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A Network-Enabled Myoelectric Platform for Prototyping Research
Outside of the Lab

Matthew Dyson1, Jennifer Olsen1 and Sigrid Dupan2

Abstract— We present a network-enabled myoelectric
platform for performing research outside of the laboratory
environment. A low-cost, flexible, modular design based on
common Internet of Things connectivity technology allows
home-based research to be piloted. An outline of the platform
is presented followed by technical results obtained from ten
days of home-based tests with three participants. Results
show the system enabled collection of close to 12,000 trials
during around 28 cumulative hours of use. Home-based testing
of multiple participants in parallel offers efficiency gains
and provides a intuitive route toward long-term testing of
upper-limb prosthetic devices in more naturalistic settings.

Clinical relevance— In-home myoelectric training reduces
clinician time. Network-enabled systems with back-end dash-
boards allow clinicians to monitor patients myoelectric ability
over time and will provide a new way of accessing information
about how upper-limb prosthetics are commonly used.

I. INTRODUCTION

Active hand prostheses are most commonly controlled
using myoelectric control, i.e. the estimation of user intent
from muscle activity in the users residual limb via the
electromyogram [1]. A growing body of evidence shows
that offline performance in myoelectric control has weak
correlation to online control [2], [3]. Accordingly, there is
increased demand for user-in-the-loop tests of new and novel
systems, necessitating increased participant involvement in
system development. Home-based, or outside-of-the-lab, re-
search offers opportunities for more efficient closed-loop data
collection in more naturalistic settings.

Closed-loop myoelectrics systems allow users to improve
performance. This occurs across various control schemes
including direct control [4], pattern recognition [5], [6], [4],
[7] and regression [8], [3]. This apparent learning has been
investigated in single sessions [8], [3], in multi-day studies
[9], [4], [10], [6], [7] and in multi-week studies [5], [10].
There is also a growing body of prosthesis control which
uses non-biomimetic mappings between muscle activity and
prosthesis grasps [11], [12], [13], [14], [15], [16]. Many of
these approaches use motor-learning techniques and conse-
quently performance improves over time [13], [15]. These
approaches are not conducive to laboratory testing of naive
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Fig. 1. Myoelectric device and sample calibration software. (a) Device
in 3D printed housing with two EMG sensors attached. (b) Upper forearm
placement with sensors on flexor and extensor. (c) Android interface and
(d) browser interface used for calibration showing stylised EMG. Images
shows activity associated with wrist extension followed by flexion with
representative crosstalk and signal to noise ratio against baseline.

participants because, although performance improvements
are observed, predicting when participants will reach pro-
ficiency is logistically challenging.

Beyond learning-based prosthesis control, EMG signals
acquired during long-term use of pattern recognition systems
change over time [17], [7] and error-rates associated with
extended use of pattern recognition suggest learning [17].
Whether these factors are linked or causal is unknown.
Irrespective, they confound analysis of long term advanced
prosthesis use because distinguishing user adaptation from
machine adaptation in co-adaptive systems is not trivial [15].
These effects are observed during long-term use of closed-
loop systems, and, irrespective of control scheme, necessitate
large scale data collection for meaningful analyses.

These types of data collection are not practical for most
research labs. Instead, it is more pragmatic to use low-cost
devices outside of the lab to collect long-term data from
multiple participants in parallel. We present a flexible, mod-
ular, low cost platform which uses Internet of Things (IoT)
connectivity technology [18] and Bluetooth Low Energy
(BLE) to achieve this. The platform was developed on the
premise that end-to-end systems are necessary to prototype
the novel research designs for beyond the lab research. We
outline the current state of the platform and preliminary
results from ten days of in-home data collection.



II. PLATFORM

The platform comprises a wireless myoelectric device
based on a low-cost development board, software for inter-
facing with hardware appropriate for in-home research and
an online server running IoT and storage services.

A. Myoelectric

The myoelectric device is designed to stream data at
low latency. The device firmware implements simple signal
processing of EMG data, the abstract decoding scheme
described in [1] and a CAN bus for interfacing with upper-
limb prosthetics.

1) Device: The prototype has been developed on an
Adafruit Feather nRF52 Bluefruit LE. The Feather nRF52
is based on a Nordic Semiconductor nRF52832 general-
purpose multiprotocol system on chip which uses an Arm
Cortex M4F processor. The Arm M4F enables floating-point
unit hardware acceleration of single precision float calcu-
lations. The nRF52832 can perform central or peripheral
mode BLE, can concurrently run multiple BLE protocols
and transmit at a bit rate of 2 Mbps. Device communication
occurs over BLE.

