122

section 3, we establish a detailed interrogation procedure using a synthetic example which123

estimates the area of a subsurface low velocity body based on probabilistic tomographic124

results. By using a coarse grid parametrisation, we show that human interpretation can125

be significantly in error, yet in the same case the answer provided by interrogation the-126

ory remains accurate. In section 4, we use interrogation theory to answer two real-world127

questions about the East Irish Sea sedimentary basins. Finally, we provide a brief dis-128

cussion about this work and draw conclusions.129

3 Theory130

3.1 Bayesian Inverse Theory131

Inverse theory is used to estimate the vector model parameter m given some ob-

served data d, as shown in Figure 1a. This usually includes solving a forward problem

that generates synthetic data corresponding to any parameter m using a predefined for-

ward function f(m). The parameter space is then explored to find values that match

the observed data to within their uncertainties. In a Bayesian framework, the inverse prob-

lem is solved in a probabilistic way by evaluating the so-called posterior probability den-

sity function (pdf) p(m|d) – the probability of model parameter m given observed data

–5–
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d – using Bayes’ theorem:

p(m|d) =
p(d|m)p(m)

p(d)
(1)

Here p(m) is the prior pdf of model parameter m, that is, the information we know about132

m prior to the inversion. The conditional probability p(d|m) is the likelihood of observ-133

ing data d given a particular set of values for parameter vector m, and is used to mea-134

sure how consistent are the sample and the data. In the denominator, p(d) is a normal-135

ization constant called the evidence.136

Markov chain Monte Carlo (McMC) is often used to solve Bayesian inference prob-137

lems by sampling from the posterior distribution directly, yet it is often highly, if not im-138

possibly, expensive to sample it with representative density due to the curse of dimen-139

sionality (Curtis & Lomax, 2001). As an alternative, variational inference solves Bayesian140

inversion using an optimization framework by seeking the best approximation to the pos-141

terior distribution. This can be accomplished by minimizing the Kullback-Leibler (KL)142

divergence (Kullback & Leibler, 1951) between the approximated (so-called variational)143

distribution and the posterior distribution (Bishop, 2006; Blei et al., 2017; C. Zhang et144

al., 2018; Nawaz & Curtis, 2018, 2019; Nawaz et al., 2020; X. Zhang & Curtis, 2020a;145

Zhao et al., 2021; X. Zhang et al., 2021; Siahkoohi, Rizzuti, Louboutin, et al., 2021; Siahkoohi,146

Rizzuti, & Herrmann, 2021). In this work we combine results from both Monte Carlo147

and variational algorithms C.148

3.2 Interrogation Theory149

3.2.1 Fundamentals150

Figure 1b outlines the key components of an interrogation problem, and a more de-151

tailed algorithmic flow chart is illustrated in Figure 2. Rather than focusing on the model152

parameter m in an inverse problem, interrogation theory orientates all theory around153

a scientific question Q and corresponding optimal answer a∗, which usually lies in a low-154

dimensional space A. For example, geoscientists may be interested in the volume of a155

particular subsurface reservoir; the answer to this question would be a (1-dimensional)156

positive number. For other cases we may pose a binary question such as: is there a geother-157

mal plume beneath this area? The answer would be yes or no. Since low-dimensional158

answers often lie within high-dimensional model parameters, which are constrained by159

high-dimensional data, it is hard to interpret data and answer questions directly. Inter-160

–6–
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Figure 1. Comparison between inverse theory and interrogation theory. (a) Inverse theory:

given observed data d, we estimate model parameter m. This is accomplished by evaluating the

data match between the observed data and synthetic data simulated by solving a forward prob-

lem f(m). (b) Interrogation theory: given a scientific question or set of questions Q, we wish to

find the optimal answer a∗. Forward, design, inverse and decision problems are solved together to

maximise information about the answer to question Q, rather than about parameter m. In addi-

tion, in this paper the effect of different computational algorithms C for solving these problems is

considered to reduce the bias of the final answer.

–7–
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rogation theory provides a systematic way to investigate optimal answers to those ques-161

tions.162

As illustrated in Figure 2, at the beginning of an interrogation problem, investi-163

gators pose a question Q of interest given some background knowledge B. To answer this164

question, we first define a space of forward models F(M) in which all of the forward func-165

tions are deemed relevant to the question Q. Each element f(m) maps parameter space166

into corresponding data space, and has a prior density functional p(f(m)) which states167

the probability that this specific forward function f(m) would accurately represent the168

parameter-data relationship. The set of forward models satisfies:
∑

f∈F p(f(m)) = 1,169

assuming that the space of forward function is discrete. For each forward model, we de-170

fine the corresponding model parameter m and its prior probability distribution p(m|f(m))171

such that
∫
m
p(m|f(m))dm = 1 where the integration is over the entire parameter space.172

For example, assume we are facing a seismic tomography related project. In this project,173

we use the following two forward functions to map subsurface velocity structure m into174

corresponding first arrival travel time data d between sources and receivers: ray trac-175

ing (f1(m) – Julian et al., 1977) and the fast marching method (f2(m) – Rawlinson &176

Sambridge, 2004). Since the former may fail to find the shortest travel time (the correct177

ray path) and is not robust for complex velocity structures, whereas the latter is capa-178

ble of predicting travel times accurately in complex media, we assign prior probability179

density for these two forward functions as p(f1(m)) = 0.2 and p(f2(m)) = 0.8 respec-180

tively. For both forward functions, we use the same Uniform distribution to define our181

prior information on model parameter m.182

To answer question Q, we usually need some additional information, which is ob-183

tained by collecting new data. Given a set of forward models f(m), an experimental de-184

sign problem is solved to select the optimal design Ed to acquire data, selected from the185

space of designs Ed. The difference between the design problem mentioned here and tra-186

ditional experimental design problems (e.g., Maurer et al., 2010) is that the former finds187

a design that is chosen to provide the most relevant information to answer question Q,188

whereas the latter finds a design that best constrains model parameter m. After imple-189

menting the experiment, the recorded data is used to update information about model190

parameter m by solving an inverse problem, after which we can answer question Q.191

–8–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Solid Earth

Figure 2. Algorithmic flow chart for interrogation theory. Given background knowledge B

and a scientific question Q, we define forward model f(m), the corresponding parameter m, and

experimental design Ed to collect new data d. An inverse problem is solved to update the model

parameter m using the acquired data d. In this paper, we solve inverse problems with different

inversion algorithms C ∈ C and combine these results to reduce the bias that may occur from

choosing one specific algorithm. A utility function U is constructed and further maximised to

obtain the optimal answer a∗. The blue dashed lines show one way to define the utility function

by combining all of the above elements directly, which is usually hard to achieve in reality. In-

stead, we introduce a target space T and define a target function T (m|f(m), C,Q) to simplify

the utility function U(a|t, Ed), as shown by the red lines.

