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Linear response theory relates the decay of equilibrium magnetisation fluctuations in a ferrofluid to the
frequency-dependent response of the magnetisation to a weak ac external magnetic field. The character-
istic relaxation times are strongly affected by interactions between the constituent particles. Similarly,
the relaxation of an initially magnetised system towards equilibrium in zero field occurs on a range of
timescales depending on the structure of the initial state, and the interactions between the particles.
In this work, ferrofluids are modelled as colloidal suspensions of spherical particles carrying point dipole
moments, and undergoing Brownian motion. Recent theoretical and simulation work on the relaxation
and linear response of these model ferrofluids is reviewed, and the effects of interactions, structure for-
mation, and polydispersity on the characteristic time scales are outlined. It is shown that: (i) in monodis-
perse ferrofluids, the timescale characterising the collective response to weak fields increases with
increasing interaction strength and/or concentration; (ii) in monodisperse ferrofluids, the initial, short-
time decay is independent of interaction strength, but the asymptotic relaxation time is the same as that
characterising the collective response to weak fields; (iii) in the strong-interaction regime, the formation
of self-assembled chains and rings introduces additional timescales that vary by orders of magnitude;
and (iv) in polydisperse ferrofluids, the instantaneous magnetic relaxation time of each fraction varies
in a complex way due to the role of interactions.
� 2022 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Ferrofluids are colloidal suspensions of single-domain, ferro-
magnetic nanoparticles in a non-magnetic carrier liquid [1]. They
are widely used in applications such as switchable optical media,
sealants, heat conductors, separation media, gas-fluidised beds,
and smart hydraulics. There is growing interest in applying fer-
rofluids as sensors [2,3], in nanoscale characterisation [4,5], for tar-
geted drug delivery [6,7], and as heating media in magnetic
hyperthermia treatments [8–10]. In this last example, the fer-
rofluid is exposed to an ac external magnetic field, and energy is
dissipated as heat. The heating rate is proportional to the imagi-
nary, or out-of-phase, component of the dynamic magnetic suscep-
tibility v xð Þ ¼ v0 xð Þ þ iv00 xð Þ [11–14]. v xð Þ characterises the
linear response of the magnetisation to a weak ac field [15,16].
The peak frequency in the imaginary part is controlled by the
intrinsic rotation time of the magnetic nanoparticles [17,18], and
the magnetic interactions between the particles. In general, stron-
ger interactions lead to more collective reorientational motions of
the particles, and hence an increase in the characteristic rotation
time.

In other applications of ferrofluids, the optical and magnetic
properties are controlled by strong, static external magnetic fields.
In this case, the relaxation time of the magnetisation from a satu-
rated state (in a strong field) to the demagnetised state (in zero
field) is an important quantity, as it controls the ultimate switching
rate [19–26]. (The reverse case is not considered here, although the
magnetisation rate will in general be different from the relaxation
rate.)

The topic of this contribution is the relationship between the
time scales for the linear response, and the time scales for relax-
ation from an initially aligned state. In the first case, linear-
response theory relates the frequency-dependent response to the
decay of equilibrium fluctuations in the magnetisation; the key
relationship is reviewed in Section 3. In the second case, the relax-
ation is measured by preparing the system in a strong aligning field
– outwith the linear-response regime – and then switching off the
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field. It is not obvious to what extent the same time scales appear
in both processes, and this will be explored herein. The theoretical
framework is based on Brownian dynamics, i.e., a particle’s mag-
netic dipole moment is fixed within the body frame, and reorienta-
tion happens by particle rotation. The contribution from Néel
relaxation will not be considered [1]. The Fokker–Planck-Brown
equation for the Brownian rotation of a single particle [27–29] will
be coupled with effective-field methods to describe the interparti-
cle interactions; the so-called modified mean-field and modified-
Weiss theories will be used, as these have been tested thoroughly
against Brownian dynamics simulations, and shown to be reliable
for moderately strong interactions [30,31].

The rest of this article is organised as follows. The basic fer-
rofluid properties, and essential elements of the theory (Fokker–
Planck-Brown equation), are summarised in Section 2. In Section 3,
the theoretical description of the frequency-dependent, linear
response in monodisperse ferrofluids is outlined. The magnetic
relaxation in monodisperse ferrofluids is described in Section 4,
and compared and contrasted with the linear response. A brief
description of the effects of strong interactions and clustering of
monodisperse particles on the dynamic magnetic susceptibility
and magnetic relaxation is given in Section 5. The extensions of
these properties to polydisperse ferrofluids, with and without
interactions, are considered in Section 6. Section 7 concludes the
article.

