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Summary

� Many diverse plant clades possess bilaterally symmetrical flowers and specialised pollination

syndromes, suggesting that these traits may promote diversification. We examined the evolu-

tion of diverse floral morphologies in a species-rich tropical radiation of Rhododendron.
� We used restriction-site associated DNA sequencing on 114 taxa from Rhododendron sect.

Schistanthe to reconstruct phylogenetic relationships and examine hybridisation. We then

captured and quantified floral variation using geometric morphometric analyses, which we

interpreted in a phylogenetic context.
� We uncovered phylogenetic conflict and uncertainty caused by introgression within and

between clades. Morphometric analyses revealed flower symmetry to be a morphological

continuum without clear transitions between radial and bilateral symmetry. Tropical Rhodo-

dendron species that began diversifying into New Guinea c. 6 million years ago expanded into

novel floral morphological space.
� Our results showed that the evolution of tropical Rhododendron is characterised by recent

speciation, recurrent hybridisation and the origin of floral novelty. Floral variation evolved via

changes to multiple components of the corolla that are only recognised in geometric morpho-

metrics with both front and side views of flowers.

Introduction

The specialisation of flowers is a key factor underlying the evolu-
tionary success and ecological dominance of angiosperms. Flower
symmetry, in particular bilateral symmetry in which a flower
exhibits one plane of symmetry along the dorsoventral axis, is
believed to facilitate pollinator attraction, visitation, efficiency,
precision and specialisation (reviewed in Neal et al., 1998). Bilat-
eral flower symmetry promotes more specific interactions with
pollinators and more precise pollen placement (Sargent, 2004),
leading to increased diversification rates (O’Meara et al., 2016)
compared with radial symmetry. As such, understanding transi-
tions in flower symmetry and the evolution of novel floral mor-
phologies is essential for answering long-standing questions
about the origin and diversity of species richness in angiosperms.

Tropical plant radiations present the richest botanical diversity
and exhibit diversity in floral form to match. From the largest
flower on Earth, Rafflesia arnoldii, to the marked specialised floral
structures of the sunbird-pollinated bird of paradise, Strelitzia

reginae, tropical plants demonstrate an astonishing range of floral
forms, including many forms found nowhere else (Endress,
1996). Pinpointing the evolutionary drivers of diverse tropical
floral morphologies is at the heart of understanding angiosperm
diversity, but many factors impede this work. Explosive species
radiations are typically characterised by phylogenetic complexity,
in which shallow species divergences, potentially associated with
hybridisation, obscure inferences of evolutionary relationships
(Schley et al., 2020). At a more fundamental level, a lack of base-
line taxonomic knowledge impedes evolutionary research in
many tropical groups (Lagomarsino & Frost, 2020). Further-
more, the extensive morphological diversity present in these
groups can be difficult to analyse and classify and rarely fits sim-
ple models of floral shape that were developed for model temper-
ate species.

Geometric morphometrics has been used to quantify floral
shape variation in macroevolutionary studies (Wilson et al., 2017;
Smith & Kriebel, 2018; Kriebel et al., 2020; Reich et al., 2020)
but has been rarely used to quantify flower symmetry variation,
only in microevolutionary studies (G�omez et al., 2006; Savriama
et al., 2012; Hsu et al., 2015; Wang et al., 2015; Berger et al.,
2017). These microevolutionary studies used landmark data to
detect changes and characterise variation in floral symmetry in
population-level and mutant analyses. Rarely has this method
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been used to characterise flower symmetry variation across clades
(Gardner et al., 2016). In addition, most of these studies, with
the exception of Hsu et al. (2015) and Wang et al. (2015), exam-
ined symmetry from only the front view of the flower. Geometric
morphometrics could be useful for quantifying floral symmetry
variation in diverse groups, for which it is difficult to qualitatively
describe the flowers as radially or bilaterally symmetric, by using
both front and side views of flowers. This approach, in conjunc-
tion with phylogenomic analyses, could be used to understand
floral diversification in tropical plant groups and the mode and
tempo of evolution of novel floral forms.

The genus Rhododendron (Ericaceae) is a large group of over
1000 species, with notable species richness in the tropics. This
diversity arose via southward dispersal from the group’s origin in
Northeast Asia, which is likely to have been facilitated by moun-
tain building in the Malay Archipelago (Shrestha et al., 2018),

followed by an eastward migration to New Guinea and Australia
(Goetsch et al., 2011; Webb & Ree, 2012; Landis et al., 2013).
Malesian Rhododendron species are classified in sect. Schistanthe
(Craven et al., 2011), commonly known as vireyas, and comprise
over 300 species that have been reported as diploid (Janaki
Ammal et al., 1950; Jones & Brighton, 1972; Atkinson et al.,
2000) and show the widest range of floral morphology in the
genus (Argent, 2015) (Fig. 1). The section is unusual for a diverse
tropical group in having been subject to extensive taxonomic
research and having a recent taxonomic account covering all
described species (Argent, 2015).

