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Abstract19

Obesity has a highly complex genetic architecture, making it difficult to understand the genetic20

mechanisms, despite the large number of discovered loci via genome-wide association studies21

(GWAS). Omics techniques have provided a better resolution to view this problem. As a proxy of22

cell-level biology, extracellular vesicles (EVs) are useful for studying cellular regulation of23

complex phenotypes such as obesity. Here, in a well-established Scottish cohort, we utilized a24

novel technology to detect surface proteins across millions of single EVs in each individual s25

plasma sample. Integrating the results with established obesity GWAS, we inferred 78 types of26

EVs carrying one or two of 12 surface proteins to be associated with adiposity-related traits such27

as waist circumference. We then verified that particular EVs abundance is negatively correlated28



with body adiposity, while no association with lean body mass. We also revealed that genetic29

variants associated with protein-specific EVs capture 2-4-fold heritability enrichment for blood30

cholesterol levels. Our findings provide evidence that EVs with specific surface proteins have31

phenotypic and genetic links to obesity and blood lipids, respectively, guiding future EV32

biomarker research.33

Introduction34

Overweight and obesity is currently major public health issue and most severe in high-income35

countries. In 2016, more than 1.9 billion adults were overweight, of those over 650 million were obese,36

and the prevalence of obesity continues to rise . Obesity is a risk factor for various chronic diseases37

such as type 2 diabetes and cardiovascular disease , which in turn can lead to reduced quality of38

life, premature death, or disability . Obesity is defined as an excessive accumulation of body fat and39

is most estimated using body mass index (BMI, kg/m2) in epidemiological studies and clinical practice.40

However, BMI cannot distinguish lean from fat mass, nor does it capture information on where in the41

body the adiposity is concentrated. Abdominal fat, and visceral fat (fat around the internal organs of the42

body) in particular, has been linked with obesity-related metabolic risk factors, including high total and43

low-density lipoprotein cholesterol (HDL-c and LDL-c) , while fat in the lower body (e.g., around44

the hips) is associated with a protective lipid and glucose profile . Thus, proxies of abdominal45

adiposity, like waist circumference (WC) and waist-to-hip ratio (WHR), are of increasing interest in46

investigating the mechanism and regulation of obesity and its complications.47

Genome-wide association studies (GWAS) have begun to elucidate the genetic architecture of48

body fat distribution phenotypes. Hundreds of loci associated with WC and WHR have been identified49

. However, the underlying biological knowledge gained from GWAS-discovered single50

nucleotide polymorphisms (SNPs) is, so far, limited. The discovered SNPs have tiny effects, explaining51

a small proportion of phenotypic variance of these abdominal adiposity-related phenotypes . Efforts52

have been made to integrate GWAS summary statistics with gene expression in adipose tissues to53



further characterize obesity-causal genes . Integration of GWAS and gene expression quantitative54

trait loci (eQTL) studies has also achieved success in prioritizing genes in obesity-related pathways55

.56

To better understand the regulation of abdominal adiposity, adiposity-related biomarkers are also57

of general interest. In the last decade, extracellular vesicles (EVs) have become essential in biomarker58

discovery for their emerging roles in physiological and pathological pathways. These nanometer-sized59

membranous vesicles emitted from nearly all cells have a variety of functions and can regulate target60

cells metabolism by conveying genomic material and proteins . Recent studies reported that61

circulating EVs were elevated in obese humans , and levels of EVs and specific proteins in EVs62

were altered in diabetic mice -63

bulk, considering the level of EVs or a protein carried by the EVs as an overall measurement. Recently,64

a new technology named proximity barcoding assay (PBA) was developed to detect multiple surface65

proteins on single EVs in a high-throughput manner . This allows us to quantify EVs with specific66

surface markers, thus better understanding the heterogeneity of EVs.67

Attempting to link specific EVs to obesity, in this study, we aim to identify particular types of EVs68

associated with abdominal adiposity. We approach this by investigating EVs with specific69

adiposity-related surface proteins based on established GWAS summary statistics for adiposity-related70

phenotypes, followed by validation using individuals body fat distribution measurements. We perform71

genomic analysis for SNPs associated with the levels of specific EVs. We show that the heritability for72

plasma LDL-c and total cholesterol levels are enriched at the loci associated with EVs carrying73

adiposity-related surface proteins.74

75

Results76

Prioritizing obesity-related EV surface markers using GWAS summary statistics77

The commercial EV surface marker panel available to us consists of 113 proteins targeted by78

specific antibodies (see Materials and Methods). To identify the associations between the encoding79

genes of these protein markers and obesity, we started by constructing corresponding gene-level80



association scores for obesity-related phenotypes. We collected the established summary-level81

association data for WC and WHR related phenotypes conducted by the Genetic Investigation of82

