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We extract the relativistic classical radial action from scattering amplitudes, to all orders in
perturbation theory, in the probe limit. Our sources include point charges and monopoles, as well
as the Schwarzschild and pure-NUT gravitational backgrounds. A characteristic relativistic effect,
that scattering trajectories may wind around these sources any number of times, can be recovered
when all-order amplitudes are available. We show that the amplitude for scattering a probe off a
pure NUT is given by the solution of a transcendental equation involving continued fractions, and
explain how to solve this equation to any desired loop order.

I. INTRODUCTION

Recent years have seen tremendous progress in the field of Post-Newtonian (PN) and Post-Minkowskian (PM)
Effective Field Theory (EFT), relevant for the analytic calculation of compact object coalescence events. For compre-
hensive reviews of PN methods in GR, see [1–3] and references within, as well as more recent progress up to 6-7PN
[4–9]. This progress has been of fundamental importance for reliable analytic and semi-analytic determination of
gravitational waveforms, especially in the context of Effective-One-Body Hamiltonians [10–23].

Besides the more conventional PN methods, there has also been a renewed interest in PM methods [24–61], which
involve an expansion in Newton’s constant G but not in v/c. A central idea which underlies much of the PM approach
(as well as some of the PN approach) is the matching of General Relativity (GR) to an effective field theory [62, 63].
This matching can be done at the level of classical observables such as the scattering angle [64, 65] or the impulse
[66, 67].

One promising approach to PM dynamics involves an unexpected connection — to relativistic scattering amplitudes
in quantum field theory [24, 28, 66–71]. Since gravitons couple with a

√
G factor, the PM expansion goes over to

the usual perturbative loop expansion of the corresponding scattering amplitude, with the (n − 1)-loop amplitude
responsible for the n-PM EFT coefficients. The basic advantage of the use of scattering amplitudes is they can
be evaluated using cutting edge tools such as generalized unitarity [72, 73], the double copy [74–76], as well as
sophisticated loop integration methods [77]. Impressive concrete progress in this direction has been made [28, 78–82]
by matching full GR to an effective 2-body theory at the level of quantum scattering amplitudes, or more precisely
their ~ → 0 limit. Though very promising, the on-shell approach is not without its difficulties, especially at order
G4 and above where it need to capture tail effects [83–91] which are non-local in time, e.g. an outgoing gravitational
wave which is reflected in the far zone back into the inspiral.

One striking feature of the PM EFT approach has been the importance of the radial action Ir(r) ≡
∫ r
rturn

pr(r
′)dr′,

which arises in the classical Hamilton-Jacobi equation for the system [92]. This should not come as a surprise, as
the radial action encapsulates all of the classical dynamics of the system. Inspired by the eikonal approximation, the
authors of [82] suggest the following amplitude-radial action relation

iA ∼
∫
j

(
eiIr − 1

)
. (1)

The aim of this paper is to derive this relation in the classical limit and in the probe limit κ ≡ m1m2

(m1+m2)2 → 0, to

all orders in G/j. We do this by solving the QM scattering problem for a probe mass in curved space — the same
calculation which leads to BH greybody factors [93–95] and quasinormal modes [96, 97]. However, we are interested in
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the classical ~→ 0 limit of this calculation, which we take following the seminal work of [98, 99]. This limit exposes a
simple relation between the quantum phase shifts δ̄j̄ , the azimuthal scattering angle ∆ϕ and the radial action, namely:

δj −
πj

2
+ c(~) = lim

r→∞
[Ir(r) − d(r)] , ∆ϕ = π − 2

dδj
dj

. (2)

In these expressions, δj = lim~→0 ~δ̄j̄ |j̄=j/~− 1
2

is the saddle point value of the phase shift δ̄j̄ ; c(~) is a j independent

constant, which emerges from the regularization of δj in the ~ → 0 limit, while d(r) = kr + η log(2kr) is a universal
function describing the accumulation of phase as r →∞.

In this paper we calculate the probe-limit phase shifts δj explicitly by solving a relativistic wave equation in a
background gauge field/metric. See [52] for a related connection between wave equations and classical scattering.
Indeed the connection between scattering amplitudes, quantum mechanics, and classical point particles has been
a recurring theme in the literature. Evidently, point-particle actions of the kind taught in undergraduate classes
worldwide are somehow connected to relativistic quantum electrodynamics and quantised (effective) general relativity.
The relation is simply that point-particle actions emerge as EFTs in a long-distance, low-energy limit for localised
particles as was emphasised by Goldberger and Rothstein [62]. Therefore the quantum mechanics of these worldline
actions captures the relevant dynamics. In the probe limit, fully non-perturbative amplitudes are available by solving
the relevant (relativistic) Schrödinger equation; formerly confusing issues related to pair production are nowadays
well understood and need not concern us. Our work is closely connected to other approaches based on studying the
quantum field theory of the worldlines [100–102].

The outline of our paper is as follows. First, we review our setup in section II, and also review key quantities and
their dimensions when c = 1, ~ 6= 1. In section III we re-derive the relation (2) in a modern language, following the
work of [98, 99]. We make use of this relation to derive the all order classical scattering angle for relativistic Coulomb
scattering (a.k.a Darwin scattering) in section IV, including non-perturbative effects. In section V we follow the steps
taken for Coulomb scattering, and examine how the phase shifts for the scattering of a scalar in a Schwarzschild
background converges in the classical limit to the relation (2).