2. Model and theoretical methods

The ferrofluid is modelled as a system of N particles in a volume
V at temperature T. If particle j has hydrodynamic diameter rj and
magnetic dipole moment lj, then the total volume fraction u,
effective dipolar coupling constant k, and Langevin susceptibility
vL are given by

u ¼ p
6V

XN
j¼1

r3
j ¼ pq r3

� �
6

ð1Þ

k ¼ l0

4pkBT

XN
j¼1

l2
j

XN
j¼1

r3
j

¼ l0 l2
� �

4pkBT r3h i ð2Þ

vL ¼
l0

3VkBT

XN
j¼1

l2
j ¼ 4p

3
q r3
� �

k ¼ 8uk ð3Þ

where q ¼ N=V is the number concentration, l0 is the vacuum per-
meability, kB is Boltzmann’s constant, and . . .h i denotes an average
over the particle-size distribution. Note that there is no unique def-
inition of the dipolar coupling constant in a polydisperse system;
for instance, it could also be defined as being proportional to
l2=r3
� �

. But the definition used here is convenient, because of
the relationship in Eq. (3). The magnetic core diameter x is different
from the hydrodynamic diameter r, due to the presence of a
demagnetised layer, and an adsorbed surfactant layer providing
steric stabilisation. It is common to describe the particle size distri-
bution with a probability density function p xð Þ. The dipole moment
on a particle is proportional to the magnetic core volume, i.e.,
l / x3. In the numerical examples discussed here, it will be
assumed that r ¼ x, which makes things simple, but without losing
any important information.

The Fokker–Planck-Brown (FPB) equation describing the Brow-
nian rotational motion of particle 1 is [27–29]

2sB @W
@t ¼ @

@z 1� z2
� �

@W
@z þ W

kBT
@U1
@z þ q

kBT

R
g12

@U12
dz

� �
dr2

� �h i
ð4Þ
2

where t is the time, sB is the Brownian rotation time, W ¼ W z; tð Þ is
the one-particle orientational distribution function (ODF), z ¼ cos h1
represents the orientation of the particle’s dipole with respect to the
laboratory Z axis, U1 is the interaction energy between the particle
and the external field, g12 is the pair distribution function, and U12 is
the interaction energy between particles 1 and 2. For a particle in a
liquid with viscosity g, the Brownian time is given by

sB ¼ pgr3

2kBT
: ð5Þ

The angled brackets � � �h i in Eq. (4) denote an average over both the
size and the orientation of particle 2. The interaction energy
between the particle and an ac external field H tð Þ in the laboratory
Z direction is

U1 ¼ �l0l1 � H tð Þ ¼ � l0l1H0e�ixt
� �

z ð6Þ
where to be clear, z ¼ cos h1 refers to the orientation of the particle
with respect to the laboratory Z axis. The interaction energy
between two different particles is

U12 ¼ l0

4p
l1 � l2

� �
r3

� 3 l1 � r
� �

l2 � r
� �

r5

� 	
ð7Þ

where r is the centre-centre separation vector, and r ¼ jrj. The FPB
equation can be solved in two distinct ways, depending on the sit-
uation: (1) to study the dynamic magnetic susceptibility, the ac
external field is considered to be weak, such that the Langevin
parameter a ¼ l0l1H0=kBT � 1, and the periodic one-particle ori-
entational distribution function determines the magnetic response
of the system; and (2) to study the magnetic relaxation, the external
field is set to zero, the initial condition corresponds to perfect align-
ment of all particles’ dipole moments, and the time-dependent one-
particle orientational distribution function determines the
approach to equilibrium, meaning zero magnetisation. In both
cases, the interaction term is determined approximately according
to a mean-field approach, as detailed below.