Anthropometric Traits (GIANT) consortium. Those traits include WC and WHR, as well as WC and83

WHR adjusted or stratified by other factors (BMI, smoking, and physical activity), all using European84

subjects (details are in Supplementary Table 1). We also performed a multi-trait GWAS analysis of85

those summary statistic data using MultiABEL , where we can get combined SNP p-values of those86

traits. We then used the Pathway Scoring Algorithm (PASCAL) to derive gene-level p-values from87

SNP-level association statistics . Out of the 113 coding genes, 12 were significantly associated with88

multi-trait waist adiposity GWAS (false discovery rate (FDR) < 0.01) (Figure 1).89

90

Measurement quality of candidate EV protein markers91

The PBA technique is briefly described in Figure 2A (see Materials and Methods). Using the PBA92

technique, we could detect the abundance of the 113 surface proteins across many single EVs in each93

plasma sample. Before measuring multiple individual samples, we performed in-depth sequencing94

quantification (50 million reads per sample) for two independent plasma test samples from two95

unrelated individuals. We obtained approximately 1.5 million EVs in each of two testing plasma96

samples, of which ~ 62% were singleton (EVs that only carry one type of protein) (Supplementary97

Figure 1A). To reduce background noise, we conducted data quality-control procedures (see Materials98

and Methods), which resulted in 61,108 EVs measured with high quality in sample 1 and 73,139 in99

sample 2.100

Most of these EVs (95.6% and 96.4% in samples 1 and 2) carry 1 to 10 different proteins, and the101

most abundant EVs carry 5 to 6 different proteins (Supplementary Figure 1B). Due to multiplex102

limitations, especially when sequencing depth is not as high when measuring many samples, single EVs103

carrying many overlapping proteins are challenging to quantify in two independent samples. We thus104

focused on investigating EVs containing one or two of the obesity-related markers identified above105

across possible proteins and protein-protein combinations. The abundance of such EVs with specific106



marker profiles was consistently measured both between samples (Figure 2B) and replicates (Figure107

2C), suggesting the stability of PBA in measuring these protein markers.108

109

Validating the association between overall protein levels and obesity110

To validate the obesity-related EV surface markers prioritized by GWAS association statistics, we111

conducted the 113-marker single-EV surface protein quantification using PBA in 96 selected112

individuals in the ORCADES cohort (see Materials and Methods). As a comparison, we also quantified113

the total abundance of 37 proteins out of the 113 that could be measured in plasma by the Olink114

Proximity Extension Assay (PEA) panels. For these individuals in the cohort, besides general115

anthropometric measurements such as height, BMI, WHR, and WC, we also had Dual Energy X-ray116

Absorptiometry (DEXA) scan data available to quantify their fat distribution in the body. The DEXA117

phenotypes included total lean mass, trunk fat, trunk lean mass, and visceral fat.118

First, we tested the associations between adiposity phenotypes and overall protein levels119

quantified by both PBA and PEA (Figure 3A; see Materials and Methods). Protein abundance on the120

EV surface had little association with the obesity-related phenotypes in our 113-marker panel. While121

for two proteins quantified by PEA, levels of VEGFA and CD63 in plasma were associated with body122

fat distribution-related traits. Among those associations, levels of plasma CD63 have the strongest123

effect on trunk fat mass (effect size = 1.25, equivalent to 6.5 standard deviation increase of trunk fat per124

standard deviation of plasma CD63 level, R2 = 0.13, P = 0.011). There is a positive correlation between125

plasma VEGFA level and BMI, supported by another study where they found a positive correlation126

between circulating VEGF levels and BMI. We then tested the sex-by-protein interaction effect on127

those phenotypes (Figure 3B). Although plasma protein levels showed almost no interaction effects,128

the overall EV protein levels, especially that of ERBB2, had significant interaction effects on fat129

distribution traits such as waist circumference: EV ERBB2 levels are more strongly associated with130

abdominal adiposity in women.131

132

Validating the association between marker-specific EVs and obesity133



As well as the overall level of protein on the surface of EVs, the PBA technology can also provide134

us with surface protein profiles for individual EVs. Here, we tested the associations between the135

obesity-related phenotypes and the levels of EVs with specific protein profiles (Figure 4A; see136