–9–
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Usually a variety of different computational algorithms can be used to solve for-192

ward, design and inverse problems. These may provide significantly different solutions.193

For example, Zhao et al. (2021) illustrated that different results were obtained when solv-194

ing the same Bayesian tomographic problem with four different inversion algorithms. Choos-195

ing any one of those results is likely to bias any inferred answer to question Q. To re-196

duce bias in the optimal answer, in this paper we account for uncertainties due to the197

variety of computational algorithms C ∈ C (where C is a space that contains all pos-198

sible algorithms that might solve the inverse problem at hand), augmenting the origi-199

nal interrogation framework outlined in Arnold and Curtis (2018).200

We define a utility function U(a), which quantifies the net benefits of accepting any201

particular answer a. The utility is defined such that the optimal answer a∗ that max-202

imises the utility function is the one that best satisfies whatever properties we require203

of our answer (Chaloner & Verdinelli, 1995): a∗ = arg max
a∈A

U(a). Figure 2 shows two204

approaches to construct the utility function. In the first, we combine all of the informa-205

tion provided in the components of interrogation problems described above, to define a206

highly structured utility function: U(a|m,f(m),d, Ed, C) as illustrated by dashed blue207

lines in Figure 2. Note that this utility function is conditioned on the data d and exper-208

imental design Ed to account for the cost of conducting the experiment given a specific209

design, or to allow the data to provide some components of answer a directly (Arnold210

& Curtis, 2018). However, the investigator may in general have no means of construct-211

ing a utility function of such structure and complexity. Moreover, even when agreeing212

to a utility function with such a high dimensional set of independent variables, an in-213

vestigator cannot generally be expected to appreciate all of the consequences of choos-214

ing a specific functional form (Curtis & Lomax, 2001). Also, there is no straightforward215

way to maximise this utility function over the usually discrete choices of forward func-216

tions and algorithms under consideration. As an alternative, Arnold and Curtis (2018)217

introduced a target space T which is determined by question Q such that Q can be an-218

swered directly in T. The target space should be the same for all forward functions f(m)219

and algorithms C. A target function T (m|f(m), C,Q) is defined to convert the model220

parameter m into a target value t. Based on this, a new utility function can be expressed221

as U(a|t, Ed) which has a much simpler form since it is only conditioned on target value222

t and design Ed. Usually this is expected to be easier to maximise (shown by red lines223

in Figure 2).224
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As an example of a target function, below we will address the question Q, “What225

is the volume of a subsurface body?”. We wish to answer this question using seismic to-226

mographic results. The target function T (m|f(m), C,Q) is defined to transform the model227

parameter m – the subsurface velocity structure in this case – into the corresponding228

volume of the subsurface body of interest. Thus, the target function maps a high-dimensional229

parameter space into a low-dimensional target space, eliminating nuisance parameters230

and retaining only information that is essential to represent the answer to the question.231

For more details about interrogation theory and these components, we refer readers to232

Arnold and Curtis (2018).233

3.2.2 The Optimal Answer234

In this paper, we use the same utility function defined in Arnold and Curtis (2018)

– a negative squared error function:

U(a|t, Ed) = U(a|t) = −(a− t)2 (2)

in which t is assumed to be the true summarized state of nature in the target space. The

utility function in equation 2 is maximized when the estimated answer a is equal to (or

is as close as possible to) state t. This results in an analytical solution of the optimal an-

swer a∗: the posterior mean of T (m|f(m), C,Q) averaged over all m, f(m) and C:

a∗ = E[T (m|f(m), C,Q)|d, Ed]

=
∑

f(m),C

∫
m

T (m|f(m), C,Q)p(m,f(m), C|d, Ed) dm

=
∑

f(m),C

p (C,f(m))

∫
m

T (m|f(m), C,Q)p(m|f(m),d, Ed, C) dm

=
∑

f(m),C

p(f(m))p (C|f(m))

∫
m

T (m|f(m), C,Q)p(m|f(m),d, Ed, C) dm

(3)

where p(m|f(m),d, Ed, C) is the probability of model parameter m given a specific for-235

ward function f(m), observed data d, design Ed and algorithm C, describing the pos-236

terior distribution of model parameter m in Bayesian inversion. Integration in the third237

line
∫
m
T (m|f(m), C,Q)p(m|f(m),d, Ed, C) dm calculates the optimal answer given238

a specific forward model f(m) and computational algorithm C (denoted as a∗f(m),C be-239

low). The third line of equation 3 holds based on the assumption that forward model240

f(m) and algorithm C are usually independent of design Ed and observed data d. Then,241

term p(C,f(m)) = p(f(m))p (C|f(m)) describes the joint probability density of for-242
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ward function f(m) and algorithm C, where p(C|f(m)) is the prior probability that a243

specific algorithm C will find the correct solution given that forward function f(m) does244

adequately describe the forward physics. Note that C and f(m) are not necessarily in-245

dependent of each other since some forward functions may preclude the use of different246

algorithms. For example, we would prefer to use Monte Carlo sampling method if the247

forward function can be solved cheaply, since the algorithm provides an unbiased approx-248

imation of the true solution of a Bayesian inversion problem only as the number of sam-249

ples becomes large. Therefore we would not consider this algorithm when the forward250

function is incredibly expensive (for example a full waveform simulator that solves the251

3D wave equation). Equation 3 states that the final optimal answer a∗ is a weighted sum252

of a∗f(m),C over all of the models and algorithms considered. This can be understood in-253

tuitively: by considering the effect of different forward models and algorithms, we reduce254

the bias due to subjective choices and so obtain a more robust interrogation result.255

To conclude, equation 3 answers question Q by interrogating the Bayesian inver-256

sion results. It also shows that a design Ed that provides optimal answers to question257

Q would potentially be very different from one designed to maximise information in the258

posterior distribution p(m|f(m),d, Ed, C) as has been performed in previous research259

on Geophysical optimal design (e.g., van Den Berg et al., 2003; Guest & Curtis, 2009;260

Bloem et al., 2020).261

4 Implementation262

4.1 Problem Statement263

Interrogation theory described above can be used to answer many types of real-world264

questions. In this paper, we provide a specific application to answer volume-related (3D),265

area-related (2D), or other shape-related questions about a body or medium of interest266

using fully non-linear tomographic results. This kind of question appears frequently in267

both academia and industry where we wish to interpret some geological phenomena from268

geophysical imaging results, such as to estimate the size of a subsurface body, the vol-269

ume of a reservoir, or the depth of a particular feature such as the Moho under a spe-270

cific location.271

In this section, we use a 2D synthetic example to establish an interrogation pro-272

cedure for estimating the area of a 2D subsurface body. Figure 3a shows the true veloc-273

–12–
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Figure 3. (a) True velocity model used for the 2D synthetic example. (b) A random sample

drawn from the posterior distribution of MH-McMC. (c) The same sample in (b) after applying

the mask defined in the main text. (d) The retained low velocity pixels after comparing the ve-

locity of every pixel in (c) with the optimal threshold value. (e) Black crosses mark the largest

spatially-continuous low velocity body in (d). The target function calculates the area of this

body.

ity model used in this example: a circular low velocity anomaly of 1 km/s is discretised274

on a grid size of 0.1 km, and located at the centre of the model, and its surrounding area275

has a high velocity value of 2 km/s. White triangles display the location of 16 receivers276

(equivalently 16 virtual sources) to collect traveltime data. Given only seismic travel time277

data from waves that traverse this velocity model, we pose a scientific question: what278

is the area of the low velocity anomaly?279

4.2 Interrogation Procedure280

Table 1 summarizes some key elements defined for this interrogation problem. We281

use the fast marching method (FMM) to represent the model-data relationship. Since282

this is the only forward model considered in this example, it has a prior probability p(f(m)) =283