2) Sensors: Electromyography signal acquisition is per-
formed using modified OYMotion Analog EMG Sensors.
Modifications were made to reduce sensor noise and the
physical profile. The OYMotion sensor comprises two boards
connected by a 3.5 mm audio cable. The 3.5 mm PCB mount
stereo jack sockets are removed as are the JST connectors.
All contacts are then directly soldered and the PCBs are
vertically stacked. Inertial data is acquired using a Bosch
BNO055 Intelligent 9-Axis Absolute Sensor which outputs
fused sensor data in quaternion form. Typically two channels
of EMG are sampled at 500 Hz and inertial data is sampled
at 20 Hz.

3) CAN bus: The myoelectric can interface with upper-
limb prostheses via a CAN bus module. A low power
Microchip Technology MCP2515 Controller Area Network
Controller can be powered by the 3.3 V Adafruit Feather.
The MCP2515 provides CAN V2 at 1 Mb/s. The interface
has been tested with a Touch Bionics (Össur) RoboLimb.

B. Local devices

Local devices communicate with the myoelectric device
using BLE and can interact with a remote server. In principle,
each device can fulfill any purpose. In practice devices
currently have relatively specialist roles. The device is shown
in Figures 1a and 1b.

1) Computer: Desktop computers have been used for
in-home experiments. The device can be interfaced using
Python or C#. The AxoPy Python library is used for my-
oelectric computer interface experiments [19]. The Unity
development engine is used for myogame development [20].

2) Mobile: Mobile applications are developed in C#. The
Unity development engine is used for rapid prototyping
of software for configuring and calibrating the myoelectric
device. An example of an EMG calibration system running
on a mobile phone is shown in Figure 1c.
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Fig. 2. Overview of platform. Myoelectric with EMG and IMU sensors
and optional CAN Bus interface communicates with local devices over
BLE. General purpose local devices can communicate with a remote server
using MQTT and SFTP protocols. The remote server provides a range of
online IoT services. Communication and control is bidirectional between
the myoelectric and all other devices on the platform.

3) Single Board Computer: The Raspberry Pi is a low
power, low cost, single board computer with a small form
factor and are used for passive monitoring of the myoelectric
device, bridging of the device to the internet and local
provision of non-CPU intensive services.

C. Remote server

A remote backend server provides services which allow
data to be collected outside of the lab. Services are compart-
mentalised for security. The core services used are:

1) Message Queuing Telemetry Transport: Message
Queuing Telemetry Transport (MQTT) is a standard IoT
messaging protocol which uses a publish/subscribe transport.
A secure MQTT broker runs on the server. The MQTT broker
communicates over Websockets and data is encrypted using
Transport Layer Security (TLS).

2) Secure File Transfer Protocol: Secure Shell (SSH) File
Transfer Protocol (SFTP) is a web file transfer protocol. The
SFTP protocol enables remote file management capabilities
and resumption in the case of transfer failure. SFTP authen-
tication is performed using public-key cryptography.

3) Node-RED: Node-RED is a flow-based development
tool designed for edge-computing by IBM research. The
technology stack behind Node-RED is a node.js Javascript
runtime and Javascript. A browser interface is used for
flow-based programming. Node-RED exposes a range of
open source components which enable rapid prototyping and
development of online IoT services. An example of a Node-
RED browser-based EMG calibration system is shown in
Figure 1d.

An overview of the platform is shown in Figure 2. An
example experiment which uses the platform to train partic-
ipants in EMG control is described in the next section.



III. EXAMPLE EXPERIMENT
A. Participants

Three participants (1 female, 2 male) were recruited. All of
the participants were able-bodied, free from any neurological
or motor disorder, and gave written informed consent. Ethical
approval was granted by the local committee at Newcastle
University (Ref: 17-NAZ-056).

B. Experimental setup

Three participants performed ten days of myoelectric
training in the home. Two EMG channels were used, EMG
data was streamed over BLE to a PC running the Ax-
oPy Python library for real-time myoelectric experiments.
Participants performed a version of the abstract decoding
protocol described in [13], [15] which had been modified
to reduce any reliance upon visual feedback. Calibration
routines were provided which participants used to normalise
the EMG activity they used in task control. Calibration
of EMG activity followed the procedure used in previous
abstract decoding experiments [13], [15].