Next, we generalize (2) to the scattering of particles with spin, as well as to the scattering of monopoles and charges.
The case of monopole scattering is unique in that there is an extra angular momentum carried by the electromagnetic
field [103–107]. The non-perturbative effect of this angular momentum on monopole scattering amplitudes was recently
captured in the electric-magnetic S-matrix construction of [108], based on pairwise helicity [109]. In section VII we take
the classical limit of this S-matrix for the scattering of a Coulomb charge in a monopole background, and reproduce
the classical scattering angle to all orders.

A last, highly non-trivial check of our formalism is presented in section VII A, where we calculate the all-order
scattering angle for a probe mass in NUT space. This is the gravitational double copy of charge-monopole scattering
[110–118]. Here we find the all-order solution of the quantum scattering problem in terms of prolate spheroidal
functions, and show how its phase shifts exactly reproduce the classical scattering angle to all orders in the PM
expansion. Our results allows us to draw the following conclusions:

• Probe mass-NUT scattering is the double copy of charge-monopole sctatering, with q̄ = ~−12EprobeG`NUT

playing the role of pairwise helicity [108], and is quantized in half integer units.

• The phase shift formalism captures the full non-perturbative dynamics of probe mass-NUT (charge-monopole)
scattering, including the angular momentum in the gravitational (electromagnetic) field.

• The quantum-classical correspondence is based on a non-trivial number theoretical relation between spheroidal
eigenvalues and elliptic integrals.

Finally, in section VIII we conclude our discussion and also briefly discuss future prospects for applying our for-
malism beyond the probe limit, as a novel quantum approach to self-force corrections [119–132].

II. SETUP AND NOTATION

Our ultimate goal is to describe the scattering of two classical particles with arbitrary classical spins. Since we
work in the probe limit, we can always map the scattering problem to an equivalent one body problem, in which a
probe particle moves in the presence of a central classical electric/magnetic/gravitational field. Classically, we are
interested in the trajectories of this particle, and in particular in the classical scattering angle χ defined as

cos (χ) = p̂in · p̂out , (3)
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where p̂in(p̂ot) is the direction of the momentum of the incoming (outgoing) particle. In the spinless (and non-
magnetic) case with only orbital angular momentum, the entire effective one body motion takes place in the plane

transverse to the total angular momentum ~J . When talking about classical trajectories, it is convenient to take ẑ || ~J
and p̂in = −x̂, p̂out = cos(∆ϕ)x̂+ sin(∆ϕ)ŷ, so that χ = ∆ϕ.

In more general cases with spin, the motion does not take place in the plane, and so generally χ 6= ∆ϕ.
Since we are interested in taking the classical limit of quantum 2 → 2 scattering, it is worthwhile to describe the

setup there too. The quantum problem is also trivially reduced to an effective one body problem. Unlike the classical
one, here we take the incoming state as a plane wave in the ẑ direction. In this case, the amplitude squared gives
the probability to scatter to a given angle θ. Taking the classical limit and we expect the amplitude to peak at θ,
corresponding to a scattering amplitude of χ = π ∓ θ. In the spinless (and non-magnetic) case with only orbital
angular momentum, this also implies θ = ∆ϕ.

Before moving on to the bulk of the paper let us briefly comment on notation, which can be at times tricky when
taking the classical limit of quantum results. Throughout the paper, we keep factors of ~ explicit (while the speed
of light is still c = 1). Consequently, the different variables in our calculations have units that are a combination of
[distance] and [mass]. The different quantities and their units are detailed in Table I.

Symbol Description Units

t time [distance]

r distance [distance]

m mass [mass]

E energy [mass]

k momentum [mass]

η Coulomb parameter [mass]

M Schwarzschild mass [mass]

` NUT parameter [mass]

j angular momentum [distance × mass]

δj phase shift [distance × mass]

ν effective angular momentum [distance × mass]

h helicity [distance × mass]

q pairwise helicity [distance × mass]

~ Planck’s constant [distance × mass]

G Newton’s constant [distance ×mass−1]

j̄, δ̄j , ν̄, h̄, q̄ ~−1j − 1
2
, ~−1δj , ~−1ν, ~−1h, ~−1q dimensionless

m̄, Ē, k̄, η̄ ~−1m, ~−1E, ~−1k, ~−1η [distance−1]

TABLE I: Different quantities used in their paper and their units when ~ 6= 1, c = 1.

In our quantum calculation, we frequently make use of the dimensionless angular momentum variables

j̄ ≡ ~−1j − 1

2
, δ̄j ≡ ~−1δj ,

ν̄ ≡ ~−1ν, h̄ ≡ ~−1h , q̄ ≡ ~−1q . (4)

In particular, j̄, h̄ and q̄ are quantized in half integer units. It is worth noting the − 1
2 subtraction in the definition of

j̄, which corresponds to the famous Langer correction to the quantum angular momentum [99, 133]. We also make
use of the quantities

m̄ ≡ ~−1m, k̄ ≡ ~−1k,

Ē ≡ ~−1E, η̄ ≡ ~−1η , (5)

all with units of [distance−1].