1. The corresponding model parameter m is the subsurface seismic velocity structure284

using a regularly-gridded parametrisation, and a Uniform prior distribution is used for285

the velocity in each cell. To answer the question, we use an experimental design (i.e. source286

and receiver locations) that contains 16 receivers placed in a circular shape with a ra-287

dius of 4 km around the low velocity area, as shown by the white triangles in Figure 3a,288

such that the collected data provides relevant information about the low velocity anomaly.289

These receivers are also treated as sources, to emulate the use of standard inter-receiver290

interferometry to provide source to receiver traveltimes (Shapiro et al., 2005; Curtis et291

al., 2006). Given the collected traveltime data, we solve a Bayesian inference problem292
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to estimate the posterior distribution of the model parameter m. We use four different293

algorithms to perform non-linear Bayesian tomographic inversion: automatic differen-294

tial variational inference (ADVI) (Kucukelbir et al., 2017), normalizing flows (Rezende295

& Mohamed, 2015), Stein variational gradient descent (SVGD) (Liu & Wang, 2016) and296

Metropolis Hastings McMC (MH-McMC) (Metropolis & Ulam, 1949; Metropolis et al.,297

1953; Hastings, 1970); each algorithm is described in Zhao et al. (2021), and the corre-298

sponding inversion results are shown in Figures 4a - 4d. The top row of Figure 4 shows299

the (pixelated) mean velocity maps from the above four methods, while the bottom row300

shows the corresponding standard deviation maps. In this paper we will not focus on com-301

paring the four inversion results as details about this inversion and a corresponding dis-302

cussion can be found in Zhao et al. (2021). They concluded that (at least for seismic to-303

mography problems that use FMM as the forward function f(m)) ADVI provides an ac-304

curate mean velocity model but a biased uncertainty estimation, and the other three meth-305

ods give similar and accurate mean and uncertainty maps (the same conclusion can be306

reached by comparing Figure 4a to Figures 4b - 4d). We wish to include the results from307

ADVI when we determine the optimal answer to the question since this method is rel-308

atively efficient and robust (in the sense that the result is highly repeatable), and the309

mean tends to be accurate in previous tests so it clearly provides information at rela-310

tively low computational cost. We downweight the contribution of this algorithm because311

of the bias expected in its uncertainty estimates by assigning it a relatively low prior prob-312

ability: p(C|f(m)) = 0.1. For the other three algorithms, we assign equal prior values313

p(C|f(m)) = 0.3.314

Based on the above elements, we define a target function that maps a posterior sam-315

ple in high-dimensional parameter space into the area of the central low velocity anomaly316

in low-dimensional answer space. From the inversion results in Figures 4a - 4d, the low317

velocity anomaly of interest is located close to the centre of the model. Even though there318

might be some low velocity anomalies far from the central region, we assume that they319

have no relation with the central anomaly in which we are interested since they will be320

on or outside of the circular array of receivers. To encode this prior assumption, we in-321

troduce a mask to confine the region used to calculate the target function. Figure 4e il-322

lustrates the effect of the mask, which displays the mean and uncertainty maps of MH-323

McMC after applying the mask. The area outside of this mask is discarded, and only324

the remaining velocity pixels are retained to calculate the low velocity area. Thus the325

–14–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Solid Earth

Table 1. Key interrogation elements defined for the synthetic test.

Symbol Meaning Description

Q Question What is the area of the low velocity anomaly?

f(m) Forward model Fast marching method (FMM)

m Parameter Pixelated velocity structure with a Uniform prior pdf

Ed Design Source and receiver station locations

d Data Source to receiver traveltimes

C Algorithms ADVI, Normalizing flows, SVGD and MH-McMC

T (m) Target function Transform m into area of low velocity anomaly

U(a|t) Utility function −(a− t)2

a∗ Optimal answer E[T (m|f(m), C,Q)|d, Ed]

Figure 4. (a) - (d) Pixel-by-Pixel mean (top row) and standard deviation (bottom row) maps

of the posterior distributions obtained using ADVI, normalizing flows, SVGD and MH-McMC.

(e) The corresponding maps of MH-McMC in (d) after applying the mask introduced in the

main text: only the remaining pixels are considered when estimating the area of the low velocity

anomaly. White triangles in (a) - (d) illustrate the receiver (and source) locations of the experi-

mental design. Red crosses and black stars in each figure denote the selected pixels used to define

the threshold value to discriminate of low and high velocities.
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target function of each posterior sample T (m|f(m), C,Q) becomes: the area of the low326

velocity anomaly inside the mask.327

Figure 3b shows a posterior sample drawn from the inversion results of MH-McMC,328

and Figure 3c shows the same sample after applying the defined mask. One way to cal-329

culate the target function of this posterior sample is to sum up all of the area of low ve-330

locity pixels. This highlights a sub-question that must be answered in order to proceed:331

“what is the best threshold to discriminate low velocity from high velocity pixels with332

minimal bias?” If we could estimate such an optimal threshold value, we could classify333

each pixel as low or high velocity and hence calculate the target function value.334

We define a data-driven way to obtain such a threshold value. Firstly, we pick some335

pixels that are most likely to be high (and low) velocity cells from the four inversion re-336

sults. Ideally, these pixels should have higher (lower) mean velocity values relative to the337

mean, and low uncertainties, as denoted by the red crosses (black stars) in Figure 4. A338

threshold value estimated from such pixels should represent high and low velocity infor-339

mation better than a value estimated using other, more ambiguous pixels, thus intro-340

ducing minimal bias.341

Figures 5a and 5b show marginal pdfs of the selected low and high velocity pix-342

els, and Figures 5c and 5d display the corresponding marginal cumulative density func-343

tions (cdfs). Note that the low velocity marginal cdfs in Figure 5c are obtained by in-344

tegrating the low velocity marginal pdfs in Figure 5a from low to high velocity (from left345

to right), whereas the high velocity cdfs in Figure 5d are obtained by integrating the marginals346

pdfs in Figure 5b in the opposite direction (from high to low velocity). We then aver-347

age the marginal cdfs in Figures 5c and 5d and plot the averaged cdf curves in Figure348