3. Dynamic susceptibility of monodisperse ferrofluids

If the field strength is H tð Þ ¼ H0e�ixt , and the dynamic magnetic
susceptibility is v xð Þ ¼ v0 xð Þ þ iv00 xð Þ, then the magnetisation is

M tð Þ ¼ v xð ÞH tð Þ ¼ M0e�i xt�dð Þ ð8Þ
where M0 cos d ¼ v0H0;M0 sin d ¼ v00H0, and the phase lag is
0 6 d ¼ arctan v00=v0ð Þ 6 p=2 (the magnetisation lags behind the
field). The power loss is proportional to the imaginary part of the
dynamic magnetic susceptibility, v00 [11,32].

Linear response theory leads to an important relationship
between v xð Þ and the time correlation function C tð Þ of equilibrium
magnetisation fluctuations in zero field [33].

v xð Þ
v 0ð Þ ¼ 1þ ix

Z 1

0
C tð Þeixtdt ð9Þ

C tð Þ is defined by

C tð Þ ¼ M tð Þ �M 0ð Þh i
M 0ð Þ �M 0ð Þh i ð10Þ

and of course M tð Þh i ¼ 0. This provides a convenient route to calcu-
lating v xð Þ from Brownian dynamics simulations, as has been
demonstrated in recent work [30,34–36]. Such simulation results
have been used to test the predictions of various theories that incor-
porate interactions, as outlined below.

In the ideal case – which corresponds to the original Debye the-
ory [32,37] – the time correlation function is simply
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CD tð Þ ¼ e�t=sB ð11Þ
and the real and imaginary parts of the dynamic magnetic suscep-
tibility are then given by

v0
D xð Þ ¼ vL

1þx2s2B
ð12aÞ

v00
D xð Þ ¼ vLxsB

1þx2s2B
ð12bÞ

where the static susceptibility vD 0ð Þ is equal to the Langevin value
vL. Note that v00

D xð Þ shows a maximum at the frequency xsB ¼ 1,
which provides a useful feature for measuring the effective relax-
ation time(s) in other situations.

There have been many attempts to include the effects of inter-
actions [38–44]. The basic phenomenology is that interactions
between particles lead to more collective motions, and since these
are slower than single-particle motions, the peak frequency in
v00 xð Þ decreases [45–47]. The approach taken here is to make
approximations to the two-particle correlation function g12 in the
FPB equation [Eq. (4)]. In the modified mean-field (MMF) theory,
g12 is approximated by the function W1W

D
2H12, where W1 for par-

ticle 1 is to be determined, WD
2 is the ODF for particle 2 from the

Debye theory, and H12 is the Heaviside step function that forbids
two particles from overlapping with one another. The result for
the dynamic magnetic susceptibility can be expressed entirely in
terms of vD xð Þ [48,49].

v0
MMF xð Þ ¼v0

D xð Þ þ 1
3

v0
D xð Þ
 �2 � v00

D xð Þ
 �2n o
ð13aÞ

v00
MMF xð Þ ¼v00

D xð Þ 1þ 2
3
v0
D xð Þ

� 	
ð13bÞ

Note that the static susceptibility is given by
vMMF 0ð Þ ¼ vL 1þ vL=3

� �
, which is the well-known result derived

long ago [50–52]. These results have been tested against both
experimental [48,49,53] and simulation data [34,54], and they are
reliable as long as the Langevin parameter vL 6 1.

In the Weiss theory [30], g12 ¼ W1W2H12 and Wi is to be deter-
mined self-consistently. The final result for the dynamic magnetic
susceptibility is

vW ¼ vD xð Þ
1� 1

3vD xð Þ ð14Þ

where again, everything is expressed in terms of the Debye
functions. The problem with this expression is that the static
susceptibility is predicted to diverge when vL ¼ 3, which does
not occur in practice. A trick to remove the divergence and
retain the MMF expression for the static susceptibility, is to
multiply top and bottom by 1þ vL=3

� �
, and remove the bilinear

term vLvD xð Þ=9. The resulting ‘modified-Weiss’ (MW) theory is
therefore

vMW xð Þ ¼ 1þ 1
3vL

� �
vD xð Þ

1þ 1
3vL � 1

3vD xð Þ ð15Þ

from which the real and imaginary parts can be separated out
easily. Comparisons with computer-simulation results show
that the MW theory is marginally better than the MMF theory,
and that the predictions are reliable for systems with vL 6 3
[30].