4

III. SEMICLASSICAL SCATTERING - SCALAR CASE

In this section we derive the relation (2) by Poisson summation of the partial-wave expanded scattering amplitude
in the classical limit [99]. Here start with the spinless, non-magnetic case (see also [65, 81] for related work), but will
be able to generalize it to all spins and even to electric-magnetic scattering in the following sections.

The partial-wave decomposed amplitude for 2→ 2 scalar scattering takes the form

A =
~
k

∞∑
j̄=0

(2j̄ + 1)
e2iδ̄j̄ − 1

2i
Pj̄(cos θ), (6)

where the Pj̄(x) are Legendre polynomials. Note that the map to effective one body dynamics here is trivial if we
interpret A as the amplitude for an incoming plane wave to scatter to an angle θ. Here and below, an overbarred
quantities are quantum, for example, j̄ = ~−1j + 1

2 is a half integer quantum number.
We can write this expansion more compactly as

A =
∑
j̄

G(j̄) , (7)

where

G(j̄) ≡ ~
2ik

(2j̄ + 1) e2iδ̄j̄ Pj̄(cos θ) . (8)

We also drop the −1 part responsible for forward scattering, which does not survive in the classical limit. Using
Poisson summation, we can express the same sum as

A =

∞∑
n=−∞

∫ ∞
0

dj̄ e−2πinj G(j) . (9)

Changing variables as j̄ = j
~ −

1
2 , we get

A = − i

~k

∞∑
n=−∞

e−iπn
∫ ∞

0

dj j e
2i
~ [δj−πnj] Pj̄(cos θ) . (10)

Taking the leading term in ~ for Pj̄(cos θ) with j̄ = j
~ −

1
2 , we have for sin θ & j̄ −1[98],

Pj̄ (cos θ) ≈
{[

jπ
2~ sin θ

]−1/2
sin
[
jθ
~ + π/4

]
. (11)

Plugging this in (10), we have

A = −1

k

√
1

2~π sin θ

∞∑
n=−∞

e−iπn
(
e
iπ
4 I+ − e−

iπ
4 I−

)
, (12)

where

I± =

∫ ∞
0

dj
√
j e

i
~ [2δj+(±θ−2πn)j] . (13)

In the ~→ 0 limit, we can take the saddle point approximation and get

Θ ≡ ±θ − 2πn = 2
dδj
dj

, (14)

where Θ is the deflection angle [99] and n and the sign are fixed so that 0 ≤ θ < π and Θ is positive for net repulsion.
This in particular means that only one saddle point is selected for every value of j. The relation between the deflection
angle and the scattering angle χ is then

χ = π − Θ = π − 2
dδj
dj

, (15)
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where the ± is Note that in the absence of spin or electric-magnetic angular momentum, the angular momentum ~J

is just the orbital part. In this case, the motion is always in the plane transverse to ~J , and we have χ = ∆ϕ. See
[65, 81] for similar derivations of the relation (15), in the absence of winiding.

The interpretation of (15) is clear - the classical trajectory winds n times and goes to infinity, after accumulating
a total scattering angle χ = ∆φ. The meaning of δj in the classical limit becomes even clearer once we consider the
classical expression for the (azimuthal) scattering angle in terms of the radial action:

∆ϕ = −2 lim
r→∞

dIr(r)

dj
. (16)

See, for example [92] for a textbook derivation of this relation from the Hamilton-Jacobi equation, or [134] for
the Hamilton-Jacobi equation for general geodesic motion. In light of this relation, we can make the satisfying
identification (2). This relation between the classical limit of the quantum phase shift and the integral of the radial
action is not a coincidence. In fact, it is a direct consequence of the WKB approximation for δj , which becomes
exact in the ~→ 0 limit. We demonstrate this point in the next section by explicitly working out the phase shift for
relativistic Coulomb scattering.

Taking the stationary phase approximation in (12), we get the saddle point amplitude

iA ∼ e
i
~

[
lim
r→∞

(Ir(r)− d(r))+πj
2 −c(~)

]
, (17)

which is valid in the ~→ 0 limit. This is our saddle point version of the amplitude-angle relation (1).

IV. RELATIVISTIC COULOMB SCATTERING

To demonstrate the relations between the phase shift, the radial action and the classical scattering angle, we analyze
the simple problem of a charged relativistic scalar scattering off a central Coulomb potential. The phase shifts in this
problem are obtained by solving the Klein-Gordon (KG) equation for the scalar with mass m,[

(∂µ + i~−1 Z eAµ)2 − ~−2m2
]

Φ = 0 (18)

in the background of the vector potential of a Coulomb charge:

At =
e

4πr
, ~A = 0 . (19)

Keeping in mind that we wish to eventually take the classical limit, we have made factors of ~ explicit in this equation.
Taking Z = −1 for an attractive interaction and plugging in the vector potential, the KG equation takes the more
familiar form [(

∂t −
iα

~r

)2

−∇2 − ~−2m2

]
Φ = 0 . (20)

As is standard in QM scattering problems, we solve the KG equation subject to regularity at r = 0. Substituting the
ansatz

Φ = e−iĒt r−1
∑
j̄

(2j + 1)Rj̄(r)Pj̄(cos θ) (21)

in (18), we get the radial equation

~2r2∂2
r Rj̄ +

[
k2 r2 + 2ηkr − ~2j̄(j̄ + 1) + α

]
Rj̄ = 0 , (22)

where we defined

k =
√
E2 −m2

η = Eα/k . (23)