Rhododendron is considered one of the five most species-rich
vascular plant genera in New Guinea (C�amara-Leret et al., 2020),
comprising 171 species (Argent, 2015). Prior phylogenetic stud-
ies in sect. Schistanthe using chloroplast or several nuclear genes
found that traditional subsectional classifications (Sleumer, 1966)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1 Flower symmetry variation in
Rhododendron sect. Schistanthe. (a–e) Front
views of flowers. (f–l) Side views of flowers.
(a) R. himantodes (subsect.Malayovireya)
with weakly bilaterally symmetric flowers. (b)
R. stenophyllum (subsect. Euvireya) with
radially symmetric flowers. (c)
R. macgregoriae (subsect. Euvireya) with
bilaterally symmetric flowers. (d) R. christi
(subsect. Euvireya) with bilaterally symmetric
flowers. (e) R. konori (subsect. Euvireya)
with deviation from pentamerous flowers
and bilaterally symmetric flowers. (f)
R. himantodes (subsect.Malayovireya) with
short corolla tubes. (g) R. robinsonii (subsect.
Euvireya) with oblique corolla tubes. (h)
R. pauciflorum (subsect. Euvireya) with
straight corolla tube. (i) R. taxifolium
(subsect. Euvireya) with short, straight
corolla tubes. (j) R. edanoi subsp.
pneumonanthum (subsect. Euvireya) with
straight, long corolla tubes. (k) R. cruttwellii
(subsect. Euvireya) with long corolla tubes
curved upwards. (l) R. beyerinckianum
(subsect. Euvireya) with long corolla tubes
curved downwards.
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based on flower shape and leaf scales do not reflect the group’s
evolutionary history (Brown, 2003; Brown et al., 2006a,b;
Goetsch et al., 2011). Instead, clades reflect geographical distribu-
tions across Southeast Asia, exhibiting a general west to east dis-
persal pattern and subsequent dramatic diversification in New
Guinea, which was confirmed by Xing & Ree (2017). However,
relationships within these geographic clades remain largely unre-
solved (Brown et al., 2006a,b), and monophyly of sect. Schistan-
the and its subsections was not supported (Goetsch et al., 2011).
This phylogenetic uncertainty has largely been attributed to
recent species divergence, coupled with hybridisation between
sympatric taxa.

Extensive variation in Rhododendron flower symmetry is
achieved through various means, such as corolla pigment patterns
and structural variation in the corolla, stamens and style (Fig. 1)
(Stevens et al., 2004). Corollas in sect. Schistanthe are reported to
be radially or bilaterally symmetric (Argent et al., 2007; Craven
et al., 2011). However, corolla symmetry has not been designated
in species descriptions for many taxa and is often difficult to dis-
tinguish due to variation within the group. Despite this, a radially
symmetric corolla has been reconstructed as the ancestral state for
the group based on front views of flowers and limited sampling
(Berry et al., 2018). Corolla tubes, however, vary in sect. Schistan-
the from straight to curved adaxially (downwards) or curved abax-
ially (upwards) (Fig. 1f–l) (Stevens, 1976). The only taxa
denoted as bilaterally symmetric in taxonomic treatments are
those that exhibit adaxially curved corolla tubes (Fig. 1l)
(Sleumer, 1966; van Royen & Kores, 1982; Argent, 2015). How-
ever, based on Stevens’s (1976) description of flower types within
sect. Schistanthe, we predict the origin of at least two different
types of bilateral symmetry in the group based on curvature of
the corolla tube (adaxial or abaxial; Fig. 1k,l).

The goals of our study were to investigate the phylogenetic
complexity and floral diversification, with regard to flower sym-
metry, of sect. Schistanthe. Specifically, we aimed to (1) resolve
the phylogeny of Rhododendron sect. Schistanthe using genome-
wide data, (2) investigate whether hybridisation underlies phylo-
genetic complexity, and (3) characterise flower symmetry varia-
tion and evolution in this species radiation. We used restriction-
site associated DNA sequencing (RAD-seq) to resolve the phy-
logenetic history of this group and found evidence for introgres-
sion within and between clades. Our curve-based approach to
morphometrics of corolla symmetry demonstrated that bilateral
symmetry in sect. Schistanthe is a continuous characteristic that
is made up of multiple corolla components. We identified
corolla symmetry types in the section and inferred at least two
transitions to novel bilateral symmetry within the New Guinean
radiation.

Materials and Methods

Sampling and sequencing

For phylogenomic analyses, we collected 147 samples represent-
ing 114 taxa from Rhododendron sect. Schistanthe and 17 out-
groups (Kron, 1997; Kron et al., 2002; Gillespie & Kron, 2010;

Schwery et al., 2015; Shrestha et al., 2018) (Supporting Informa-
tion Table S1). Plant samples were primarily from cultivated
accessions at the Rhododendron Species Botanical Garden, Fed-
eral Way, WA, USA and the Royal Botanic Garden Edinburgh,
UK. Fresh or silica gel-dried leaf tissue was collected for genomic
DNA extraction using the DNeasy® Plant Mini Kit (Qiagen®,
Valencia, CA, USA) according to a modified protocol (Soza et al.,
2019).

We followed the method of Etter et al. (2011) for creating
RAD-seq libraries using the PstI restriction enzyme. We prepared
a total of six RAD-seq library pools, each containing 12–33 taxa,
to provide suitable sequencing coverage per sample. We used
400 ng of starting DNA for each sample and reduced all reaction
components proportionally. Pooled libraries were sequenced
individually using 100-bp paired-end reads on a HiSeq 2500 sys-
tem (Illumina Inc., San Diego, CA, USA) by the QB3 Vincent J.
Coates Genomics Sequencing Laboratory, University of Califor-
nia, Berkeley, USA, or the Genomics and Cell Characterization
Core Facility, University of Oregon, Eugene, USA. Further
details of the molecular methods are given in Methods S1.

Identification of RAD loci

We demultiplexed RAD-seq data from each library using PRO-

CESS_RADTAGS in STACKS v.1.47 (Catchen et al., 2011, 2013)
under default settings, discarding reads with low quality scores,
rescuing barcodes and RAD tags, and filtering for adapters by
allowing two mismatches in adapter sequences. We then removed
polymerase chain reaction (PCR) duplicates from our data using
the paired-end reads and CLONE_FILTER in STACKS. We used
IPYRAD v.0.7.17 (Eaton, 2014; Eaton & Overcast, 2020) to iden-
tify loci within and across samples for phylogenetic reconstruc-
tions. We determined the optimal clustering threshold of 0.91
empirically (Fig. S1; Methods S2) and used the Rhododendron
delavayi Franch. genome (Zhang et al., 2017) as the reference.
Based on our RAD optimisation results (Fig. S2a–c; Methods
S2), we allowed a maximum of eight indels, 34 single nucleotide
polymorphisms (SNPs) and a shared heterozygosity value of 0.3
per locus to obtain alignments for phylogenetic inference. We
generated a total of four datasets that allowed different amounts
of sample coverage across loci: requiring a minimum of 4, 37, 74
and 111 samples per locus (Fig. S2d; Table S2). We refer to these
datasets subsequently as min4, min37, min74 and min111,
respectively.