4. Relaxation dynamics of monodisperse ferrofluids

The relaxation function m tð Þ resembles C tð Þ, except that

M 0ð Þ ¼ NlbZ is the saturation magnetisation at t ¼ 0, when the
strong aligning field in the Z direction is turned off.
3

m tð Þ ¼ M tð Þ �M 0ð Þ
M 0ð Þ �M 0ð Þ ¼

XN
n¼1

l
�
n tð Þ � bZ
Nl

ð16Þ

The bar � � � denotes an average over repeated realisations of the
relaxation process. In the ideal case, meaning without interactions
between the particles, the relaxation function is simply

mid tð Þ ¼ e�t=sB : ð17Þ
Hence, there is only one characteristic timescale, and m tð Þ is identi-
cal to C tð Þ in the Debye theory.

As with the dynamic magnetic susceptibility, interactions
reduce the relaxation rate due to increased correlations between
particles leading to collective motions [55–58]. Interactions can
be included using approximations similar to those used in the cal-
culation of the dynamic magnetic susceptibility. Within the MMF
approach, the relaxation function is [31]

mMMF tð Þ ¼ 1þ vL

3
t
sB

þ 1
3

e�3t=sB � 1
� �� 	� 

e�t=sB : ð18Þ

This function has the unphysical feature of showing non-monotonic
decay with large values of vL, but it is at least a leading-order
approximation for the case of interacting particles. The MW expres-
sion – again with a trick to remove divergences – is more compli-
cated, but it possesses entirely physical features [31].

mMW tð Þ ¼ exp �3t=sB þ ln 1þ vL 1� e�3t=sB
� �

=3

 �

3þ vL

� 
ð19Þ

In this theory, the short-time decay is

mMW tð Þ � exp � t
sB

� �
ð20Þ

while the asymptotic, long-time decay is

mMW tð Þ � exp � t
1þ vL=3
� �

sB

" #
ð21Þ

and this crossover has been verified using Brownian dynamics sim-
ulations [31].

To illustrate the difference between C tð Þ and m tð Þ in the pres-
ence of interactions, it is convenient to define the following func-
tion, which is analogous to the linear-response expression for the
dynamic initial susceptibility.

K xð Þ ¼ 1þ ix
Z 1

0
m tð Þeixtdt ð22Þ

Comparing K xð Þ with v xð Þ=v 0ð Þ [cf. Eq. (9)] is easier than calculat-
ing C tð Þ by the inverse Fourier transform of the corresponding v xð Þ.
For the MMF theory, this gives K xð Þ ¼ K 0 xð Þ þ iK 00 xð Þ with

K 0
MMF xð Þ ¼ 1

1þs2 � 2vL
3

s2

1þs2ð Þ2 þ
vL
9

s2
1þs2 � s2

16þs2

� �
ð23aÞ

K 00
MMF xð Þ ¼ s

1þs2 þ vL
3

s�s3ð Þ
1þs2ð Þ2 þ

vL
9

4s
16þs2 � s

1þs2

� �
ð23bÞ

where s ¼ xsB. The Fourier transform of the MW expression [Eq.
(19)] has to be done numerically.

v xð Þ and K xð Þ are compared in Fig. 1 for the specific case when
vL ¼ 1. Fig. 1(a) and (b) show the results for the MMF theory, and
Fig. 1(c) and (d) show the results for the MW theory. In each case,
the corresponding Debye function vD is shown, which represents
the case of non-interacting particles. For both theories, and for
both the real and imaginary parts, K xð Þ is closer to v xð Þ (with
interactions) at low frequency, and closer to vD xð Þ (no interac-
tions) at high frequency. This represents the crossover in the relax-
ation function from the short-time behaviour with relaxation time



Fig. 1. A comparison of the spectra of C tð Þ and m tð Þ in the form of the dynamic
initial susceptibility, being v xð Þ=v 0ð Þ [Eq. (9)] and K xð Þ [Eq. (22)], respectively. (a)
and (b) show the real and imaginary parts from the MMF theory with vL ¼ 1. (c) and
(d) show the real and imaginary parts from the MW theory with vL ¼ 1. In each
case, the corresponding Debye function is shown for comparison, which corre-
sponds to vL ¼ 0.