We can go further by defining ν(ν + ~) = ~2j̄(j̄ + 1)− α2 and so ν =
√
j2 − α2 − ~

2 . In this case, the radial equation
reduces to the form of a Coulomb equation,

r2∂2
r Rj̄ +

[
k̄2 r2 + 2η̄k̄r − ν̄(ν̄ + 1)

]
Rj̄ = 0 , (24)
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where for any quantity a, the corresponding barred quantity is ā ≡ ~−1a. The solution which converges at r → 0 is
the Coulomb wavefunction (see [135], equation 3.2.33):

Rj̄ =
γ̄(ν̄ + 1 + iη̄)

γ̄(2ν̄ + 2)
M

(
−iη̄, ν̄ +

1

2
; 2ik̄r

)
, (25)

where M (κ, µ;x) is the regular Whittaker function. As r →∞, the radial solution becomes

Rj̄ |r→∞ ∼ e
−i

(
k̄r+η̄ log(2k̄r)−πj̄2

)
+ e2iδ̄j e

i
(
k̄r+η̄ log(2k̄r)−πj̄2

)
, (26)

where

2δj = π(j − ν − iη − ~
2

)− i log

{
γ̄[~−1(ν − iη) + 1]

γ̄[~−1(ν + iη) + 1]

}
(27)

is related to the famous Coulomb phase shift. Taking the classical limit ~→ 0, we have

2δj = π(j − ν)− 2ν arctan
(η
ν

)
− 2η

[
log
(√

ν2 + η2
)
− 1
]

+ η log(−i~) . (28)

By (15), the classical scattering angle is then given by

χ = ∆ϕ = π − 2
dδj
dj

=
j√

j2 − α2

[
π + 2 tan−1

(
α

β
√
j2 − α2

)]
, (29)

where β = k
E is the velocity. This gives exactly the classical scattering angle for a relativistic scalar in a Coulomb

potential [136, 137]– the relativistic (scalar) generalization of the Rutherford scattering angle.

Finally, we can relate the phase shift (28) to the one obtained in the WKB approximation [138], which be-

comes exact in the classical limit. Starting from (22), we substitue the WKB ansatz R±
j̄
≡ r−1e±i

S(r)
~ and

get

[∂rS(r)]
2 ∓ i~∂2

rS(r) = FCoul(r) + ~2gCoul(r)

FCoul(r) ≡
k2r2 + 2kηr − ν2

r2
, gCoul(r) ≡

1

4r2
, (30)

Expanding S(r) and (30) to first order in ~, we get

S(r) = S0(r) +
i~
4

log [FCoul(r)] + O(~2)

∂rS0(r) =
√
FCoul(r) . (31)

The equation for S0 is nothing but the radial Hamilton-Jacobi equation, and so S0(r) is simply equal to the radial
action Ir(r) in the classical limit. This is a well known fact about the WKB approximation. Equation (31) can be
trivially integrated, so that

Ir(r) = S0(r) =

∫ r

rturn

√
FCoul(r) dr, (32)

where rturn = k−1
(
−η +

√
η2 + ν2

)
is the classical turning point. The result is

Ir(r) = S0(r) = δj −
πj

2
+ d(r) + c(~) (33)

where c(~) = − 1
2
η
2 log(−i~). This is a further demonstration of the relation (2). Clearly, this relation always holds

as a consequence of two facts (A) the WKB approximation becomes exact in the classical limit (B) the WKB phase
S(r) coincides with the radial action Ir(r) in the classical limit.
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Putting everything together, we get the WKB wavefunction using the ”right of barrier” linear combination of

R±
j̄
≡ r−1e±i

S(r)
~ , [139]:

Rj̄ = − i

rf
1
4

Coul(r)

[
e
i
~ [Ir(r)+π

4 +O(~2)] − e−
i
~ [Ir(r)+π

4 +O(~2)]
]

=
2

rf
1
4

Coul(r)
sin

(
1

~

[
Ir(r) +

π

4
+O(~2)

])
. (34)

To get the scattering angle, we use the Hamilton-Jacobi relation

∆ϕ = −2 lim
r→∞

dIr(r)

dj
=

∫ ∞
rturn

2j

r2
√
FCoul(r)

dr. (35)

This integral can be carried out analytically, giving exactly the result (29). In figure 1 we plot this scattering
angle (denoted by “Darwin”, who was the first to derive it), together with the one for Rutherford scattering, ∆ϕ =
π + 2 arctan(α/j). We also plot the expansions of (29) to 5th and 8th order in α/j. These clearly fail to converge
beyond α/j ∼ 0.1. At this point, the correct scattering angle is ∆θ ∼ 3

2π, so that the classical trajectory takes a
right turn around the origin. This behaviour clearly is not well captured in perturbation theory, unless some sort of
resummation is applied.