Phylogenetic reconstructions and estimates of introgression

We reconstructed phylogenetic relationships across sect. Schistan-
the and outgroups using a maximum likelihood (ML) topology
search in RAXML v.8.2.11 (Stamatakis, 2014) and the multi-
species coalescent model in SVDQUARTETS (Chifman &
Kubatko, 2014, 2015) for each of the four datasets above. Root-
ing for phylogenetic trees followed relationships from prior stud-
ies (Kron, 1997; Gillespie & Kron, 2010; Schwery et al., 2015;
Rose et al., 2018; Shrestha et al., 2018). Topological support was
estimated using bootstrap (bs) support and QUARTET SAMPLING

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

New Phytologist (2022)
www.newphytologist.com

New
Phytologist Research 3



v.1.3.1 (Pease et al., 2018). Further details of the phylogenetic
methods are given in Methods S3.

We then used the D-statistic (ABBA-BABA test) (Green et al.,
2010; Durand et al., 2011) as implemented in DSUITE v.0.3r21
(Malinsky et al., 2021) to assess the extent of hybridisation across
the group. Three different methods were used (Methods S4) and
corresponding P-values were adjusted with the Benjamini–
Hochberg correction using RSTATIX (Kassambara, 2020) in
R v.4.0.3 (R Core Team, 2020) for generating a heatmap.

Molecular dating and biogeography

Due to the large size of our molecular datasets, we obtained esti-
mates of clade ages for sect. Schistanthe using penalised likelihood
(Sanderson, 2002) in TREEPL (Smith & O’Meara, 2012). We
used the ML topology from the min4 dataset to optimise param-
eters in TREEPL and as a topological constraint to generate 1000
rapid bootstrap replicates with branch lengths, under the
GTRCAT model in RAXML v.8.2.12, for confidence intervals,
as described in Maurin (2020). We used four fossil calibrations
that have been used in prior studies of Ericaceae (Schwery et al.,
2015; Xing & Ree, 2017) to provide minimum ages for the
crowns of Erica, Kalmia and Rhododendron and a maximum age
for the root. Further details of the molecular dating are given in
Methods S5. The resulting chronogram was visualised in R
v.4.0.3 using TREEIO v.1.12.0 (Wang et al., 2020) and GGTREE

v.2.2.4 (Yu, 2020).
While the lack of species-level resolution and presence of phy-

logenetic conflict prevented formal fine-scale biogeographic and
diversification analyses, we estimated ages of clades and high-
lighted clades’ geographic distributions based on extant distribu-
tions. We classified geographic areas in the archipelago into five
regions based on important faunal boundaries: west of Huxley’s
Line, the Philippines, Sulawesi and the Lesser Sunda Islands, the
Moluccas and east of Lydekker’s Line. We used geographic distri-
butions from Argent (2015) for taxa sampled in our study to esti-
mate clade occurrence in each geographic region. We used
GGPLOT2, RNATURALEARTH (South, 2017) and SF (Pebesma, 2018)
in R v.4.0.3 to generate a map of these geographic regions.

Morphometric analyses

To quantify the symmetry of flowers from species in sect. Schis-
tanthe, we used the geometric morphometric technique of ellipti-
cal Fourier analysis (eFa) (Kuhl & Giardina, 1982; Kincaid &
Schneider, 1983; Claude, 2008), which is used to extract quanti-
tative information from curved structures, such as corolla tubes
and corolla lobes in Rhododendron. In addition, we used this
approach to characterise the complex variation in floral symmetry
present in this clade from front and side views of flowers. eFa was
implemented with the R library MOMOCS (Bonhomme et al.,
2014). The inputs for eFa were two-dimensional black outlines
placed on white backgrounds and saved as jpg files. To this end,
we took macro photographs of the front and side views of flowers
from cultivated material placed against a plain background, or
obtained images from the literature for our sampled taxa

(Table S1), and used GIMP v.2.10.8 (The GIMP Development
Team, 2018) to create and save the outlines (Methods S6). To
align the outlines and avoid their inadvertent twisting during eFa,
three and four landmarks were placed on the side- and front-view
outlines, respectively. In side-view outlines, one landmark was
placed at the base of the corolla tube, a second at the end of the
upper lip and a third at the end of the lower lip. For front-view
outlines, one landmark was placed on each side at the middle,
one at the top and one at the bottom. After placing the land-
marks, a full generalised procrustes alignment between outlines
of each structure was conducted and the resulting aligned outlines
were evaluated to determine the number of harmonics needed to
achieve enough harmonic power for the eFa. The resulting eFa
coefficients were used to calculate a mean shape per species and
then summarised using principal component analysis (PCA). As
we were interested in overall variation among species and not
between the left and right side of the front view of the corolla,
within-specimen variation between opposing halves was removed
with the rm_sym function in MOMOCS before PCA.

To characterise floral symmetry, we used K-means clustering
with the R library NBCLUST (Charrad et al., 2014) and tested for
the presence of distinct morphological groups using the first three
principal components (PC) for each view of the corollas. NBCLUST

provides 30 indices to determine the best number of clusters in
the data and proposes a best clustering scheme based on the
majority rule. The possible numbers of clusters were set to the
minimum allowed of two and a maximum of 20. We grouped
taxa in morphospaces by K-means clustering, clade and corolla
colour (Methods S6). Clades were assigned based on the
SVDQUARTETS analyses of the min4 dataset.