A.O. Ivanov and P.J. Camp Journal of Molecular Liquids 356 (2022) 119034
equal to sB, to the asymptotic, long-time behaviour with relaxation
time equal to 1þ vL=3

� �
sB. The general point is that the weak-field

response cannot be inferred exactly from the relaxation function
m tð Þ; it is properly related to the equilibrium time correlation func-
tion C tð Þ through Eq. (9).
5. Effects of structure formation

It is well known that at low concentrations u� 0:1, and with
high dipolar coupling constant k > 4, dipolar particles self-
assemble to form chain-like and ring-like clusters [59,60]. The
impact of these structures on the static magnetic susceptibility is
that, increasing k to about 6, the formation of chains increases
v 0ð Þ, because of the strong orientational correlations between par-
ticles in a given chain. But above k ’ 6, the chains start to close up,
forming rings with low net dipole moment, and hence v 0ð Þ
decreases [61].

A recent study on systems with u ¼ 0:001 and 1 6 k 6 8 has
uncovered pronounced effects of clustering on the dynamic mag-
netic susceptibility as well [36]. Firstly, the formation of chains
leads to an increase in the effective rotation time, and hence
v00 xð Þ shows a low peak frequency, well below the single-particle
frequency s�1

B . Secondly, as chains start to close up to form rings,
a high-frequency feature appears in v xð Þ. This feature is associated
with intracluster, single-particle reorientational motions, which
can be well described with a simple mean-field theory; the corre-
sponding frequency is at least an order of magnitude larger than
the single-particle frequency. The reason why this feature is not
observed in the chain regime is that the instantaneous magnetisa-
tion is dominated by the dipole moments of the chains, and the
small modulations due to intracluster motions are drowned out.
Since rings have low net dipole moments, it is possible to resolve
the intracluster contributions to v xð Þ.

The effects of chain formation on magnetic relaxation have
also been explored [31]. As noted in Section 4, the initial decay
4

time is always equal to sB. But in the presence of chains, the
asymptotic decay time far exceeds that predicted by theory,
due to the reorientational relaxation of the chains themselves,
and the exchange and reorientation of individual particles, all
of which are slow processes, and are not captured in a simple
theory.

6. Extensions to polydisperse ferrofluids

The extensions of some of these ideas to polydisperse ferroflu-
ids are outlined here. Firstly, the susceptibility and relaxation in
ideal polydisperse ferrofluids are summarised in Section 6.1. Then
some initial results on the effects of interactions – within the MMF
model – are presented in Section 6.2.

6.1. Susceptibility and relaxation in the ideal case

The time correlation function C tð Þ in the case of Debye theory is
given by

CD tð Þ ¼ l2e�t=sB
� �

l2h i ð24Þ

where � � �h i indicates an average over the particle-size distribu-
tion. The l2 weighting is important, and of course sB itself
depends on the particle diameter through Eq. (5). An instanta-
neous relaxation time seff tð Þ can be defined, and its initial value
can be evaluated.

seff tð Þ ¼ � d lnCD

dt

� ��1

ð25aÞ

seff 0ð Þ ¼ l2
� �
l2s�1

B

� � ð25bÞ

Note that if the hard-core diameter is the same as the magnetic-
core diameter (r ¼ x), then l2 / s2B, and hence seff 0ð Þ ¼ s2B

� �
= sBh i.

Finally, the real and imaginary parts of the dynamic magnetic sus-
ceptibility are as follows.

v0
D xð Þ
v 0ð Þ ¼ 1

l2h i
l2

1þx2s2B

� �
ð26aÞ

v00
D xð Þ
v 0ð Þ ¼ 1

l2h i
l2xsB

1þx2s2B

� �
ð26bÞ

The equations for the magnetic relaxation function are very similar,
except that the particle size dependent weighting is now propor-
tional to l, instead of l2.

mid tð Þ ¼ le�t=sB
� �

lh i ð27Þ

An instantaneous relaxation time, and its initial value, can be
defined just as before.

seff tð Þ ¼ � d lnmid

dt

� ��1

ð28aÞ

seff 0ð Þ ¼ lh i
ls�1

B

� � ð28bÞ

Note that if the hard-core diameter is the same as the magnetic-
core diameter (r ¼ x), then l / sB, and hence seff 0ð Þ ¼ sBh i. Finally,
the spectrum of the relaxation function can be computed using Eq.
(22).