Materials and Methods). In contrast to overall protein levels on the EV surface, levels of EVs with137

single-marker specificity showed strong associations with these phenotypes. To be more stringent, we138

performed FDR calculation across all the statistical tests for the associations regarding total protein139

levels and specific EVs (p-value distribution of each part of the analysis is given in Supplementary140

Figure 2). Levels of EVs carrying HSPA1A (EVHSPA1A) had the most significant association with BMI141

(effect size = -1.62, equivalent to 7.60 standard deviation decrease of BMI per standard deviation of142

plasma EVHSPA1A level, R2 = 0.17, P = 4.5 10-4), meaning that individuals with less of these EVs have143

significantly higher BMI. Focusing on EVs identified by two protein markers on their surface144

(double-marker specificity) revealed even stronger associations, for EVs carrying several specific145

protein-protein combinations had even stronger associations. For instance, levels of EVHSPA1A & ICAM1146

had the strongest association with trunk fat (effect size = -2.31, equivalent to 12.0 standard deviation147

decrease of trunk fat per standard deviation of plasma EVHSPA1A & ICAM1 level, R2= 0.27, P = 7.1 10-5)148

and visceral fat (effect size = -2.22, equivalent to 0.70 standard deviation decrease of visceral fat per149

standard deviation of plasma EVHSPA1A & ICAM1 level, R2 = 0.31, P = 1.1 10-4). These are stronger150

associations than observed for these traits with EVHSPA1A, but levels of EVHSPA1A & ICAM1 were less151

significantly associated with BMI. Similarly, EVITGB8 abundances were not a better indicator of152

adiposity than its sub-population EVITGB8 & VEGFA or EVITGB8 & ITGA7.153

These associations were observed with body fat-related traits, like the trunk and visceral fat, but154

not with total or trunk lean mass. We also tested the sex-by-EV interaction effects on these phenotypes155

(Figure 4B). The above significant types of EVs tended to have different effects in different sexes.156

Although the signals were not statistically robust, the results also suggested stronger sex-by-EV157

interaction effects in women than in men.158

159

EV-associated SNPs capture enriched heritability for blood lipids160



Although with limited power, we performed 12 (113 12) + 66 = 1,276 GWAS of161

double-protein EV (EV carrying at least one of 12 markers) levels in 96 ORCADES individuals. For162

each double-protein EV phenotype, we tested the associations of genome-wide SNPs imputed to the163

1000 Genomes reference panel (minor allele frequency > 0.2 to avoid inflated false positives due to the164

small sample size) using a linear model, adjusted for sex, age, population stratification, and other165

covariates (see Materials and Methods). Despite the small sample size, such GWAS resulted in an166

association p-value distribution significantly deviating from the null (Supplementary Figure 3). With167

a stringent minor allele frequency cutoff and a Bonferroni-corrected significance threshold of P < 5168

10-8/1276=3.9 10-11, we did not report any specific SNPs associated with the EV phenotypes.169

Nevertheless, to understand the role of the EV-associated SNPs in the regulation of obesity, we170

used stratified LD score regression (S-LDSC) to evaluate heritability enrichment on these SNPs.171

Seven traits were considered, including BMI, WC,WHR, and four classical blood lipids (high- and172

low-density lipoprotein cholesterol (HDL-c, LDL-c), total cholesterol, and triglycerides). Using a less173

stringent threshold in the EV GWAS (P < 1 10-6), we annotated the SNPs associated with EVs carrying174

different types of protein-protein combinations (see Materials and Methods). Heritability enrichment175

was detected for most annotations. Specifically, we found 2-4-fold heritability enrichment for LDL-c176

and total cholesterol that is positively correlated with abdominal fat (Figure 5). These results indicated177

that the EVs with particular surface proteins are not only phenotypically but also genetically correlated178

with obesity and cholesterol metabolism.179

180

Discussion181

In this study, we investigated the association between plasma EV levels and body fat distribution,182

with an emphasis on abdominal fat. We found that the levels of plasma EVs carrying specific surface183

proteins were negatively associated with adiposity-related measurements, including BMI, WC, WHR,184

trunk fat, and visceral fat. For some types of EV (e.g., EVHSPA1A & ICAM1), the association with trunk and185

visceral fat mass is more significant than BMI, WC, or WHR, implying that those EVs might be more186

related to or arise from visceral adipose tissue. Notwithstanding our inability to track the tissue or even187



cell-type origins of these EVs, to our knowledge, our results for the first time demonstrate that188

protein-specific EVs in plasma are associated with body fat distribution and obesity in humans.189