Last, to examine the evolution of floral morphology during the
evolutionary history of sect. Schistanthe, we tested for the pres-
ence of evolutionary shifts using an Ornstein–Uhlenbeck (OU)
process modelling approach implemented in the R library l1ou
(Khabbazian et al., 2016). The OU process is useful in the con-
text of flower evolution because it models natural selection
directly (Butler & King, 2004) and flowers are usually under
selective pressure by pollinators. Its implementation with l1ou
allows for the detection of significant shifts on a phylogeny into
multiple morphological regimes without having to a priori deter-
mine where changes might have occurred. We ran two multivari-
ate analyses, one for the front and one for the side view of
flowers. In each analysis, the first three PCs were included. To
choose the best shift configuration, we used the phylogenetic
Bayesian information criterion (pBIC), which has been shown to
be conservative and therefore reduce the possibility of detecting
unsupported shifts.

Results

Phylogenomic conflict highlights introgression within
Rhododendron sect. Schistanthe

We estimated phylogenetic relationships across 147 geographi-
cally widespread samples from Rhododendron sect. Schistanthe
and outgroups using four RAD-seq datasets with different levels
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of missing data and two reconstruction methods: ML in RAXML
and the multispecies coalescent model in SVDQUARTETS (SVDQ).
All RAXML and SVDQ reconstructions supported the monophyly
of sect. Schistanthe (Figs 2, 3, S3–S9). However, these results also
highlighted phylogenetic conflict and uncertainty with respect to
seven clades. For example, comparing across these two phyloge-
netic methods and four datasets, we found strong bs support
(100% across all SVDQ and RAXML topologies) for four clades
(clades 2, 3, 4 and 7) but conflict in three clades (clades 1, 5 and
6) (Figs 2, 3, S3–S9).

We then used bs support to identify the most strongly sup-
ported topology from each reconstruction method and QUARTET

SAMPLING to verify relationships and/or confirm conflict. In both
RAXML and SVDQ reconstructions, the min4 dataset resulted in
the most strongly supported topology based on bs values (Figs 3,
S3). We re-examined support for clades in the RAXML and
SVDQ topologies from this dataset using Quartet Concordance
(QC) and Quartet Differential (QD) scores. In the RAXML
topology, seven clades were strongly supported (QC = 1,
QD =N/A): 1a, 1b, 2–5 and 7 (Fig. S3). In the SVDQ topology,
six clades were strongly supported (QC = 1, QD =N/A): 2–5
and 7 (Fig. 3). Based on relationships across these topologies and
using the classification of Craven et al. (2011), we recognised
seven main clades in sect. Schistanthe. Clade 1, 2 and 3 corre-
sponded to subsects. Pseudovireya, Discovireya and Malayovireya,
respectively, while clades 4–7 corresponded to subsect. Euvireya.
Therefore, we referred to clades 1–7 as Pseudovireya, Dis-
covireya, Malayovireya, Euvireya A, Euvireya B, Euvireya C and
Euvireya D, respectively (Fig. 3).

Comparing the two most strongly supported topologies from
each reconstruction method, we found that conflict between
topologies may be due in part to introgression as 41%
(RAXML) and 46% (SVDQ) of nodes had QD scores < 0.5
(Figs 3, S3). We then assessed the history of hybridisation
across sect. Schistanthe using the D-statistic (ABBA-BABA test)
as implemented in DSUITE. Based on three methods used to cal-
culate D-statistics, we found differing amounts of introgression,
and here we highlight our results from DBBAA as moderate esti-
mates of the D-statistic (Figs 4, S10, S11). We observed signifi-
cantly high D-statistics within clades Euvireya A (clade 4) (e.g.
R. impositum and R. zollingeri, DBBAA = 0.7, P < 19 10–15),
Euvireya C (clade 6) (e.g. R. longiflorum and R. polyanthemum,
DBBAA = 0.65, P < 19 10–15) and Euvireya D (clade 7) (e.g.
R. blackii and R. maius, DBBAA = 0.76, P < 19 10–15). We
found strong support for introgression between clades Euvireya
A (clade 4) and Euvireya D (clade 7) (e.g. R. brassii and
R. gracilentum, DBBAA = 0.61, P < 19 10–15) and between
clades Euvireya C (clade 6) and Euvireya D (clade 7) (e.g.
R. blackii and R. edanoi, DBBAA = 0.86, P < 19 10–15). We did
not find strong signals of introgression with Pseudovireya (clade
1), Discovireya (clade 2), Malayovireya (clade 3) and Euvireya
B (clade 5) but also lacked enough information to confidently
determine this in these groups (Fig. 4). Overall, the evidence
from D-statistics pointed to introgression within and between
clades within sect. Schistanthe that is probably causing topologi-
cal conflict.

Temporal origins of clades in Rhododendron sect.
Schistanthe

We subsequently estimated ages for clades within sect. Schistanthe
to provide a temporal context for downstream morphological
analyses of floral variation using the RAXML min4 topology and
four fossil calibrations with penalised likelihood in TREEPL. Our
analyses estimated a mean (95% confidence interval) crown age
of 31.04 (30.66–31.38) million years ago (Ma) for sect. Schistan-
the (Fig. 5). Rhododendron subsect. Euvireya had a mean crown
age of 18.48 (18.25–18.69) Ma; its subclades, as represented by
clades Euvireya A–D (clades 4–7), had mean crown ages of 12.65
(12.50–12.80), 7.89 (7.76–8.02), 11.89 (11.74–12.01) and 6.33
(6.25–6.41) Ma, respectively (Fig. 5). Based on current species
distributions, we mapped geographic regions to clades and esti-
mated that the New Guinean radiation, as evidenced by the
diversity present in clade Euvireya D (clade 7), began c. 6.33Ma
(Fig. 5). All taxa sampled in this clade occur east of Lydekker’s
Line except for R. zoelleri, which occurs in the Moluccas as well.