5e. The red line is the averaged cdf for low velocity pixels, and the blue line is that for349

high velocity pixels, and note that while these curves are close to being mirror images350

of each other this is not generally the case. The crossing point of the two lines is marked351

by the black dot with a velocity value of 1.676 km/s. This value is also illustrated by352

the dashed black line in each pdf curve in Figures 5a and 5b. This point has the prop-353

erty that the probability that the velocities of the selected low velocity pixels (black stars354

in Figure 4) are lower than this value equals the probability that the velocities of the se-355

lected high velocity pixels (red crosses in Figure 4) are higher than this value. This spe-356
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Figure 5. (a) and (b) Marginal pdfs of low and high velocity marked in Figure 4. Dashed

black lines denote the crossing point in (e), which is used to classify low and high velocity pix-

els. (c) and (d) Marginal cdfs obtained by integrating the corresponding pdfs in (a) and (b) in

opposite directions. (e) Averaged cdf curves for low (red line) and high (blue line) velocity pixels

calculated using (c) and (d). Black dot marks the crossing point of the two curves, and is the

threshold value that discriminates low from high velocities with minimal bias.
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cific threshold value therefore discriminates low from high velocity values with minimal357

bias.358

We compare the velocity value of each pixel in Figure 3c with the optimal thresh-359

old, and retain those whose velocity value is smaller than the threshold, as shown in Fig-360

ure 3d. We interpret these pixels as low velocity bodies in this sample. Question Q de-361

mands the area of a single low velocity anomaly, rather than all of the low velocity pix-362

els in Figure 3d. Therefore we add additional prior information that the low velocity anomaly363

of interest should represent a continuous geological body in space. Note that adding this364

information does not alter the original question Q; rather it articulates the question more365

precisely. The question then becomes, what is the area of the largest continuous low ve-366

locity body inside the mask, which for the sample in question is marked by black crosses367

in Figure 3e (continuity can occur through both laterally and diagonally adjacent pix-368

els). Obviously this target function transforms a high-dimensional velocity vector m into369

a (1-dimensional) scalar value, and eliminates nuisance parameters that are less relevant370

to the question, such that Q can be answered directly in the target space T.371

For each of the four inversion results we calculate the target function T (m|f(m), C,Q)372

for every posterior sample, and plot the corresponding posterior histograms in Figure373

6. Given the negative squared error utility function in equation 2, the optimal answer374

for each algorithm a∗C can be expressed as the posterior mean of target function T (m|f(m), C,Q)375

(equation 3), noted at the top-left corner and denoted by the dashed black line in Fig-376

ure 6. We could further substitute these 4 results, their prior probability values p(C|f(m)),377

and the prior probability of forward function p(f(m)) = 1 into equation 3 to obtain378

the final optimal answer: 12.89 km2; this is very close to the true answer (12.56 km2)379

which is marked by red lines in Figure 6.380

This example illustrates the accuracy of this interrogation procedure. Although the381

final answer is very close to (even slightly less accurate than) the answer obtained from382

normalizing flows (12.85 km2), we usually do not know the true answer to our question383

for reference, and thus have no means to select the answer from one algorithm over any384

other. On the other hand, by considering the effect of different algorithms and by defin-385

ing prior probabilities that each algorithm will provide the correct solution based on their386

past performance, we would be more confident about the final answer obtained.387
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Figure 6. Posterior distributions of the target function for ADVI, normalizing flows, SVGD

and MH-McMC, from left to right respectively. The posterior mean value of each target function

is displayed at the top-left corner, and is also marked by the dashed black line in each figure. The

true answer to this question (12.56 km2) is denoted by the red lines.

Considering the true Earth has infinitely fine structure, whereas in reality we parametrise388

it with a finite (coarse) grid or number of parameters to reduce the dimensionality of our389

inverse problem, so it is crucial to consider the effect of different parametrisations when390

answering questions. In the supporting information associated with this article, we in-391

vestigate the effect of interrogations carried out using models with different parametri-392

sations. We double the grid size in both directions from 0.5 km to 1 km, which decreases393

the dimensionality of the tomographic problem from 441 to 121. The results show that394

both the posterior histograms and their corresponding mean values from the coarser in-395

version results are quite similar to those obtained from the finer grid parametrisation in396

Figure 6. The final answer of the coarser grid parametrisation (12.37 km2) is very close397

to the true answer (12.56 km2), as well as that estimated from the finer grid parametri-398

sation (12.89 km2).399

We thus obtain an accurate answer using interrogation theory using either parametri-400

sation. By contrast interpreting the mean map alone provides a severely erroneous an-401

swer (9 km2). This makes interrogation theory more attractive for answering scientific402

questions since we obtain an accurate answer to the question even under a coarse parametri-403

sation, which usually offers orders of magnitudes of computational cost reduction in real404

problems.405
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5 Interrogating the East Irish Sea basins406

5.1 Shear Wave Velocity Inversion of the East Irish Sea basins407

In the second example, we use interrogation theory to answer questions about the408

East Irish Sea sedimentary basins. Figure 7a displays 61 seismometer locations (red tri-409

angles) around the British Isles used in this test, all of which contain one vertical (Z)410

and two horizontal (North and East) components to detect ground motion. We consider411

ambient noise data recorded by these stations during 2001 to 2003, 2006 to 2007 and in412

2010. Nicolson et al. (2014) cross-correlated the vertical component of the ambient noise413

data to estimate inter-receiver traveltimes of Rayleigh waves, and to perform Rayleigh414

wave tomography of the British Isles. Galetti et al. (2017) used two horizontal compo-415

nents to calculate Love wave group velocity maps at different periods. A more detailed416

description about the ambient noise data and data processing can be found in Galetti417

et al. (2017). Since Love waves are dominantly sensitive to the near surface shear veloc-418

ity structure, we perform shear wave group velocity depth inversion of the East Irish Sea419

basins using the estimated Love wave traveltime measurements between 4 and 15 s pe-420

riods, and interrogate the size of those sedimentary basins using the inversion results.421

Note that the receiver network used in this paper may not be the optimal experimen-422

tal design to provide the most relevant information about the Irish Sea basins. However,423

it represents a common situation in seismology where we have fixed legacy designs which424

are definitely not optimal for every question being posed, and nevertheless wish to find425

optimal answers to specific questions about the Earth.426

We use a two-step scheme for the 3D shear wave group velocity depth inversion.427

In the first step, we perform Love wave tomography of the British Isles using inter-receiver428

traveltime data at different periods of 4, 6, 8, 9, 10, 11, 12 and 15 s. For each period we429

perform 2D surface wave tomography, restricting the imaging region to within longitude430

9◦W – 3◦E and latitude 48◦N – 61◦N, and parametrise the velocity model using a reg-431

ular grid of 37 × 40 cells with a spacing of 0.33◦ in both longitude and latitude direc-432

tions. The prior distribution is chosen to be a Uniform distribution, and its lower and433

upper bounds are chosen according to Galetti et al. (2017). The likelihood function is434

chosen to be a Gaussian distribution, and the traveltime data error of each inter-receiver435

path is estimated from daily cross-correlations (Galetti et al., 2017). Considering the di-436

mensionality of this fully non-linear inverse problem, we only use three variational meth-437
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Figure 7. (a) The locations of 61 seismometers (red triangles) around the British Isles used

in this paper to record ambient noise data. The recorded data were cross-correlated to provide

inter-receiver traveltimes of Love waves at different periods of 4, 6, 8, 9, 10, 11, 12, 15 s (Galetti

et al., 2017). We use these data to perform shear wave group velocity depth inversion beneath

the East Irish Sea within the black box, via a two-step scheme (see main text for details). (b)