We were able to identify a few genome-wide significant SNPs associated with certain EVs with190

specific surface protein markers, despite that the small sample size limited our discovery power. The191

power of the EV-QTL scan might come from two sources: 1) The PBA technique allowed screening192

across EVs with many different protein-protein combinations; 2) The double-protein signature on the193

EVs enhanced the measurement specificity so that a more specific genetic basis for the EVs could be194

mapped. However, due to the lack of replication, such perspectives remain to be validated in future195

larger GWAS analyses of these EV phenotypes.196

We integrated GWAS summary-level data with EV protein measurements. Still, our current197

sample size is insufficient to conduct systematic genomic analyses of EV surface proteins and all types198

of protein-specific EVs. In future studies, we foresee that expansion in sample size would open a new199

area for extracellular vesicle omics, providing power to establish the genetic architecture of various200

kinds of EVs. Such resources would allow better causal inference of EVs on disease phenotypes. This is201

particularly possible for circulating EVs, for which only plasma samples would be required.202

Although measured from the blood, with tissue- or cell-type-specific protein markers designed in203

the PBA panel, one can further consider PBA as a proxy single-cell technology. Future expansion of our204

panels may allow us to investigate specific tissues, either via tissue-specific markers or deconvolution205

algorithms, when tissue-specific EV proteomic profiles become available. This could expand this206

exciting research area to explore the genetic basis of tissue- and cell-type-specific EVs.207

Although it is not novel to identify different obesity regulatory mechanisms in men and women, it208

is also noteworthy that we detected a more substantial sex-by-EV interaction effect in women than in209

men, meaning EVs have more impact on women in terms of their association with body fat. While sex210

differences in obesity and body fat distribution are well established, our results suggest that EVs might211

also play a role in these differences. Our results also reveal that EV-QTLs share heritability with LDL-c212

and total cholesterol, both of which increase the risk of cardiovascular and metabolic diseases. Though213

the biological mechanism underlying such associations remains unknown, our results show genetic214

connections between levels of protein-specific EVs and adiposity measurements.215



A recent study showed that the liver could secret EVs to modulate adipocyte remodeling in216

response to excessive lipid . It is well-known that RNA transferred by EVs can regulate or serve as217

the template for protein synthesis in the recipient cells Another study has shown that miRNAs in218

exosomes (a subpopulation of EVs) from obese visceral adipocytes could down-regulate the expression219

of ACVR2B in the TGF- signaling pathway , which plays a crucial role in obesity and insulin220

resistance . Such discoveries are consistent with our finding that individuals with higher visceral221

fat tend to have fewer EVs with ITGB8 & VEGFA, where ITGB8 can activate TGF- when combined222

with ITGAV (integrin subunit V) .223

The heterogeneity of the EV population has been problematic in studies using EVs as a diagnostic224

and therapeutic biomarker. Kaur et al. reported that EVs captured by different surface protein225

markers had distinct RNA profiles. In accordance with their study, our results showed that EVs226

categorized by different surface proteins, such as integrins (ITGB8, ITGA9, and ITGA7), tetraspanins227

(CD63), heat shock protein (HSPA1A), etc., have similar but varied associations with human adiposity228

traits. Such results highlighted the heterogeneity of EV subpopulations, suggesting that single-EV229

measurement technologies such as PBA have the potential to study the origins and functions of different230

types of EVs.231

We also provided a piece of new evidence on the potential EV-based liquid biopsy as a tool. The232

PBA technique only focuses on the membranous proteins of EVs at present, neglecting other functional233

molecules such as miRNAs, lipids, and endogenous proteins . It limits our insight into the234

underlying regulatory mechanism of EVs in physiological and pathological pathways. However, being235

able to quantify the particular molecular profiles of single EVs has already brought substantial power.236

237

Materials and Methods238

ORCADES samples239

Our 96 individuals are a subset of 2080 volunteers from the Orkney Complex Disease Study240