In this vein, we wish to clarify a few important points about our formalism. Even though it involves a quantum
amplitude, it by no means relies on a perturbative expansion. This is in contrast with other methods which rely on an
expansion in j−1. This is why we are able to capture classical effects that are inherently non-perturbative from the
quantum point of view. The flip side, of course, is that we are working in the probe limit. We will come back to this
point, and to future directions away from the probe limit, in the last section.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

α/j

Δ
ϕ
/π

β=0.1

5PM

8PM

Darwin

Rutherfordbackscattering

right turn

FIG. 1: Classical scattering angle ∆ϕ vs. α/j for relativistic Coulomb scattering. The result from eq. (29) is shown in blue
and labeled “Darwin”. We also show the Ruthrford scattering angle in orange, as well as the expansions of (29) to 5th and 8th
orders in green and purple, respectively. We chose β = 0.1 for this plot. Note that unlike Rutherford scattering, our classical
trajectory involves winds around the origin for α/J & 0.4.

V. SCALAR IN SCHWARZSCHILD BACKGROUND

As another application of our semiclassical analysis, we analyze the probe-limit scattering of a scalar in the back-
ground of a Schwarzschild BH. To find the phase shifts, we need to solve the Klein-Gordon equation subject to the
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boundary condition of an incoming wave [96] at the BH horizon rh = 2GM , where M is the Schwarzschild mass and
G is Newton’s constant. The radial KG equation in a Schwarzschild background is [93, 94, 140],

∂r [∆ ∂rR] +

[
−j̄(j̄ + 1) +

r4E2

~2∆
− r2~−2m2

]
R = 0 . (36)

with ∆ = r (r − 2GM). Again, we made factors of ~ explicit in this equation.

A. WKB-Hamilton-Jacobi Analysis

As a first step, we will extract the phase shifts from the WKB approximation to (36). This is guaranteed to
reproduce the radial action and classical scattering angle, by virtue of the general map (2). Substituting the WKB
ansatz

R±
j̄

=
1√

r(r − 2GM)
e±i

S(r)
~ , (37)

we get

[∂rS(r)]
2 ∓ i~∂2

rS(r) = FSch(r) + ~2gSch(r)

FSch(r) ≡
k2r2 + 2kξr − r−2GM

r j2

(r − 2GM)2
, gSch(r) ≡ 1

4(r − 2GM)2
− GM

2r2(r − 2GM)
, (38)

where ξ = GMm
k . Expanding S(r) and (38) to first order in ~, we get

S(r) = S0(r) +
i~
4

log [FSch(r)] + O(~2)

∂rS0(r) =
√
FSch(r) . (39)

The equation for S0(r) is exactly the radial Hamilton-Jacobi equation [134, 141], with S0(r) playing the role of the
radial action where S0(r) = Ir(r). The formal solution for this radial equation is then

S0 = Ir(r) =

∫ r

rturn

√
FSch(r) dr, (40)

where rturn is the largest real zero of FSch(r), corresponding to the classical turning point. Correspondingly, we get
the ”right of barrier” [139] WKB wavefunction

Rj̄ =
1√

(r − 2GM)f
1
4

Sch(r)
sin

(
1

~

[
Ir(r) +

~
4

+O(~2)

])
. (41)

To get the scattering angle, we again use the Hamilton-Jacobi relation

∆ϕ = −2 lim
r→∞

dIr(r)

dj
=

∫ ∞
rturn

2j

r(r − 2GM)
√
FSch(r)

dr. (42)

This integral can be carried out analytically, giving the all-order expression to the classical scattering angle of a probe
scalar in a Schwarzschild background 1

∆ϕ =
2j

GM
√
kmrturn

F1

(
1;

1

2
,

1

2
;

3

2
;
r1

rturn
,
r2

rturn

)
, (43)

1 Cf. [142] for an alternative expression in terms of elliptic functions.
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where F1 is the Appell-F1 function (see [135], sec. 16.15). The characteristic radii r1,2 are defined by

pSch(r) ≡ r(r − 2GM)2

k
FSch(r) = (r − rturn)(r − r1)(r − r2) , (44)

with r1,2 ≤ rturn, and the result is symmetric under r1 ↔ r2. To have a sensible result, we need all three radii to be
real, and so the cubic discriminant of pSch(r) has to be non-negative. This, in turn, sets a lower bound on the angular
momentum:

GMm

J
≤ fcrit ≡

1

4

√
1− 18c0 − 27c20 +

√
(1 + c0)(1 + 9c0)3

2
, c0 =

k2

m2
. (45)

Expanding (43) to 4PM order, we get

∆ϕ

2
=

π

2
+

2c0 + 1
√
c0

(
GMm

j

)
+

3π (5c0 + 4)

8

(
GMm

j

)2

+
64c30 + 72c20 + 12c0 − 1

3c
3
2
0

(
GMm

j

)3

+
105π

(
33c20 + 48c0 + 16

)
128

(
GMm

j

)4

+O

[(
GMm

j

)5
]
,

(46)

in complete agreement with [25, 64]. The full scattering angle, as well as its 5PM and 8PM expansions, are depicted
in figure 2. As in the Coulomb case, the perturbative expansion fails at GMm/j ∼ 0.4fcrit, which is approximately
when the classical trajectory makes a full right turn around the BH.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

f -1
crit ⨯ GMm/j

Δ
ϕ
/π

β=0.1

5PM

8PM

Schwarzschild

backscattering

right turn

FIG. 2: Classical scattering angle ∆ϕ vs. f−1
critGMm/j, where fcrit is the maximal allowed value of GMm/j given by (45).