Characterising flower symmetry variation using both front
and side views of corollas

To characterise flower symmetry variation in sect. Schistanthe, we
used eFa and PCA to quantify and summarise the overall symme-
try of front and side views of corollas from taxa sampled in our
study. We generated a total of 168 outlines representing 95 taxa
for the front view of the corolla (taxon mean n = 1.77
(SD = 0.83)) and 166 outlines representing 97 taxa for the side
view of the corolla (taxon mean n = 1.71 (SD = 0.91)) (Fig. S12).
The outlines, both raw and landmarked, are available in Dryad
(please refer to Data availability). For both corolla views, > 99%
of harmonic power was achieved with 32 harmonics, so this
number was used in the eFa. The PCA of the eFa coefficients
from the front of the corolla resulted in a total of 73% of the vari-
ation explained by the first three PCs (PC1 = 32%, PC2 = 27%
and PC3 = 14%) (Fig. 6a,b). PC1 explained variation in depth of
petal lobing. PC2 captured variation in asymmetry between the
upper and lower parts of the flower. PC3 represented variation in
the number and shape of lateral petal lobes as well as differences
in the angle and depth of lobing between petal lobes in the upper
vs lower parts of the flower. The PCA of the side of the corolla
explained 87% of the variation in the first three PCs
(PC1 = 67%, PC2 = 11% and PC3 = 9%) (Fig. 7a,b). PC1
explained variation in corolla tube length. PC2 explained varia-
tion in corolla tube width and asymmetry in reflexing of the
upper vs lower petal lobes. PC3 explained the curvature of corolla
tube, tube angle and length differences between the upper and
lower lobes.

In both views, an apparent morphological continuum made it
difficult to identify transitions between radial and bilateral sym-
metry. Therefore, we used K-means clustering to test for distinct
symmetry phenotypes in sect. Schistanthe. After evaluating 30
indices for the optimal number of clusters, NBCLUST used the
majority rule to identify five clusters in the front view and two
clusters in the side view (Fig. S13). The clusters from the front
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view appeared to delineate symmetry types: three clusters of bilat-
erally symmetric flowers and two clusters of more radially sym-
metric flowers, with each cluster differing in petal number,
lobing, curvature, angle and/or length (Fig. S13a,b). However, in
side view, K-means clustering did not identify distinct bilaterally
symmetric phenotypes, but rather it identified clusters that were

mainly defined by the length of the tubes (Fig. S13c,d). All flow-
ers appeared bilaterally symmetric in side view due to asymmetry
between the upper and lower lobes of the corolla (Fig. S13c,d).
Despite the morphological continuum and different components
of corolla symmetry, we identified five distinct symmetry pheno-
types in sect. Schistanthe using the front views of corollas.
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Fig. 4 Heatmap of DBBAA-statistics in Rhododendron sect. Schistanthe. D-statistics were calculated by inferring species relationships based on the
frequency of BBAA patterns. P2 and P3 taxa are arranged along the vertical and horizontal axes. Clade designations and numbers are indicated along taxon
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Characterising flower symmetry evolution in a
morphological radiation

We examined clade occupancy of corolla morphospace as a
means to understand flower symmetry evolution within sect.
Schistanthe given phylogenetic conflict. When considering the
front-view morphospace between PC1 and PC2, clades Pseu-
dovireya (clade 1), Discovireya (clade 2), Malayovireya (clade 3)
and Euvireya B (clade 5) occupied relatively small areas of the
morphospace and exhibited radially symmetric flowers (Fig. 6a).
By contrast, clades Euvireya A (clade 4), Euvireya C (clade 6) and
Euvireya D (clade 7) occupied the largest morphological spaces
exhibiting different types of radially and bilaterally symmetric
flowers (Fig. 6a). When PC3 was included, we observed clade
Euvireya D (clade 7) expanding into a new morphological space
where corollas became more than five-lobed due to two extra
lobes in lateral positions, and upper petals had wider angles

between the lobes and/or shallower lobes compared with the
lower petals (Fig. 6b), generating a novel form of bilateral sym-
metry. Taken together, clade Euvireya D (clade 7) explored more
morphospace than other clades when considering the majority of
variation from all three PCs representing the front views of corol-
las.

We then investigated shifts in floral evolution in clades
through time using the RAXML min4 topology. Across all PCs
for the front view of corollas, one shift was detected in clade
Euvireya D (clade 7) that was shared by multiple species (R. gar-
denia, R. hellwigii, R. konori, R. leucogigas and R. superbum)
(Fig. 6c). This shift confirmed the novel origin of bilaterally sym-
metric corollas due to increased lateral lobes and upper petals
with wider angles between the lobes and/or shallower lobes than
the lower petals in clade Euvireya D (clade 7) (Fig. 6c).

As PC1 represented depth of petal lobing but not symmetry,
we used the origin of clades in PC2 and PC3 to examine