(ORCADES) cohort. The Orkney Complex Disease Study (ORCADES) is a family-based,241

cross-sectional study that seeks to identify genetic factors influencing cardiovascular and other disease242



risk in the isolated archipelago of the Orkney Isles in northern Scotland . Genetic diversity in this243

population is decreased compared to Mainland Scotland, consistent with the high levels of endogamy244

historically. 2,078 participants aged 16-100 years were recruited between 2005 and 2011, most having245

three or four grandparents from Orkney, the remainder with two Orcadian grandparents. Fasting blood246

samples were collected, and many health-related phenotypes and environmental exposures were247

measured in each individual. All participants gave written informed consent, and the study was248

approved by Research Ethics Committees in Orkney and Aberdeen (North of Scotland REC).249

Genome-wide genotyping was performed using Illumina HumanHap300 and OmniExpress arrays. The250

individuals were randomly selected with a balanced sex ratio from the subset of individuals with the251

most measured phenotypes.252

253

254

255

Profiling EV surface proteins with PBA256

All the samples were sent to Vesicode AB (Sweden) with dry ice, and proximity barcoding assay257

(PBA)258

raw data BCL sequencing files were converted to a fastq file with bcl2fastq software (Illumina).259

Proteins were determined by mapping protein tags in the sequences to the designed panel of260

oligonucleotides conjugated to antibodies. The EV tags were extracted and used as the identity for261

single EVs. A file consisting of the EV tags and their protein expression profile was obtained for each262

sample. Different samples resulted in a different number of sequenced reads; each read count of the263

protein expression was normalized by the total number of reads in the corresponding sample. The264

readouts were comparable across samples as the proportion of proteins per sample265

266

EV profiles of two testing samples via deep sequencing267

Using deep sequence quantification (50 million per sample), we obtained approximately 1.5268

million EVs in each of two testing plasma samples, of which ~ 62%were singleton (EVs that only carry269



one type of protein), where ~ 50% of these only carry one protein. To reduce background noise, we first270

filtered EVs that have more than five proteins, which resulted in our EV matrix (D, ). We271

calculated the expected values and c values of D, using the following equation: where A is the272

matrix of sums of rows ( ), and B is the matrix of sums of columns ( ),273

cells with top 95% quantile chi values were considered to be actual protein count, others were274

reset to be 0.275

276

Gene-based statistics from GWAS summary statistics277

Gene-based p-values were generated by PASCAL . In our analysis, the window size for278

computing sum and maximum of chi-squared statistics was 50kb up- and downstream. For better279

quality, the LD information was obtained from the UK10K data280

(https://www.ebi.ac.uk/ega/datasets/EGAD00001000776) instead of the default 1000 Genomes project.281

282

Normalization of EV phenotypes and regression models283

We used 96 individuals from the ORCADES cohort to test the associations between284

obesity-related traits and the abundance of EVs with specific surface proteins markers. For each285

obesity-related trait , we standardized the data as , where and represent the286

mean and standard error of the phenotypic data vector. For the abundance of each EV phenotype ,287

corresponding to a type of EVs that carry a particular protein profile, we inverse-Gaussian transformed288

the data vector into , following a standard normal distribution. We conducted a multiple linear289

regression model to test specific associations between EV types and the obesity-related traits:290

291

where is the overall mean, s are the corresponding effect parameters, and is the residual. The292

regression analysis was performed using the procedure in R.293

294

Genome-wide association analysis of protein-specific EVs295



Prior to GWAS, each EV phenotype was adjusted for fixed effects of sex, age, and the other296

experimental factors. The residuals were inverse-Gaussian-transformed to standard normal297

distributions. The residuals expressed as Z-scores were used for all genetic association analyses. In both298

the genotypes from the SNP array and 1000 Genomes-imputed data, markers with minor allele299

frequency < 0.05 were excluded. Population structure was corrected using the GRAMMAR+300

transformation , implemented in the GenABEL package . The genomic relationship matrix used301

in the analyses was generated by the function (with option), which uses SNP array302

data to estimate the realized pairwise kinship coefficient. The function was used to obtain303

the GRAMMAR+ transformed phenotypes ( ) from linear mixed models. All univariate304

GWAS inflation factors (lambda values) were close to 1, showing that this method efficiently accounts305

for family structure. The processed phenotypes were tested in genome scans using REGSCAN .306

307

Heritability enrichment analysis308

For each obesity-related protein marker, we had 112 GWASed EV phenotypes for the EVs that309

carry different protein-protein combinations with this particular protein. To overcome the power loss310

due to the small sample size, for each of the 12 obesity-related proteins, we extracted all the SNPs with311