The result from eq. (43) is shown in blue. Also shown are the 4PM and 8PM expansions of (43) in green and purple,
respectively. We chose β = 0.1 for this plot. Our scattering angle corresponds to trajectories which wind around the origin for
GMm/j & 0.75fcrit.
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B. Full Quantum Solution and its Classical Limit

We now wish to relate the full quantum mechanical solution of (36), to the WKB-Hamilton-Jacobi result (40). The
relevant boundary condition for this quantum scattering problem is an incoming wave at the BH horizon [96]:

R(r)|r→2GM ∼ e−iĒr∗ , r∗ = r + 2GM log

(
r − 2GM

2GM

)
. (47)

To this end we change variables to z = 1 − r
2GM and substitute the ansatz R = e−iĒr∗ei(Ē−k̄)(r−2GM)H(z). Any

solution with H(2GM) = const. now satisfies the boundary condition (47). In terms of H(z), the radial equation now
becomes

z(z − 1)H ′′(z) + [γ̄(z − 1) + δz + εz(z − 1)]H ′(z) + [αz − q]H(z) = 0 , (48)

where

q = j̄(j̄ + 1) + 2iGM(Ē + k̄)− 4G2M2(Ē − k̄)2, α = 4iGMk̄ − 4G2M2(Ē − k̄)2,

γ̄ = 1− 4iGMĒ, δ = 1, ε = 4iGMk̄ . (49)

This equation is known as a Confluent Heun Equation, and it has a solution

H(z) = HeunC (q, α, γ̄, δ, ε; z) , (50)

which is defined in Mathematica12 and has a branch cut on the real line for 1 ≤ z < ∞. The full solution to the
radial equation is then

Rj̄(r) = e−iĒr∗ei(Ē−k̄)(r−2GM) HeunC
(
q, α, γ̄, δ, ε; 1− r

2GM

)
, (51)

and is regular for all r > 0. Its asymptotic behavior is given by

Rj̄ |r→∞ ∼ e
−i

(
k̄r+η̄ log(2k̄r)−πj̄2

)
+ e2iδ̄j e

i
(
k̄r+η̄ log(2k̄r)−πj̄2

)
, (52)

where we defined the effective Coulomb parameter η = GM E2+k2

k , and also η̄ = ~−1η.

The phase shifts δ̄j are not easy to obtain. For small j̄, they can be obtained reliably using the well known method
of Mano, Suzuki and Takasugi (MST) [143, 144]. In this method, several different solutions to (48) are expressed as
infinite sums of hypergeometric functions, following the seminal work of [145]. A solution H0 of (48) that converges at
z = 0, is obtained as an infinite sum of Gauss Hypergeometric functions. H0 is then expressed as a linear combination
of the solutions H± that converge at z → ∞, and are in turn given as an infinite sum of Coulomb functions. The
MST method has been extensively used in the calculation of both BH perturbations and self-force corrections, see for
example [17, 19, 132, 146–149] , as well as the living review [150]. The method is also implemented numerically in
the Black hole Perturbation Toolkit code [151]. However, in the ~→ 0 limit we found it somewhat difficult to apply
the MST method directly, and we leave it for future work. Instead, we simply plot the full solution (51), together
with the WKB solution (41). As can be seen from figure 3, the two functions coincide already when we take ~ ∼ 0.2.
The spike of the WKB seen in the plot is the usual divergence at the classical at the classical turning point - which
is usually resolved using an Airy function (see for example [139]). Since we only care about the phase at r →∞, we
will not dwell on this further.

VI. GENERALIZATION TO HIGHER SPINS AND ELECTRIC-MAGNETIC SCATTERING

The expression (6) can be easily generalized to the case of arbitrary spin particles by means of the Jacob-Wick
formula 2 [157]. The 2→ 2 scattering amplitude for particles with helicities 3 h̄1,..,4 is

A = N ei(h̄12−h̄34)ϕ
∑
j̄

(2j̄ + 1)
e2iδ̄j̄ − 1

2i
dj̄
h̄12,h̄34

(θ) , (53)

2 See, for example [152, 153] and chapter 2 of [154] for pedagogical presentations of the Jacob-Wick formalism. For an on-shell derivation
of this formula, see [155, 156].

3 As the particles can be massive, their helicities are not Lorentz invariant. Here we specialize to the COM frame with the incoming
particles traveling along the z-axis.
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-10

-5

0
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r

Δ
R
[r
]

WKB

rturn

Heun

FIG. 3: Comparison of the full radial function and the WKB approximation for Schwarzschild scattering. The exact radial
function is taken from eq.(51), while the WKB radial function is from eq. (41). The WKB function diverges as usual at the
classical turning point. Here ∆ = r(r− 2GM) and we’ve taken M = 1, m = 0.1, k2 = 0.1m2, j = 5 and ~ = 0.2. Smaller values
of ~ result in a numerical instability in the Mathematica evaluation of HeunC.

where h1,..,4 are the helicities of the scattered particles, hab ≡ ha − hb. The normalization N is conventionally taken

as N =
√

8πs. Meanwhile, d is the famous Wigner matrix, defined as

dj̄ab(θ) ≡
〈
j̄, a|e−iθJz |j̄, b

〉
. (54)

For simplicity, we will focus on the case where h̄12 = ah̄34 ≡ h̄, with a = ±. In this case we have, up to a phase,

A = N
∑
j̄

(2j̄ + 1)
e2iδ̄h̄ − 1

2i
fa d

j̄

h̄,ah̄
(θ) , a = ± (55)

and f+ = (−1)j̄+h̄, f− = 1. The case a = + in the equation above is easily interpreted in terms of effective one body
dynamics: it is the amplitude for a helicity h plane wave to scatter into the angle θ. We will comment on the one
body interpretation of a = − below.