Empetrum nigrum

Erica arborea
Erica scoparia

Kalmia sp.
Kalmiopsis fragrans

Kalmia latifolia

R. abietifolium

R. acrophilum

R. agathodaemonis

R. album

R. albiflorum
R. albrechtii

R. alticola

R. anagalliflorum

R. apoanum

R. bagobonum 3
R. bagobonum 5

R. bagobonum 1

R. bagobonum 8

R. bagobonum 2

R. bagobonum 7
R. bagobonum 6

R. bagobonum 4

R. bagobonum 9

R. bagobonum 10

R. banghamiorum

R. beyerinckianum

R. blackii

R. borneense subsp. villosum

R. brassii

R. burttii

R. buxifolium

R. caliginis

R. camtschaticum

R. carringtoniae

R. celebicum

R. chevalieri

R. christi

R. christianae

R. citrinum

R. commonae

R. crassifolium

R. culminicolum

R. dielsianum var. dielsianum

R. edanoi subsp. edanoi

R. emarginatum

R. ericoides

R. ferrugineum

R. flavoviride

R. gardenia

R. goodenoughii

R. gracilentum

R. hellwigii

R. herzogii

R. hyacinthosmum

R. impositum

R. inconspicuum

R. jasminiflorum subsp. jasminiflorum

R. javanicum subsp. brookeanum 2
R. javanicum subsp. brookeanum 1

R. javanicum subsp. cladotrichum 2

R. cockburnii

R. javanicum subsp. cladotrichum 1

R. javanicum subsp. gracile 2
R. javanicum subsp. gracile 1

R. javanicum subsp. javanicum

R. javanicum subsp. kinabaluense

R. javanicum subsp. moultonii

R. javanicum subsp. palawanense 1
R. javanicum subsp. palawanense 2

R. javanicum subsp. schadenbergii 1
R. javanicum subsp. schadenbergii 2
R. javanicum subsp. schadenbergii 3

R. kawakamii

R. kochii

R. konori var. konori

R. laetum

R. lagunculicarpum

R. lamrialianum subsp. lamrialianum

R. lanceolatum

R. leptanthum

R. leptobrachion

R. leucogigas

R. lochae

R. longiflorum

R. loranthiflorum subsp. loranthiflorum
R. luraluense

R. macgregoriae

R. maius

R. malayanum

R. meliphagidum

R. multicolor

R. muscicola

R. sp. nova

R. orbiculatum

R. pachystigma

R. pauciflorum

R. perakense

R. phaeochitum

R. polyanthemum

R. praetervisum

R. pulleanum

R. quadrasianum var. quadrasianum

R. radians

R. rappardii

R. rarilepidotum

R. rarum

R. retusum

R. retivenium 1
R. retivenium 2

R. rhodoleucum

R. bloembergenii

R. robinsonii

R. rousei

R. rubineiflorum

R. ruttenii

R. santapaui

R. saxifragoides

R. scortechinii

R. searleanum

R. solitarium

R. stapfianum

R. stenophyllum subsp. stenophyllum

R. suaveolens

R. superbum

R. taxifolium

R. tuba

R. vaccinioides

R. vidalii subsp. vidalii

R. vinicolor

R. vitis-idaea

R. wentianum

R. womersleyi

R. wrightianum var. wrightianum

R. yelliotii

R. zoelleri

R. zollingeri

R. anthopogon

R. himantodes var. himantodes

R. macrophyllum

R. minus

R. molle
R. periclymenoides

R. primuliflorum

R. rugosum var. rugosum

R. rushforthii

R. sutchuenense

Pseudovireya
Clade 1

Discovireya
Clade 2

Malayovireya
Clade 3

Euvireya B
Clade 5

Euvireya A
Clade 4

Euvireya C
Clade 6

Euvireya D
Clade 7

90 80 70 60 50 40 30 20 10 0 Ma

Fig. 5 Chronogram of Rhododendron sect. Schistanthe and outgroups. Penalised likelihood and four fossil calibrations were used with the RAXML
topology from the min4 dataset to infer ages (Ma, million years ago). Extant geographic distribution of sect. Schistanthe is indicated by coloured regions on
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coloured vertical bars.
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symmetry evolution. Using the origin of clades in PC2, early
diverging clades Pseudovireya (clade 1), Discovireya (clade 2)
and Malayovireya (clade 3) appeared to have ancestral pheno-
types of radially symmetric flowers (Fig. 6c). However, when
PC3 was included, clades Pseudovireya (clade 1) and Dis-
covireya (clade 2) showed origins near a phenotype that had
bilaterally symmetric flowers due to wider angles between lower
petal lobes than between upper petal lobes (Fig. 6c). From this
ancestral phenotype, transitions to radial symmetry and other
types of bilateral symmetry occurred within clades (Fig. 6c).
Therefore, sect. Schistanthe may have been ancestrally bilaterally
symmetric with wider angles between the lower petal lobes than
between the upper lobes. Transitions to radial symmetry and
other types of bilateral symmetry occurred in the group with a

novel type of bilateral symmetry arising in clade Euvireya D
(clade 7).

We also examined clade occupancy of side-view corolla mor-
phospace as a means to understand flower symmetry evolution.
When examining variation in PC1 and PC2, clades Pseudovireya
(clade 1), Discovireya (clade 2) and Euvireya B (clade 5) occu-
pied the smallest morphological spaces, followed by clade Malay-
ovireya (clade 3), while clades Euvireya A (clade 4), Euvireya C
(clade 6) and Euvireya D (clade 7) occupied the largest morpho-
logical spaces (Fig. 7a). When PC3 was included, we observed
clade Euvireya D (clade 7) expanding into a new morphological
space where corolla tubes become curved with longer upper lobes
than lower lobes (Fig. 7b), generating a novel form of bilateral
symmetry. Taken together, clade Euvireya D (clade 7) explored

(a)

(c)

(b)

Fig. 6 Morphospace variation of the front view of corollas from Rhododendron sect. Schistanthe. (a, b) Coloured dots and polygons correspond to clade
designations in (c). Polygons represent total morphospace occupied by each clade. (c) Result of multivariate shift detection analysis under an Ornstein–
Uhlenbeck process with l1ou. The best shift configuration included five shifts (each indicated with an asterisk) from the background regime (grey) into five
different regimes (coloured edges). Example outlines corresponding to the mean and extreme principal component (PC) values are shown below the bar
plot of tip data for each PC axis. Tips are labelled with square symbols coloured based on clade designations in (c).
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more morphospace than other clades when considering the
majority of variation from all three PCs representing the side
views of corollas.

We again investigated shifts in floral evolution in clades
through time, taking into account the side view of corollas.
Across all PCs, two additional shifts were detected in clade
Euvireya D (clade 7) that were shared by multiple species
(Fig. 7c). One shift was shared by R. agathodaemonis, R. carringto-
niae, R. goodenoughii and R. herzogii and exhibited flowers with
longer, narrower corolla tubes and asymmetry in reflexing of the
upper vs lower petals. The second shift was shared by R. beyer-
inckianum, R. calignis, R. dielsianum, R. leptanthum, R. phaeochi-
tum and R. rarum and confirmed the origin of a second novel
form of bilateral symmetry in clade Euvireya D (clade 7), which
exhibited curved corolla tubes and longer upper petal lobes than
lower petal lobes (Fig. 7c). When we included these side views,
we observed that all taxa sampled had some form of asymmetry
between the upper and lower parts of the flower due to differen-
tial reflexing or length of lobes (Fig. 7c). Therefore, taking a side
view of flowers showed that the ancestral phenotype of sect. Schis-
tanthe may have been a bilaterally symmetric flower that also

exhibited asymmetry between the upper and lower parts of the
flower, followed by other types of asymmetry between the upper
and lower parts of the flower arising within clades.