One dispersion curve picked from 2D tomographic inversion results of normalizing flows at the

geographical point 4◦W, 53.5◦N, marked by the blue star in (a). (c) Posterior distribution on

number of Voronoi cells.
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ods: ADVI, normalizing flows and SVGD to perform tomography at each period; we do438

not perform MH-McMC, as the results using that algorithm did not converge acceptably439

even after drawing 15 million samples in total with 10 chains using 660 hours of elapsed440

time (Zhao et al., 2021). Previously, Zhao et al. (2021) performed Love wave tomogra-441

phy at 10 s period to compare the performance of different algorithms. In this study we442

run tomography at all periods, and use these tomographic results to construct disper-443

sion curves at each geographical location. These curves form the dataset that is used to444

drive the depth inversion (more details on the latter are given below).445

Figure 8 shows average velocity maps of the Love wave tomography results using446

normalizing flows at all of the analysed periods, and Figure 9 shows the corresponding447

uncertainty results. In order to aid the comparison of velocity structures and uncertain-448

ties between the various periods, the same colour scales are used for all of the mean and449

standard deviation maps in Figures 8 and 9, respectively. Some small structures in Fig-450

ures 8 and 9 are a bit different compared to those from reversible jump McMC in Galetti451

et al. (2017) (which uses exactly the same traveltime data for Love wave group veloc-452

ity tomography). This is due to different parametrisations used in the two studies: Galetti453

et al. (2017) used a variable parametrisation using Voronoi cells to discretize the veloc-454

ity model, whereas we use a fixed regularly-gridded parametrisation. Nevertheless, the455

main features of the mean velocity and uncertainty maps show good consistency with456

the known geology and previous tomographic studies of the British Isles (Nicolson et al.,457

2012, 2014; Galetti et al., 2015, 2017). For example, from the tomographic results (es-458

pecially at smaller periods which usually provide velocity information in the shallow sub-459

surface), we observe a low velocity structure beneath the East Irish Sea within longitude460

6◦W – 2◦W and latitude 53◦N – 55◦N, marked by the black boxes in Figure 7a and Fig-461

ures 8 and 9. This low velocity anomaly corresponds to the East Irish sedimentary sed-462

imentary basins (Galetti et al., 2017).463

In the second inversion step we focus on the East Irish Sea basins (inside the black464

box in Figure 7a) and perform dispersion inversion to estimate the 3D shear wave ve-465

locity structure at depth using the results from traveltime tomography in the first step.466

To perform the depth inversion, we construct a dataset of group velocity dispersion curves467

from the tomographic results. At each geographic point inside the black box in Figure468

7a, a dispersion curve can be constructed by taking group velocity values from the 2D469

mean maps, and uncertainty values from the 2D standard deviation maps at each pe-470
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Figure 8. Mean Love wave group velocity maps of the British Isles, interpolated between grid

cell locations in the results obtained using normalizing flows at different periods between 4 s and

15 s. All of the mean maps are plotted using the same velocity range for better comparison, and

the corresponding period is shown above each map. The black boxes indicate the target region

where we pick dispersion curves and perform depth inversion in the second step.
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Figure 9. Standard deviation maps of the British Isles, interpolated between grid cell lo-

cations in the results obtained using normalizing flows at different periods between 4 s and 15

s, each of which corresponds to one mean velocity map in Figure 8. All the uncertainty maps

are plotted using the same range for better comparison, and the corresponding period is shown

above each map. The black boxes indicate the target region where we pick dispersion curves and

perform depth inversion in the second step.
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riod. For example, Figure 7b shows one dispersion curve picked from the 2D tomogra-471

phy results in Figures 8 and 9 at 4◦W, 53.5◦N, the geographical location marked by the472

blue star in Figure 7a. Given the regular gridded parametrisation scheme we used in the473

first step, we pick 91 dispersion curves inside the black box around the East Irish Sea.474

In order to include lateral spatial correlations in the inversion results, we use the475

3D reversible jump Markov chain Monte Carlo (rj-McMC) algorithm of X. Zhang et al.476

(2018) to perform dispersion inversion in this step. The method parametrises the sub-477

surface velocity model with a 3D Voronoi tessellation, which varies both in shape and478

number of cells during the inversion. For a given 3D velocity model, the forward prob-479

lem consists of extracting 1D shear velocity profiles over depth beneath each geograph-480

ical point, and calculating a group velocity dispersion curve for that 1D structure using481

a modal approximation (Saito, 1988). Since we obtained different results from the three482

variational methods in the first step, we obtain three different sets of dispersion curve483

data for the second step. We therefore perform three independent dispersion inversions484

to examine the effect of using different algorithms and to reduce the algorithmic bias im-485

posed on our final answer, similar to the approach taken in the synthetic example. For486

each inversion, the prior distribution is set to be a Uniform distribution on shear veloc-487

ity in the subsurface between 0.5 and 6 km/s. The prior pdf on the number of Voronoi488

cells is selected to be a discrete Uniform distribution between 20 and 600 to address the489

complexity of the shear velocity structure beneath the East Irish Sea. The likelihood func-490

tion is set to be a Gaussian distribution around the measured data. We perform each491

inversion by running 16 Markov chains with 3 million iterations, discarding the first 1492

million samples from each chain as burn-in, and only retaining every 200th sample there-493

after to calculate statistics of the posterior distribution and to apply interrogation the-494

ory. After completing the sampling process, we plot the posterior pdf of the number of495

Voronoi cells, as shown in Figure 7c. The posterior distribution on the number of cells496

is roughly distributed between 100 and 400, which lies well inside the boundaries of its497

prior distribution.498

Considering that each posterior sample is defined using a different 3D Voronoi model499

parametrisation, we first project all samples onto a regular grid of pixels. In this test,500

we define a 3D regular grid with a spacing of 0.33◦ in both latitude and longitude di-501

rections and 0.2 km in depth. We then compute the mean group velocity and standard502

deviation maps across the set of retained samples. Figures 10a and 10b show horizon-503

–25–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Solid Earth

Figure 10. 3D rj-McMC inversion results of shear wave velocity structure constrained by 91

dispersion curves picked from the 2D surface wave tomography results obtained using normalizing

flows (within the black boxes in Figures 8 and 9). (a) Mean and (b) standard deviation maps of

horizontal slices between 2 km and 12 km depth.
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tal slices of the (pixelated) mean and uncertainty maps of the dispersion inversion re-504

sults between 2 km and 12 km depth, from the inversion result using dispersion data from505

normalizing flows (Figures 8 and 9). The average shear velocity increases with depth,506

and the uncertainty also increases since the resolution of Love wave data is lower in the507

deeper Earth. Again, in Figure 10 we observe similar features compared to those rep-508

resent by Galetti et al. (2017), which proves the credibility of our results.509

From the mean velocity maps in Figure 10a, we can observe a low velocity struc-510

ture beneath the East Irish Sea down to about 8 km depth, which is interpreted to be511

the East Irish Sea sedimentary basins in previous studies (Mellett et al., 2015; Galetti512

et al., 2017). Based on the three inversion results, we attempt to answer scientific ques-513

tions about these sedimentary basins using the interrogation procedure tested above.514

5.2 Estimating the area of the East Irish Sea basins in the shallow sub-515

surface516

We first estimate the area of the East Irish Sea sedimentary basins in the shallow517

subsurface using the top cell of the 3D inversion results which extends from surface down518

to 200m depth. Figure 11 displays the top cell of the three inversion results. From left519

to right, each column stands for the average velocity (top row) and uncertainty (bottom520

row) maps of the inversion results using dispersion curve data picked from 2D tomographic521

results obtained using (a) ADVI, (b) normalizing flows and (c) SVGD (the three vari-522

ational methods used in the first step only provide different dispersion curves for the sec-523

ond step, and we use the same 3D rj-McMC algorithm for all depth inversions in the sec-524

ond step).525

The geological structure beneath the Irish Sea can be divided into a number of bedrock526

basins, representing depositional zones for the bedrock formations. The largest basins527

are Triassic in age and comprise the East Irish Sea basins (around 5◦W - 3◦W and 53.3◦N528

- 55◦N: Mellett et al., 2015). Thus we pose a question: what is the area of the East Irish529

Sea basins at this depth? We have a reference answer to this question which is estimated530

from a shallow subsurface geological survey (1.12×104km2 estimated from Mellett et531

al., 2015) and which enables us to validate interrogation theory with real data.532

It is known that sedimentary basins often have lower velocities compared to their533

surrounding regions, and we have reasonably low uncertainties on the velocities of the534

–27–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Solid Earth

Figure 11. Mean (top row) and uncertainty (bottom row) maps of the top cell (from 0 to

200 m) of 3D shear wave velocity inversion results using dispersion curve data constructed from

2D tomography results obtained using (a) ADVI, (b) normalizing flows and (c) SVGD. In each

figure, the black box displays the region where we calculate the area of the sedimentary basins.