Our next step is to take the classical limit, noting that h = ~h̄ is the classical spin/helicity of the particle which
is finite when ~ → 0. Repeating the Poisson summation of (10), we can take the classical limit of the d-matrix as
worked out by Schwinger et al. in [106]. Defining θ+ = π − θ and θ− = θ, we have

fa d
j̄

h̄,ah̄
(θ) → ~ 1

2[
cos2 θa

2 −
h2

j2

]1/4√
πj sin θa

2

sin

(
αa

j

~
− βa

h

~
+
π

4

)
, sin θ & j̄ −1 (56)

Where a = ±, sin
(
αa
2

)
=
(

1− h2

j2

)− 1
2

sin
(
θa
2

)
and sin

(
βa
2

)
= h

j

(
1− h2

j2

)− 1
2

tan
(
θa
2

)
. For h = 0 the Schwinger

approximation reproduces (11). Plugging the asymptotic form (56) into the Poisson sum, we now get the generalization
of (12),

Ah̄,ah̄ = − N

~3/2

1√
π sin θa

2

∞∑
n=−∞

e−iπn
(
e
iπ
4 I+ − e−

iπ
4 I−

)
. (57)
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with

I± =

∫ ∞
0

dj

√
j[

cos2 θa
2 −

h2

j2

]1/4 e i~ [2δj ±(αa j−βa h)+2πnj] . (58)

Following Schwinger et al. [106], we take the stationary phase approximation of I±, and find that the classical
scattering angle χ is given by

+ case: sin
(χ

2

)
=

√
1− h2

j2
cos

(
dδj
dj

)

− case: cos
(χ

2

)
=

√
1− h2

j2
sin

(
dδj
dj

)
. (59)

Note that in this case the classical trajectory is not confined to the xy-plane, and so χ 6= ∆ϕ. However, the relation

∆ϕ = −2 limr→∞
dIr(r)
dj = π − 2

dδj
dj still holds as a consequence of the WKB-Hamilton-Jacobi analysis.

A. Classical Interpretation

To interpret (59), we pick a = + such that the effective one body dynamics is that of a spin h p̂ particle scattering in
a central field. The particle enters with its momentum along p̂in and leaves along p̂out, with the scattering angle given

by cos(χ) = p̂in · p̂out. As the particle moves from t→ −∞ to t→∞, it gets deflected azimuthally by ∆ϕ = π− 2
dδj
dj

in the plane transverse to ~J , or in other words:

cos (∆ϕ) =
~pin⊥ · ~pout⊥

|~pin⊥||~pout⊥|

~pi⊥ ≡ p̂i −
(
p̂i · Ĵ

)
Ĵ . (60)

In addition, the motion is constrained by total angular momentum conservation. The total angular momentum in
this case is

~J = ~r × ~p+ h p̂ . (61)

Since p̂ = ∓r̂ at t→ ±∞, we have

p̂in · ~J = p̂out · ~J = h . (62)

The combination of (60) and (62), and some elementary trigonometry, leads to

sin
(χ

2

)
=

√
1− h2

j2
sin

(
∆ϕ

2

)
, (63)

consistently with (59).

B. Electric-Magnetic Scattering

In [108], the Jacob-Wick formula was generalized to the 2 → 2 scattering of electric-magnetic scattering, i.e. the
scattering of mutually non-local particle like an electric charge and a monopole or two dyons with charges (ei, gi).
First, we define the pairwise helicity [109] of the two particles to be the half integer

q̄ =
e1g2 − e2g1

~
. (64)
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We also define the corresponding classical quantity q = ~q̄. The generalized Jacob-Wick formula is then

Aq = N
∑
j̄

(2j̄ + 1)
e2iδ̄j̄ − 1

2i
Dj̄∗
q̄+h̄12,−q̄+h̄34

(ϕ, θ,−ϕ)

= N ei(2q̄+h̄12−h̄34)ϕ
∑
j̄

(2j̄ + 1)
e2iδ̄j̄ − 1

2i
dj̄
q̄+h̄12,−q̄+h̄34

(θ) . (65)

The q̄−modified D-matrices are also known as monopole harmonics [158] or spin-weighted spherical harmonics [96].

Their appearance reflects the fact that the total angular momentum ~J includes a contribution −qr̂ from the electro-
magnetic field sourced by the scattering dyons. The generalized Jacob-Wick formula (65) was derived in [108] for
fermion-monopole scattering, but it can be shown to hold for all helicities by the same pairwise helicity arguments.

The semiclassical result (59) holds in this case as well. In fact, to obtain the scattering angle for a scalar charge on
a scalar monopole, we simply take h12 = h34 = 0 but q = ~q̄ 6= 0. We can now directly apply (59) with a = − and
h = q and get [105, 106]

cos
(χ

2

)
=

√
1− q2

j2
cos

(
∆ϕ

2

)
. (66)

The classical interpretation of this relation is similar to the a = + case, with a slight modification. The total angular
momentum is now given by

~J = ~r × ~p− q r̂ , (67)

which means that the entire motion is confined to the cone r̂ · ~J = −q. Together with (60), this immediately gives
the result (66).