K 0
id xð Þ ¼ 1

lh i
l

1þx2s2B

� �
ð29aÞ

K 00
id xð Þ ¼ 1

lh i
lxsB

1þx2s2B

� �
ð29bÞ



Fig. 2. Comparison between CD tð Þ and mid tð Þ, and their spectra, for the bidisperse
ferrofluid with configuration A defined in Table 1. (a) Correlation function CD tð Þ
(solid black line), relaxation function mid tð Þ (dashed red line), and the individual-
fraction relaxation functions for the large and small particles (green dot-dashed line
and blue dotted line, respectively. (b) Effective relaxation time seff tð Þ for CD tð Þ (solid
black line) and mid tð Þ (red dashed line) [Eqs. (25a) and (28a), respectively]. Also
shown are the Brownian rotation times for the large and small particles (green dot-
dashed line and blue dotted line, respectively), and the initial decay time of CD tð Þ
from Eq. (25b). (c) The real and (d) the imaginary parts of v xð Þ (solid black lines)
[Eq. (26)] and K xð Þ (red dashed lines) [Eq. (29)]. For comparison, vD xð Þ ¼ K id xð Þ for
a monodisperse system with sB ¼ sBh i is also shown (green dotted lines).
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The essential point is that in CD tð Þ and vD xð Þ, the weighting of each
fraction’s time dependence is proportional to l2, while in mid tð Þ and
K id xð Þ, the weighting is proportional to l. To illustrate the effects of
this difference, results will be discussed for two bidisperse ferroflu-
ids, each with a particle diameter ratio equal to

ffiffiffiffiffiffi
103

p
, so that the

ratio of the Brownian rotation times is equal to 10. Taking r ¼ x,
this means that the ratio of dipole moments is also equal to 10,
and the ratio of l2 is equal to 100. The configurations are defined
in Table 1. In configuration A, the two fractions have equal values
of pl2, where p is the number fraction. In configuration B, the
two fractions have equal values of pl. Hence, CD tð Þ and vD xð Þ for
configuration A should each be a superposition of two equally
weighted terms, while for configuration B, this situation holds for
mid tð Þ and K id xð Þ. To help the discussion of the results, r;l, and
sB in Table 1 are all given as decimal values, although they can be
defined precisely as surds.

The results for configuration A show the following features. At
short times, mid tð Þ is most similar to the small-particle decay
[Fig. 2(a)], but this is because the effective decay time
seff 0ð Þ ¼ sBh i is close to the small-particle Brownian time of about
0:918 sBh i (Table 1). Only at very long times, when the remaining
magnetisation is low, does seff approach the large-particle Brown-
ian time of about 9:18 sBh i [Fig. 2(b)]. Hence, K id xð Þ is dominated
by the small-particle component, and so its main features appear
at high frequency [Fig. 2(c) and (d)]. CD tð Þ is defined so that the
small-particle and large-particle fractions make equal contribu-
tions, and hence it shows features at both short times and long
times. As a result, vD xð Þ shows clearly resolved low-frequency
and high-frequency features. The initial decay time of CD tð Þ is
seff 0ð Þ ’ 1:67 sBh i [Eq. (25b)], and then it switches over to the
large-particle Brownian time.

The opposite situation occurs for configuration B (Fig. 3), since
the small-particle and large-particle fractions make equal contri-
butions to mid tð Þ, but the large-particle fraction makes the domi-
nant contribution to CD tð Þ. As a result, K id xð Þ shows clearly
resolved features at low frequency and high frequency, while
CD xð Þ is swamped by the low-frequency band corresponding to
large particles. Note that the short-time behaviours of CD tð Þ and
mid tð Þ are very different for this configuration (Fig. 3): the initial
decay time of CD tð Þ is seff 0ð Þ ’ 3:03 sBh i [Eq. (25b)], while that of
mid tð Þ is equal to sBh i, precisely.
6.2. Interactions

Within the MMF, Weiss, and MW theories, it is very simple to
include the effects of polydispersity: all that needs to be done is
to replace vD xð Þ in Eqs. (13), (14), and (15) with the appropriate
polydisperse function defined in Eq. (26) [48,53,30]. The effects
of interactions on v xð Þ are a shift in features to lower frequency,
and an increase in v, with the effects being more pronounced for
larger, more strongly interacting particles [30].