Black stars and red crosses are used to define the best threshold to discriminate low from high

velocities with minimal bias.
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near surface structure. Our question is therefore equivalent to estimating the area of the535

continuous low velocity body from the horizontal slice of the inversion results extend-536

ing from the surface to 200m depth. We apply exactly the same procedure as we imple-537

mented in the synthetic examples above to find the optimal answer. We first define a mask,538

as marked by the black boxes in Figure 11, meaning that we only consider the seismic539

velocity information inside the mask. The North, East and South boundaries of the mask540

are determined by the coastline of mainland Britain, whereas the West boundary is de-541

fined based on the bedrock geology beneath the Irish Sea (Mellett et al., 2015). We se-542

lect some points that are likely to belong to the East Irish Sea sedimentary basins (black543

stars in Figure 11), and another set of points that are highly likely to be outside the basins544

(red crosses in Figure 11). Given those grid cells, we calculate the best velocity thresh-545

old that discriminates low from high velocities with minimal bias using the same data-546

driven method as used in the synthetic test.547

Similarly, we define our target function T (m|f(m), C,Q) as the area of the largest548

continuous low velocity body inside the mask, and calculate the target function for each549

posterior sample from each algorithm. Figures 12a – 12c display the posterior distribu-550

tions of the target function calculated using the inversion results from ADVI, normal-551

izing flows and SVGD. In each figure, the mean value of the posterior target function552

(the optimal answer considering only each individual algorithm) is denoted by the dashed553

black line as well as the number below the legend, and the reference answer (1.12×104km2
554

estimated from Mellett et al., 2015) is denoted by the red line in each figure.555

Given the forward function f(m) used in the second inversion step, we define prior556

probabilities p(C|f(m)) for different algorithms. We assign p(C|f(m)) as 0.30 for ADVI557

and 0.35 for normalizing flows and SVGD (where these different algorithms were used558

for 2D surface wave tomography). The reason we only downweight ADVI slightly is that559

in this example, the role of these three methods is only to provide different datasets (mean560

and uncertainty values for dispersion curves) used in the second step depth inversion,561

in which we use the same algorithm: 3D rj-McMC. Previous studies (X. Zhang & Cur-562

tis, 2020a; Zhao et al., 2021) and the synthetic examples above have shown that, ADVI563

can provide an accurate mean model but a biased uncertainty result; that is the disper-564

sion curves (the observed dataset for the second step) constructed by ADVI would have565

accurate mean values but inaccurate data uncertainty estimates. We treat these inac-566

curate data errors as additional unknowns and adjust their values adaptively and hier-567
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Figure 12. Posterior target functions for the area of the East Irish Sea basins at the shal-

low subsurface obtained from (a) ADVI, (b) normalizing flows, (c) SVGD and (d) prior distri-

bution, respectively. In each figure, the red line denotes the reference answer to this question

(1.12 × 104 km2) estimated from surface geology (Mellett et al., 2015), and the dashed black

line denotes the mean value of each histogram, which is also displayed by the number below the

legend.

archically by a scaling value during 3D rj-McMC inversion (Bodin et al., 2012; Galetti568

et al., 2017; X. Zhang et al., 2018), so the absolute data uncertainty level of the disper-569

sion curves should have far less effect on inversion results. By using equation 3, we cal-570

culate the final optimal answer that considers the effect of different algorithms: 1.22×571

104 km2, which provides reasonable accuracy compared to the reference value for this572

question derived from the geological study (1.12× 104 km2 – Mellett et al., 2015).573

We note that in Figures 12a – 12c, the three posterior target functions span a very574

broad range (even the entire answer space from 0 to 3.0×104 km2 that is close to the575

total area of the defined mask), and the optimal answer we obtained also appears to be576

close to the mean value of the upper and lower bounds of the answer space (1.5×104 km2).577

In principle one might argue that this is because the surface wave data used in this ex-578

ample (from 4 s to 15 s period) are relatively insensitive to the near surface at a depth579

of up to 200 m; hence the posterior samples may not be well constrained by the data,580

leading to a broadly distributed set of target function values which happen to have the581

same mean as the true answer. To investigate, we apply the same interrogation proce-582

dure using the same velocity threshold as above, to 2 million samples drawn from the583

Uniform prior distribution, and display the histogram of the calculated target function584

in Figure 12d. Obviously, the posterior target distributions and the optimal answers ob-585

tained from the three inversion results in Figures 12a – 12c are significantly more infor-586

mative than that estimated from the prior probability distribution which gives an ex-587

tremely poor answer for the area of sediment. This shows that while it is true that the588
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uncertainty on the final answer is high, the surface wave data are certainly far more in-589

formative than the answer that could be obtained from our prior information alone.590

Since interrogation theory provides an optimal answer that is close to the answer591

obtained from an entirely different method based on interpreting surface geology, we have592

increased confidence in the result. This example as well as the synthetic tests therefore593

go some way towards validating interrogation theory as a practical method to answer594

scientific questions. In the next section, we apply the theory to answer a real-world sci-595

entific question where we do not know the true answer, and nor do we have any estimate596

based on independent data.597

5.3 Estimating the volume of the East Irish Sea basins598

We wish to answer a 3D volume-type question about the true Earth: what is the599

total volume of the offshore East Irish Sea sedimentary basins? This type of question600

may be of interest when performing mass balancing in tectonic or basin reconstructions,601

and questions of similar type arise in applied geoscience when assessing the volume of602

subsurface ore resources or fluid reservoirs. In this example we need to define a 3D mask603

inside which we calculate the volume of the basins. As displayed by the black boxes in604

Figures 10a and 10b, we define such a 3D mask with fixed shape in the depth direction605

from the surface down to 8 km depth to fully encompass the offshore sediments while606

excluding most of the land. In the horizontal direction, the boundaries of the mask are607

defined based on the coastline of mainland Britain as well as on the inversion results in608

Figure 10.609

The target function of this 3D example should account for the volume of the low610

velocity bodies inside the mask, since sedimentary basins often have relatively lower ve-611

locities compared to the surrounding regions. In contrast to 2D cases above where we612

used a fixed threshold to discriminate low from high velocities, we now need threshold613

values that vary with depth to allow for the significant velocity changes that occur be-614

tween different depths due to pressure and temperature increases. We use the following615

method to obtain such depth-dependent threshold values. Firstly, we calculate 5 inde-616

pendent velocity threshold values at 5 fixed depths of 0 (surface), 2, 4, 6 and 8 km re-617

spectively, using exactly the same data-driven method as what we did in the 2D exam-618

ples, and the obtained optimal threshold values are displayed by the red dots in Figure619
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Figure 13. Mean velocity values at different depths from the surface to 8 km (blue line) and

the optimal depth-dependent threshold curve to discriminate low from high velocity values with

minimal bias (dashed red line).