Discussion

We used reduced genome-wide sequencing from 114 members
of Rhododendron sect. Schistanthe and revealed the evolution of
floral diversity across the tropical radiation of Rhododendron in
Southeast Asia by using morphometrics of corollas to characterise
variation in corolla symmetry. Corolla symmetry in sect. Schis-
tanthe is a spectrum of bilateral symmetry that exhibits variation
in asymmetry between the upper and lower parts of the corolla
with respect to petal curvature, number, angle, length and/or
reflexing. We suggest that the ancestral corolla phenotype for
sect. Schistanthe may have been bilaterally symmetrical when tak-
ing into account both front and side views of the corolla. The
New Guinean radiation of sect. Schistanthe (Euvireya D, clade 7)
evolved to occupy the largest corolla morphospace in the shortest
amount of time and witnessed three shifts in floral evolution.
This included the origin of two unique types of bilateral

(a)

(c)

(b)

Fig. 7 Morphospace variation of the side view of corollas from Rhododendron sect. Schistanthe. (a, b) Coloured dots and polygons correspond to clade
designations in (c). Polygons represent total morphospace occupied by each clade. (c) Result of multivariate shift detection analysis under an Ornstein–
Uhlenbeck process with l1ou. The best shift configuration included four shifts (each indicated with an asterisk) from the background regime (grey) into four
different regimes (coloured edges). Example outlines corresponding to the mean and extreme principal component (PC) values are shown below the bar
plot of tip data for each PC axis. Tips are labelled with square symbols coloured based on clade designations in (c).
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symmetry, in which corollas either show doubling of lateral petals
and wider angles between upper vs lower petal lobes or corolla
tubes become curved with longer upper than lower petal lobes.

Phylogenetic history of Rhododendron sect. Schistanthe is
confounded by recent speciation, hybridisation and
introgression

Understanding the evolution of floral diversity in sect. Schistanthe
is impeded by phylogenetic complexity and uncertainty. Prior
phylogenetic studies of sect. Schistanthe based on cpDNA
(Kurashige et al., 2001; Brown et al., 2006a) or several nuclear
genes (RPB2-D, RPB2-I, RPC1) (Goetsch et al., 2011) showed
sect. Schistanthe as polyphyletic, whereas studies based on ITS
showed monophyly for the group (Brown et al., 2006b). In all
our phylogenomic analyses, we recovered a monophyletic sect.
Schistanthe. The presence of idioblasts, cells that are likely to
function as a water buffering system (Tulyananda & Nilsen,
2017), in leaves has been identified as a morphological synapo-
morphy for sect. Schistanthe (Nilsen, 2003; Nilsen & Scheckler,
2003) and supports its monophyly. However, we did find con-
flict in the monophyly of subsect. Pseudovireya that could be due
to introgression with a relative outside of sect. Schistanthe that we
did not sample. In addition, we confirmed the monophyly of the
other three subsections in the group: Discovireya, Malayovireya
and Euvireya. We reconstructed subsect. Pseudovireya as sister to
the other subsections, whereas the nuclear gene phylogeny of
Goetsch et al. (2011) reconstructed subsect. Discovireya as sister
to the other subsections. Based on our phylogenetic reconstruc-
tions and subsect. Pseudovireya’s extant geographic distribution
in India and China (Fig. 5) (Argent, 2015), Pseudovireya is likely
to be sister to the rest of sect. Schistante and the probable origin
for sect. Schistanthe.

We found evidence of introgression both within and between
clades of sect. Schistanthe, which may in part be a cause of phylo-
genetic conflict and uncertainty. Hybridisation has previously
been reported between members within clades (Sleumer, 1973;
Stevens, 1974; Argent, 1985, 2015; Cruttwell, 1988; Argent
et al., 2007; Craven et al., 2011) and between clades (Sleumer,
1966, 1973; Argent, 1985, 2015; Cruttwell, 1988; Argent et al.,
2007). Two potential introgression events we detected between
clades that were likely to be the cause of topological conflict were
(1) between R. longiflorum (clade Euvireya C/clade 6) and the
majority of clade Euvireya D (clade 7), which potentially affected
the monophyly of clade Euvireya C (clade 6), and (2) a weak sig-
nal of introgression between clades Euvireya B (clade 5) and
Euvireya D (clade 7), potentially affecting the position and
monophyly of clade Euvireya B (clade 5). We also detected many
cases of introgression within clades. Species from sect. Schistanthe
hybridise easily in cultivation as long as species have similar style
lengths (Williams & Rouse, 1988; Rouse et al., 1993), with the
exception of members from clade Pseudovireya (clade 1), which
are incompatible in artificial crosses that have been attempted
(Rouse, 1985; Rouse et al., 1993). All chromosome counts to
date are uniformly 2n = 26 (Janaki Ammal et al., 1950; Jones &
Brighton, 1972; Atkinson et al., 2000), suggesting that

polyploidy is not a barrier between species and indicating homo-
ploid hybridisation within the group. Therefore, hybridisation is
widely reported in Rhododendron, and the recent rapid diversifica-
tion of species may have been stimulated by hybridisation and
introgression between species from across the group. Further
genomic sequencing of sympatric taxa may shed light on the
mode and tempo of hybridisation and whether adaptive intro-
gression underlies the evolution of novel floral morphologies.