The inclusion of interactions into the relaxation function is con-
siderably more complicated in the polydisperse case. At present,
the theory is not yet tractable for the Weiss and MW approaches,
but it is possible to make a start using the MMF theory. At the heart
Table 1
Details of bidisperse ferrofluids with diameter ratio equal to

ffiffiffiffiffiffi
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p
. p is the number fraction

rotation time. The dimensionless quantities are defined such that r3
� � ¼ 1; l2

� � ¼ 1, and sh
fractions have equal values of pl. Abbreviations: conf. is configuration; frac. is fraction.

conf. frac. p

A small 100
101

A large 1
101

B small 10
11

B large 1
11

5

of the approach is an equation of motion for the relaxation function
m x1; tð Þ for each fraction [31].

sB x1ð Þdm x1; tð Þ
dt

¼ �m x1; tð Þ þ l0l1 x1ð ÞMid tð Þ
9kBT

1� e�3t=sB x1ð Þ
 � ð30Þ

Here, Mid tð Þ ¼ q lh imid tð Þ is the ideal instantaneous magnetisa-
tion for the whole fluid, with mid tð Þ given by Eq. (27). (In the
Weiss and MW approaches, Mid tð Þ is replaced by the true instan-
taneous magnetisation, which has to be determined self-
consistently [31].) Integrating the equation of motion gives the
result

m x1; tð Þ ¼ e�t=sB x1ð Þ

þ ql0l x1ð Þe�t=sB x1ð Þ
9kBT

R
p x2ð Þl x2ð Þfþ x1; x2ð Þdx2

þ ql0l x1ð Þe�t=sB x1ð Þ
9kBT

R
p x2ð Þl x2ð Þf� x1; x2ð Þdx2

ð31Þ

where the functions fþ and f� are defined as follows.

fþ x1; x2ð Þ ¼ sþ x1; x2ð Þ
sB x1ð Þ e�t=sþ x1 ;x2ð Þ � 1


 � ð32aÞ

f� x1; x2ð Þ ¼ s� x1; x2ð Þ
sB x1ð Þ et=s� x1 ;x2ð Þ � 1


 � ð32bÞ
, r is the particle diameter, l is the magnetic dipole moment, and sB is the Brownian
Bi ¼ 1. In configuration A, the fractions have equal values of pl2. In configuration B, the

r l sB

0:971948 0:710634 0:918182

2:093998 7:106335 9:181818

0:819321 0:316228 0:55

1:765174 3:162278 5:50



Fig. 3. Comparison between CD tð Þ and mid tð Þ, and their spectra, for the bidisperse
ferrofluid with configuration B defined in Table 1. The graphs and lines are the same
as in Fig. 2.

Fig. 4. Relaxation functions [(a) and (c)] and effective relaxation times [(b) and (d)]
for bidisperse ferrofluids with configuration A [(a) and (b)] and configuration B [(c)
and (d)] defined in Table 1, computed using the MMF approximation with an overall
Langevin susceptibility vL ¼ 1. The dashed red lines show the results for the overall
relaxation functionmMMF tð Þ, while the green dot-dashed and blue dotted lines show
the individual-fraction relaxation functions for the large and small particles,
respectively.

Fig. 5. Effective relaxation times for large particles [(a) and (c)] and small particles
[(b) and (d)] in bidisperse ferrofluids with configuration A [(a) and (b)] and
configuration B [(c) and (d)] defined in Table 1, computed using the MMF
approximation with overall Langevin susceptibility
vL ¼ 1� 10�8;1� 10�6;1� 10�4;1� 10�2;0:1;0:2;0:5, and 1. The progression of
curves with increasing vL is indicated by an arrow in each panel.
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The associated decay times are

sþ x1; x2ð Þ ¼ sB x1ð ÞsB x2ð Þ
2sB x2ð Þ þ sB x1ð Þ ð33aÞ

s� x1; x2ð Þ ¼ sB x1ð ÞsB x2ð Þ
sB x2ð Þ � sB x1ð Þ ð33bÞ

which mean that special care has to be taken with Eq. (32b); noting
that lima!1a exp t=að Þ � 1½ � ¼ t; f� reduces to t=sB x1ð Þ when x1 ¼ x2.
In the end, the total relaxation function is