Each participant did one recording session per day. Par-
ticipants performed experimental runs comprised of 60 trials
in their own time. At the end of each run the result-
ing experimental data - control signal data, configuration
values, and individual trial scores - were compressed and
transmitted to the remote server using SFTP. The MQTT
service maintained a log of participants performance over
time. At the end of each experimental run, participants were
presented with a graph showing their score over time along
with a scoreboard listing the maximum score achieved by
each of the participants involved. Further details regarding
the experimental protocol used for the first five days of
experiments, and preliminary results obtained, can be found
in [21].

C. Results

An overview of use over ten days is shown in Figure 3.
Trial counts were calculated based on all data transmitted
to the server, inclusive of any false start experimental runs.
Figure 3a shows total trials acquired over ten days. During
the first five days 5480 trials were recorded. This includes
additional evaluation trial data not reported in [21]. In total
11611 trials were recorded over ten days. Figure 3b shows
the total hours of use. Hours of use was measured as the time
between starting training and ending training during sessions.
In total there were close to 28 hours of use. Cumulative hours
of data recorded are shown in Figure 3c, these values were
calculated based on the time stamps of files acquired. Close
to 20 hours of experimental data were recorded over ten days.

A brief breakdown of data by participants is shown in
Figure 4. Figure 4a shows the median recording session time
for each participant. There was no significant difference in
median session times between participants (Kruskal-Wallis,
df = 2, x2 = 4.35, p = 0.1134). Total trial counts per
participant are shown in Figure 4b. All participants recorded
over 3000 trials, participants two and three recording over
4000 trials.
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Fig. 3. Overview of platform use over ten days. Sub-plots share the same
horizontal axis. (a) Cumulative experimental trials recorded and sent to the
remote server. (b) Cumulative hours used, measured as initiating a recording
session to completing one, ignoring calibration. (c) Cumulative hours of data
recorded, measured as time series of experimental data recorded.
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IV. CONCLUSIONS

We have demonstrated that a network-enabled myoelectric
system can be used to perform a motor-learning based
experiment in a home setting. With a relatively short time
commitment per day all participants managed to perform
somewhere between 1500 and 2000 trials per week. For
myoelectric approaches which induce behavioural changes
via brain plasticity, these methods present significant advan-
tages by providing a method whereby the required number
of repetitions to induce long-term changes may be reached
without a proportional commitment from experimental oper-
ators. Although the results presented were for a experiment
presented on a desktop computer, the same process could be
achieved on a mobile device in any location.

What is arguably missed in technical or experimental re-
ports of home-based myoelectric training is the comparative
convenience relative to laboratory-based testing. Although
there is an incurred cost in ensuring the hardware and
software used are sufficiently robust for use outside of the
lab, it is likely that the resources created can be reused.
The returns for the experimental operator are a passive data
collection exercise which can easily be scaled to multiple
parallel participants. Participant travel time can be signifi-
cantly reduced and scheduling restraints are removed. Near
real-time connectivity ensures the experimental operator can
still diagnose technical problems.

The weak correlation observed between offline myoelec-
tric performance and control [2] is both a cause, and a
consequence, of upper-limb prosthetics failure to transition
published gains in laboratory research to real-world use. Few
research groups progress theoretical work to the multidisci-
plinary clinical work required to test applied real-time control
outside of the lab [5]. As such, a reliance on laboratory-based
development, often using offline data, means critical factors
such as a changing input control signal [17], [7], and more
generally the influence of time on real-time performance
[10], have only begun to be addressed recently.

Platforms for performing research outside of the laboratory
can provide methods for addressing these challenges and
those that follow. With respect to data collection, both passive
tracking of continuous naturalistic movements and active
prompting of labelled posture or activity data can be achieved
using a streaming platform with bidirectional connectivity.
During long-term data collection the approach enables use
of streaming data algorithms, significantly reducing the bot-
tlenecks associated with treating data collection and anal-
ysis as distinct research phases. Finally, when applied to
functional prosthesis use and control, IoT connectivity will
allow a range of alternative development, test, monitoring
and experimental approaches.

Internet enabled outside-of-the-lab testing can be more
convenient and efficient than traditional methods. As such,
we anticipate it will allow for greater user involvement
in future upper-limb prosthetics research, with participants
involved earlier, at more stages of the process, in greater
numbers, and at more physical locations.
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