P < 1 10-6 in all 112 GWAS. In addition, we also extracted all the SNPs with P < 1 10-6 in 66 GWAS312

for the EVs that carry obesity-related protein-protein combinations. So, we get 13 sets of SNPs in total.313

Each set of SNPs was then annotated with a flanking window of 1 kilobase (kb). We then used stratified314

LD score regression (S-LDSC) to test whether each set of such SNPs was enriched for the315

heritability of each obesity-related complex trait. The Z-scores of each complex trait GWAS were316

harmonized by the procedure of the software. LD scores of HapMap3 SNPs317

(MHC region excluded) for the annotated SNPs were computed using a 1-cM window (default). The318

heritability enrichment was evaluated by an enrichment score of the proportion of explained heritability319

divided by the proportion of annotated SNPs.320



321

Data availability322

The summary statistics of 66 EV abundance phenotypes, corresponding to protein-protein323

combinations of 12 surface markers, will be made publicly available upon publication of this paper.324

Summary statistics of obesity-related GWAS are from the GIANT consortium:325

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files, URLs326

for GWAS we used in this paper are in Supplementary Table 1. The full results of the EV-obesity327

associations are available in Supplementary Tables 2 and 3, corresponding to Figures 3 and 4,328

respectively.329
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485

Figure 1. Coding genes for the measured EV proteins that are associated with obesity-related486

traits.We performed multi-trait genome association analysis using summary association statistics of 17487

traits from the GIANT consortium, which resulted in 18 (17 univariate and a multivariate analyses)488

association p-values for each gene. Only the genes with FDRMultivariate < 0.01 are shown and ordered by489

-log10(FDRMultivariate) value in descending order. For the association with each trait, -log10(P) values are490

colored in blue, and the associations with FDR < 0.05, 0.01, and 0.001 are marked by *, **, and ***,491

respectively.492

493
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Figure 2. Identifying surface proteomics profile of Extracellular Vesicles. (A) Schematic495

representation of Proximity Barcoding Assay (PBA). EVs are firstly incubated with PBA probes496

(containing a protein tag), then each EV is allowed to hybridize with a unique RCA product (including497

a unique EV tag), followed by enzymatic extension, protein tag on the same EV is then incorporated498

with its EV tag, which can be sequenced after polymerase chain reaction. From the final pool of reads,499

the surface proteins are quantified for millions of individual EVs. (B) EV proteomic profile of two500

independent testing individuals. Percentages of EVs that carry each single protein and double-protein501

combination are robustly measured and consistent within the two independent samples. (C) EV502

proteomic profile of 96 ORCADES samples from two experiments (replicates 1 and 2). Each point503

stands for a specific type of EV (left panel for the abundance of EVs with at least one kind of protein,504

and the right panel for the abundance of EVs with at least two kinds of proteins). Different samples are505

color-coded.506
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Figure 3: Associations between total protein level and anthropometric measurements in 96509

ORCADES samples. In panels A and B, the upper part shows the effect of total protein level measured510

by PEA (Olink panels), and the lower part shows the effect of total protein quantified by PBA. Proteins511

in red dotted boxes are the markers of interest that overlap with Olink proteins. (A) The main effect of512

total protein count on seven body fat distribution-related traits, adjusted for sex and age. (B)513

Sex-by-protein interaction effect. Males are coded as 1 while females as 0, i.e., positive interaction (in514

blue) represents that the overall protein effects are weaker in men than in women. The effects (Beta) are515

color-coded516

517
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Figure 4: Association between the abundance of specific EVs and anthropometric519

measurements in 96 ORCADES samples. (A) The main effect of the abundance of specific EVs on520

seven body fat distribution-related traits, adjusted for sex and age. (B) Sex-by-EV interaction effect.521

Males are coded as 1 while females as 0, i.e., positive interaction (in blue) represents that the overall522

EV effects are weaker in men than in women. The effects (Beta) are color-coded; Significance with523

overall FDR thresholds of 0.05, 0.1, and 0.2 are marked by ***, **, and *.524

525

526

Figure 5. Heritability enrichment of EV-associated SNPs. Heritability enrichment estimation of527

EV-associated SNPs for each protein marker. Each bar represents heritability enrichment on an528

obesity-related trait, and the error bars represent standard errors. The red dashed line indicates no529

enrichment.530