m tð Þ ¼ 1
lh i

Z
p x1ð Þl x1ð Þm x1; tð Þdx1: ð34Þ

Clearly, the situation is quite complicated, but some illustrative
results are shown for the bidisperse ferrofluids defined in Table 1.
Fig. 4 shows the relaxation functions m tð Þ and the effective relax-
ation times seff for each fraction and for the whole fluid, for both
configurations A and B. On the one hand, the relaxation functions
[Fig. 4(a) and (c)] are not very different from those shown in Figs. 2
and 3: in configuration A, the total relaxation function is dominated
by the small particles; and in configuration B, the total relaxation
function is an equal mix of the small-particle and large-particle
functions. On the other hand, the effective relaxation times [Fig. 4
(b) and (d)] show a remarkable phenomenon: at long times, both
the small-particle and total effective relaxation times converge onto
the large-particle relaxation time. The presence of two local max-
ima in seff is a mathematical artefact of the MMF approach, as men-
tioned in Section 4.

The overall picture is the following. At short times, the total
effective relaxation time is precisely equal to sBh i, as already
shown in the monodisperse and ideal polydisperse cases [note also
that the second term on the right-hand side of Eq. (30), which
includes the effects of interactions, is zero at t ¼ 0]. At long times,
the small-particle magnetisation has decayed more than the large-
particle magnetisation, so that the total magnetisation [Mid tð Þ in
Eq. (30)] is dominated by the large particles; hence, the low
remaining small-particle magnetisation is slaved to the large-
particle magnetisation by the interactions. As a result, both the
6

small-particle and total effective relaxation times approach the
large-particle relaxation time. The situation is basically the same
for both configurations A and B, with the differences arising from
the weightings of each fraction.
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The effects of interaction strength are illustrated in Fig. 5, with
individual large-particle and small-particle effective relaxation
times with 1� 10�8 6 vL 6 1, and for configurations A and B. For
the large particles, the short-time and long-time relaxation times
approach the corresponding Brownian time (see Table 1). Note that
the MMF theory misses the fact that, at long times, the relaxation
time should depend on the value of vL; this is remedied in the
Weiss and MW theories, but as noted above, these are not straight-
forward in the polydisperse case. At intermediate times, the relax-
ation time increases with increasing vL due to the effects of
interactions. In configuration A, the two-peaked structure is an
artefact of the MMF approximation, as noted in Section 4 [31].
For the small particles, the relaxation time crosses over from the
small-particle to the large-particle Brownian time, but the cross-
over is delayed longer with decreasing vL. Essentially, with
decreasing vL, it takes longer for the second term on the right-
hand side of Eq. (30) to dominate the first term.
7. Conclusions

The theoretical description of the dynamic magnetic suscepti-
bility v xð Þ and the magnetic relaxation m tð Þ in monodisperse
and polydisperse ferrofluids has been summarised, with a particu-
lar emphasis on the difference between equilibrium and non-
equilibrium relaxation, and the effects of interactions, structure
formation, and polydispersity, in the case of Brownian dynamics.
In the case of monodisperse ferrofluids, it has been demonstrated
that, in the presence of interactions, there are differences between
v xð Þ and the spectrum of m tð Þ, arising from the fact that the initial
decay of m tð Þ is always equal to the Brownian relaxation time,
independent of interactions. In the case of polydisperse ferrofluids,
including the effects of interactions is technically quite difficult.
Nonetheless, using the modified mean-field theory, it is possible
to show that interactions cause the small (fast) particles to relax
asymptotically at a rate dictated by the large (slow) particles,
which dominate the instantaneous magnetisation to which the
small particles are coupled. Future work will focus on the technical
question of how to incorporate better descriptions of the interac-
tions, such as in the Weiss and modified-Weiss theories.

Regarding the relevance to experiments, it should be possible to
use the theories outlined here to fit functions to the measured sus-
ceptibility or relaxation function and determine the particle-size
distribution – so-called dynamic magnetogranulometry [62,63].
On the basis of the current work, the best choice of method
depends on the sample, and the relative contributions of the differ-
ent particle fractions to the averages of lh i and l2

� �
. If the contri-

butions of differently sized particles to l2
� �

are comparable, then
the dynamic magnetic susceptibility would give the best resolution
of particle sizes. Note that this condition also means that each frac-
tion has roughly the same Langevin susceptibility, although the
presence of interactions leads to differences between the true sta-
tic susceptibilities. If the contributions of differently sized particles
to lh i are comparable, then magnetic relaxation would give the
best resolution of particle sizes.
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