Floral radiation in Rhododendron sect. Schistanthe

We found a spectrum of bilateral symmetry in sect. Schistanthe.
This variation is based on asymmetry between the upper and
lower parts of the corolla with respect to curvature of petals,
number of petals, angles between petal lobes, length of lobes and/
or reflexing of lobes. We inferred a likely ancestral phenotype of
bilateral symmetry for sect. Schistanthe, and we estimated that all
sampled taxa were bilaterally symmetrical when taking into
account the side view of corollas. However, when only examining
the front view of corollas, different types of radial and bilateral
symmetry can be recognised. Therefore, different symmetry types
have evolved in the group, and symmetry here is more of a con-
tinuum rather than two different states (radial or bilateral). Our
results contrast with previous work that used a more subjective
coding of symmetry and only the front view of corollas, which
inferred a radially symmetric corolla for sect. Schistanthe (Berry
et al., 2018). Future studies are needed to comprehensively evalu-
ate the ancestral phenotype for sect. Schistanthe taking into
account suitable sampling of outgroups, quantitative three-
dimensional views of the flower and species tree methods that
account for introgression.

In general, the low proportion of variance explained by each
PC in our morphometric analyses showed the complexity of
corolla morphology in sect. Schistanthe. Other studies that have
attempted to examine corolla shape in the group have also found
it to be highly homoplasious (Brown et al., 2006a). Variation and
overlap among clades Euvireya A (clade 4), Euvireya C (clade 6)
and Euvireya D (clade 7) could have potentially resulted from
introgression facilitating convergent evolution, as we found evi-
dence for introgression among these clades. Nevertheless, we
observed species from the New Guinean clade (Euvireya D, clade
7) expanding into new morphological space distinct from other
clades. We recognised two novel forms of bilateral symmetry
unique to this clade (Fig. S14), including 38 species in New
Guinea that have an ornithophilous type of flower with a curved
corolla tube and adaxially positioned stamens and style (Stevens,
1982, 1985) and 10 species from New Guinea that have white,
sweet-scented flowers thought to be bat-pollinated with seven
corolla lobes, 14 stamens and a seven-lobed stigma (Sleumer,
1966; van Royen & Kores, 1982; Stevens, 1982, 1985; Rouse,
1985; Cruttwell, 1988; Argent, 2015). Both of these bilaterally
symmetric flower types were considered by Stevens (1982) to be
unique for Ericaceae. We found an expansion of clade Euvireya
D (clade 7) into new corolla spaces that probably reflects mor-
phological radiation in this New Guinean group. Cruttwell
(1988) hypothesised that rhododendrons in New Guinea were in
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a ‘rapid state of evolution’ due to their great morphological varia-
tion, local occurrence of many species, high degree of endemism
and potential for hybrid swarms. In our study, we found evidence
for this great morphological variation, local occurrence of many
species and extensive hybridisation in this recent radiation.

Pollination information for sect. Schistanthe is patchy, with vis-
itor observations (Stevens, 1976; Argent, 1985; Cruttwell, 1988;
Argent et al., 2007), but no studies confirming these animals as
pollinators. Flowers from the section are presented in a variety of
ways: erect to horizontal to pendent (Fig. 1) (Argent, 2015). Sun-
birds (Nectariniidae), honeyeaters (Meliphagidae), butterflies,
bees and other groups in the Old World appear to be pollinators
(reviewed in Stevens, 1976; Stevens et al., 2004), while bird polli-
nation seems to predominate in species at high altitudes
(>3000 m) in New Guinea (Stevens, 1976). Wade & McVean
(1969) considered the wide range in corolla tube lengths across
sect. Schistanthe as an adaptation to diverse honeyeaters, with
long bills visiting species with long, curved corolla tubes and
adaxially positioned stamens, whereas shorter billed members vis-
ited species with shorter tubes (Wade & McVean, 1969). How-
ever, further west in the Malay Archipelago, sunbirds are the
main group of nectar-eating birds and have been observed visit-
ing sect. Schistanthe in this region (Stevens, 1976). Species that
are likely to be pollinated by butterflies, sphingids and bats are
found more commonly below 3000 m (reviewed in Stevens et al.,
2004). Butterflies have been observed visiting species with large,
orange-yellow, broadly funnel-shaped flowers or red/yellow-
flowered species, such as R. christi and R. javanicum (Stevens,
1976; Argent, 1985; Cruttwell, 1988), but no observations have
been recorded of visits by moths or bats. Despite the observations
made, more experimental studies are needed to determine
whether pollinator-mediated selection has contributed to this
wide morphological variation of corollas within sect. Schistanthe.

Future directions

We used morphometrics of both the front and side views of
corollas to characterise and understand symmetry evolution in
sect. Schistanthe. We used side views of corolla outlines for the
first time to examine corolla symmetry variation in angiosperms
and, in so doing, we obtained a more holistic view of symmetry.
Extending this method to examine floral symmetry evolution in
other angiosperms will allow future studies to quantify variation
more accurately. In addition, using morphometrics to charac-
terise changes in floral symmetry may reveal genomic differences
underlying different transitions in symmetry.

Different genetic components could be controlling each com-
ponent of floral symmetry observed in sect. Schistanthe. For
example, the transcription factor CYCLOIDEA is likely to be
involved in the asymmetrical growth of petals and petal number
(Luo et al., 1996, 1999; Preston et al., 2014; Berger et al., 2017;
Hsu et al., 2017; Ramage et al., 2021). Therefore, this group is
an ideal system to study the genetic underpinnings involved in
variation of corolla symmetry and its associated transitions. Other
Rhododendron species outside of sect. Schistanthe also deviate
from the normal five-merous flowers of the genus but appear

radially symmetrical with fewer than (e.g. former Menziesia) or
greater than five petals. Therefore, morphometric analyses of the
corolla should be expanded to the entire genus in future studies
for a more holistic view of the flower. Three-dimensional imag-
ing using methods such as microcomputed tomography (Wang
et al., 2015) will be useful for capturing overall floral symmetry
variation more accurately.
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