13. We further interpolate between these 5 points to obtain the dashed red line in Fig-620

ure 13. Each velocity value on this line is used as the optimal depth-dependent thresh-621

old that discriminates low from high velocities at the corresponding depth. The blue line622

in Figure 13 shows the average velocity value at different depths from the surface to 8623

km. Although these two curves are not exactly the same (and there is no reason why they624

shoud be), they present similar feature of velocity increasing versus depth, which increases625

our confidence in the obtained depth-dependent threshold curve.626

Given the obtained depth-dependent threshold curve, we classify every pixel inside627

the 3D mask as a low or high velocity grid cell, retain low velocity pixels and find the628

continuous low velocity bodies. In contrast to the 2D cases where we treat the largest629

continuous low velocity body as the target function, we need to consider additional ge-630

ological prior information when defining the target function for this 3D question. To il-631

lustrate, Figure 14 presents vertical slices of one posterior sample drawn from the 3D in-632

version results. The top row shows the depth slice at 53.67◦N latitude, and the bottom633

row shows the vertical section at 4.33◦W longitude. The two depth slices of this poste-634

rior sample are shown in Figure 14a, and the same slices after applying the 3D mask are635

displayed in Figure 14b. By comparing each velocity value with the depth-dependent thresh-636

old curve, we retain low velocity pixels and obtain two continuous low velocity bodies637

(Figure 14c). Given that we seek to estimate the volume of sedimentary basins, and con-638
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Figure 14. Vertical sections of a posterior sample drawn from the inversion results. The top

row shows the vertical section at 53.67◦N latitude, and the bottom row shows that at 4.33◦W

longitude. (a) Two vertical slices of this posterior sample. (b) The same vertical slices as in (a)

after applying the 3D mask. (c) Two continuous low velocity bodies classified by the depth-

dependent threshold curve. (d) The largest continuous low velocity body that starts from surface,

whose volume is treated as the target function of this posterior sample.
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Figure 15. Posterior target functions for the volume of the East Irish Sea basins obtained

from (a) ADVI, (b) normalizing flows and (c) SVGD, respectively. In each figure, the dashed

black line denotes the posterior mean value of each algorithm, which is also displayed by the

number below each legend, and the red line denotes the final estimated answer to this 3D ques-

tion (1.065× 105 km3).

sidering that those sedimentary basins are often assumed to exist at least at the surface639

rather than only in deeper parts of the crust, we define the target function as the largest640

continuous low velocity body that starts from the surface (in other words, for each pos-641

terior sample we strictly require the low velocity body to exist at the surface, otherwise642

we assign that this sample has zero basin volume). Therefore we interpret the upper low643

velocity body as the sedimentary basins of interest (shown in Figure 14d) and calculate644

its volume as the target function of this posterior sample, even though the lower one is645

larger.646

We calculate this target function for each posterior sample obtained from ADVI,647

normalizing flows and SVGD, and display their posterior target histograms in Figure 15.648

The mean value of each posterior histogram represents the optimal answer estimated from649

each corresponding algorithm, which is denoted by the black dashed line and the num-650

ber below the legend in each figure. We substitute those values and the 3 prior proba-651

bilities p(C|f(m)) into equation 3, and obtain the final estimated answer to our ques-652

tion: 1.065× 105 km3 (the red lines in Figure 15).653

6 Discussion654

We used interrogation theory to answer real-world, unanswered scientific questions655

about the Earth based on Bayesian inversion results represented by posterior probabil-656

ity distributions. Previously, similar questions were usually answered by interpreting mean657
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or maximum likelihood models directly. In the synthetic example, we have proved that658

direct interpretation of the mean model alone provides an inaccurate answer, especially659

under a coarse model parametrisation. The true Earth has infinitely fine structure, whereas660

we often use a relatively coarser parametrisation to reduce the dimensionality of the in-661

version problem. It is therefore likely that the answer obtained in this way is always bi-662

ased at some level. On the other hand, the examples presented above show that the op-663

timal answer obtained from interrogation theory is very close to the true (reference) an-664

swer, despite the relatively coarse model parametrisation (the grid size) employed.665

The above result arises because the target function T (m|f(m), C,Q), which projects666

model parameter m into target space T where the question can be answered directly, is667

applied stochastically. In the synthetic example, consider a fixed pixel that spans the bound-668

ary of the true velocity anomaly. In some samples it is classified as part of the low ve-669

locity anomaly by the defined target function (suppose we label those pixels as 1), while670

in other samples it is not (we label them as 0). By applying equation 3, we account for671

the posterior mean of those labels, resulting in a fraction between [0, 1], which denotes672

the probability that this pixel belongs to the low velocity anomaly. For comparison, if673

we only interpret the mean model (or any other single model) alone, this same pixel al-674

ways either belongs or does not belong to the low velocity anomaly, so it always contributes675

either 1 or 0. As a result, the effective resolution of the answer obtained from interro-676

gation theory can be much higher than might be apparent from the grid cell size alone,677

since we consider all of the posterior samples together in a statistical manner. Thus the678

answer is still accurate even when using a coarser parametrisation as observed in the sup-679

porting information associated with this paper.680

Bayesian non-linear inversion is many times more expensive than linearised inver-681

sion, especially for high dimensional problems due to the curse of dimensionality (Curtis682

& Lomax, 2001). Typically geophysicists only present, publish and use a small amount683

of the statistical information obtained from Bayesian inversion results, such as mean and684

point-wise standard deviations; most of the valuable information within the posterior pdf685

is discarded, which can introduce errors and biases when answering questions. This pa-686

per shows that interrogation theory provides a way to make use of all posterior samples687

obtained from Bayesian inversion, in a way that gives answers of improved accuracy. This688

goes some way to justifying the computational expense of solving inverse problems non-689

linearly and probabilistically.690
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We considered the effect of different computational inversion algorithms C, and com-691

bined them to calculate optimal answers (equation 3). Thus the uncertainty caused by692

the use of any single algorithm was taken into account and the bias of the obtained an-693

swer was reduced. On the other hand, all of the above examples only used a single for-694

ward function f(m), the fast marching method (together with a modal approximation695

for the 3D example) to map model parameter m into the corresponding data d. Future696

improvements in interrogation applications might focus on involving different forward697

models to answer area-type (or volume-type) questions, for example using full wave sim-698

ulators as the forward model and using full waveform inversion to solve Bayesian inverse699

problems (Gebraad et al., 2020; X. Zhang & Curtis, 2020b, 2021), such that we can re-700

duce the uncertainty caused by different model-data relationships.701

In equation 3, we translate the uncertainty from inversion results to the answer space702

by calculating the posterior distribution of the target function as shown in Figures 6, 12703

and 15. Following Arnold and Curtis (2018) we obtain the statistically unbiased estima-704

tor of our answer by calculating the average value of each posterior histogram, which is705

the optimal answer a∗f(m),C for each specific forward model f(m) and algorithm C. The706

final optimal answer is obtained by taking a weighted sum of each a∗f(m),C . This provides707

a single estimate of the answer. Additional uncertainty in the answer could arise from708

the assignment of the weights assigned to each algorithm since these were assigned es-709

sentially by an informal expert elicitation process (where the authors were the experts).710

Polson and Curtis (2010) showed that expert elicitation can be a biased process in it-711

self, but that if care is taken then uncertainties on elicited quantities can also be obtained.712

If we wish to quantify uncertainty in the final answer caused by different algorithms and713

forward models, we may therefore replace the two prior values p(f(m)) and p(C|f(m))714

by two random variables with the elicited probability distributions: the output of equa-715

tion 3 then becomes a posterior distribution over the final answer. In this way we are716

able to incorporate uncertainty about the performance of different models and algorithms717

into the final answer.718

Prior information is often critical in order to define a reasonable target function.719

In the synthetic example we defined the largest continuous low velocity body to be the720

low velocity anomaly of interest rather than simply including all of the low velocity bod-721

ies inside the mask. In the field data test, we interpreted sedimentary basins as low ve-722

locity bodies considering that basins often have relatively lower velocities compared to723
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their surrounding rocks, and further interpreted the largest continuous low velocity body724

that starts from the surface to be the 3D basins of interest since these basins have been725

observed in the near surface geologically. The definition of the target function may be726

more or less subjective in different applications, but this is how one incorporates real-727

istic geological prior information into the target function. Geological information is it-728

self mainly based on knowledge from experts, hence is affected by subjective choices (C. E. Bond729

et al., 2007; C. Bond et al., 2012; Polson & Curtis, 2010; Curtis, 2012). The application730

of interrogation theory in this paper tries to reduce some of the bias that would be im-731

posed by individuals who often use a single algorithm or method, but we still need (sub-732

jective) expertise to make the procedure geologically reasonable. Therefore, the target733

function will always be more accurate if we consider more realistic prior information, and734

thus will provide a more reliable answer.735

In 3D rj-McMC inversion, we first projected 3D Voronoi-tessellated models onto736

a regular gridded system, such that we can compute some statistics of the posterior dis-737

tribution (the average model and point-wise standard deviations). We used these reg-738

ular gridded samples to calculate their target function values. As an alternative we could739

have performed the target function calculations directly on the Voronoi-tessellated mod-740

els, taking care to account for cell volumes so that the estimated threshold values that741

discriminate low and high velocities remain unbiased.742

In this paper, we explicitly tested two different experimental designs: a circular de-743

sign used in the synthetic example and a fixed receiver network used in the field data744

test. In both cases, we used interrogation theory to find the best answer a∗. In addition,745

in the second step of the 3D inversion, we used three different dispersion datasets picked746

from three variational tomographic results. These three datasets can also be viewed as747

data obtained from three different “experimental designs”. Therefore, the posterior tar-748

get functions shown in Figure 15 can be interpreted as interrogation results obtained from749

three different experimental designs, which provided similar results in answer space.750

In reality, it is common that the (predefined) design used to collect data is not the751

optimal one for the question posed because when networks are established it is always752

difficult to define a design that can best answer all questions that may be of interest in753

future. Interrogation theory also provides a methodology to solve design problems to cre-754

ate an experiment that optimises information on one or more questions (Arnold & Cur-755
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tis, 2018). For a given question, we seek the design that provides answers with the high-756

est expected utility (before collecting data). For each design from a group of candidate757

designs, we calculate the utility value averaged over a representative set of all possible758

datasets observable under that design. The optimal design is the one that maximises this759

expected utility value. To solve a design problem, in principle we therefore need to solve760

thousands of inverse problems (number of candidate designs × number of possible datasets761

for one design), which is far more expensive than a single probabilistic tomographic prob-762

lem (although simplifications can be made which reduce this calculation significantly (e.g.,763

Shewry & Wynn, 1987)).764

For real-world applications, it is possible that our ultimate question may not be765

addressed clearly within one interrogation procedure. To better answer the original ques-766

tion, a set of new questions are usually posed to provide more background knowledge,767

and a sequential interrogation process is required until a satisfactory answer is obtained.768

For more details about sequential interrogation, we suggest readers refer to Arnold and769

Curtis (2018).770

In the field data test, we used interrogation theory to find the optimal volume of771

the East Irish Sea sedimentary basin. To our limited knowledge, this is the first time that772

geophysicist tried to estimate the volume of a basin directly from geophysical inversion773

results. In recent years, Carbon Capture and Storage (CCS) has become a key technol-774

ogy for the provision of energy with low carbon dioxide emissions. The East Irish Sea775

basins studied in this paper host a large carbon dioxide storage potential and represent776

a prospective area for CCS in the western UK (Gamboa et al., 2016, 2019). The inver-777

sion results for the shear-velocity structure as well as the estimated basin volume can778

be used to as background information for future research on CCS beneath the East Irish779

Sea.780

Interrogation theory as presented in Arnold and Curtis (2018) appears to be highly781

structured and formalized. One purpose of this paper is to translate the theory into us-782

able form, and to provide a concrete example of answering a specific type of question.783

One of the main theoretical advances of Arnold and Curtis (2018) was to introduce the784

target function in order to allow utilities to be defined in a simpler, more tractable form,785

even when a variety of parametrizations and forward functions are considered. A key rev-786

elation from our examples above is that much of the skill and work involved in answer-787
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ing real-world questions may be spent specifying prior weights for different algorithms788

and forward models and defining reasonable target functions in a clear and unbiased man-789

ner. We hope to use interrogation theory to answer a wide range of real-world scientific790

questions in future studies.791

7 Conclusion792

In this paper, we use interrogation theory to answer a specific type of question about793

the Earth: to estimate the shape, area or volume of a subsurface structure by interro-794

gating probabilistic Bayesian tomographic results. We establish an interrogation proce-795

dure by using a 2D synthetic example. By considering the effect of different computa-796

tional algorithms, we reduce the bias of the optimal answer and obtain an accurate es-797

timation of the question. The results using different parametrisations show that the same798

question can be answered accurately even on a relatively coarse grid, which reduces the799

computational cost of Bayesian inversion by orders of magnitude. We further apply in-800

terrogation theory to answer realistic questions about the East Irish Sea basins. The first801

application to estimate the horizontal area of the shallow part of the basins validates the802

theory, as the answer coincides to within 10% of that obtained from surface geological803

survey mapping. Finally, we use the method to estimate the total volume of the East804

Irish Sea basins for which no previously published answer exist. The theory established805

here is quite general, and can be applied to find answers for many other real-world sci-806

entific questions.807

8 Open Research808

Traveltime data associated with both the synthetic and the field data tests are avail-809

able at Edinburgh DataShare (https://datashare.ed.ac.uk/handle/10283/4400).810

Software used for the three variational methods as well as the 2D McMC can be found811

at PyMC3 website (https://docs.pymc.io/en/v3/, Salvatier et al., 2016). 3D rj-McMC812

code is available at https://github.com/xin2zhang/MCTomo (X. Zhang et al., 2018).813
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