We can now apply the semiclassical limit to charge-monopole scattering, or equivalently to its gravitational double
copy, a probe mass in Newman-Taburino-Unti (NUT) space. We will do this in the next two sections.

VII. CHARGE-MONOPOLE SCATTERING

By the arguments of the previous section, the classical scattering angle for a scalar charge in the background of a
scalar monopole is given by (66), with |∆ϕ| = −2dδdj . To apply it, we need to solve for the phase shifts of a scalar

plane wave in the background field of the monopole. To do this, we solve the Klein-Gordon equation (18), with a
vector potential given by

At = 0 , ~A = g
1− cos θ

r sin θ
ϕ̂ , (68)

and ϕ̂ = − sinϕx̂+ cosϕŷ. This potential has a “Dirac string” along the negative ẑ axis, but we will see without loss
of generality that the test charge always stays in the upper hemisphere, so this will not play a role in our analysis.
Of course the formal way to fix this is to define the vector potential on the north and south hemispheres separately
[158].

Substituting the vector potential in the KG equation (18), we find

~2∂2
t Φ −

[
~2r−2∂r(r

2 ∂r) −
~−2J2 − q2

r2
− m2

]
Φ = 0 . (69)

Here the squared angular momentum operator J2 is given by [107]

J2 = q̄2 − 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

(
∂

∂ϕ
− iq̄ (1− cos θ)

)2
]
. (70)

As expected, this operator is modified by the presence of the angular momentum −qr̂ carried by the EM field. The
eigenvalues of J2 are related to our d-matrices

J2Dj̄∗q̄,−q̄(ϕ, θ,−ϕ) = j̄(j̄ + 1)Dj̄∗q̄,−q̄(ϕ, θ,−ϕ) , (71)
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where Dj̄∗q̄,−q̄(ϕ, θ,−ϕ) = e2iqϕ dj̄q̄,−q̄(θ) are the complex conjugates of Wigner’s D-matrices. Now we can separate

variables as Φ = e−iĒtR(r) e2iϕ dj̄q̄,−q̄(θ) and get the radial equation[
~2r2∂2

r + 2~2r∂r + k2 r2 − ν(ν + ~)
]
R = 0 , (72)

where k2 = E2 −m2 and

ν ≡ ~ν̄
ν̄(ν̄ + 1) ≡ j̄(j̄ + 1)− q̄2 →

ν ≡
√
j2 − q2 − ~

2
. (73)

We recall here the Langer correction [133] of − 1
2 in j = ~−1j̄ − 1

2 . Equation (72) a spherical Bessel equation whose

regular solution at r → 0 is R(r) = jν̄(k̄r). Asymptotically we have

R|r→∞ ∼ e−i(k̄r−
πj̄
2 ) + e2iδ̄j ei(k̄r−

πj̄
2 ) , (74)

with 2δj = π(j − ν − ~
2 ). Taking the classical limit, we have

2δj = π (j −
√
j2 − q2) (75)

By (66), the classical scattering angle is then given by

cos
(χ

2

)
=

√
1− q2

j2
cos

 π

2
√

1− q2

j2

 . (76)

This all order expression was first derived in [105, 106, 159] in a non-relativistic context, and it exactly reproduces
the classical calculation of [105, 106].

A. Probe mass in NUT Space

In this section we use our phase shift formalism to derive the all-order classical scattering angle for a probe mass
(equivalently, a probe Schwarzschild BH) in the background of a pure NUT, i.e. the MNUT → 0 limit [160] of Taub-
NUT space [161, 162]. NUT space is the double copy of a magnetic monopole [110–118], and so this problem is the
double copy of charge-monopole scattering.

The metric for Taub-NUT space in Boyer-Lindquist coordinates is given by

ds2
Taub-NUT = −f(r) [dt+ 2G`(cos θ − 1) dϕ]

2
+

1

f(r)
dr2 +

(
r2 +G2`2

) (
dθ2 + sin2 θ dϕ2

)
, (77)

where M is the mass and G` in the NUT charge while

f(r) =
r2 − 2GMr −G2`2

r2 +G2`2
. (78)

Here we use the upper hemisphere metric of [114]. The pure NUT metric is then obtained by setting M = 0 (conversely,
in the ` = 0 limit the metric reduces to the Schwarzschild metric).

As we will show explicitly below, when considering the scattering of a test mass Φ in NUT space, regularity of the
angular wavefuctions at the Misner string [163] (here on the negative z-axis) requires the quantization of

q̄ ≡ ~−1q ≡ ~−1(2G`E) , (79)

in half-integer units (see also [164] for a similar conclusion). This is a further validation of the classical double
copy relation between mass-NUT scattering and charge-monopole scattering [110, 112–118] - this time in terms of
an inherently non-perturbative quantization condition. In complete analogy with the charge-monopole case, the
gravitational field sourced by the NUT and the probe mass contains additional angular momentum −qr̂, where r̂ is
the unit vector from the NUT to the probe mass. This has been shown classically a long time ago [160, 164–168].
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Note that this angular momentum is proportional to the overall energy of the probe mass and not its rest mass,
which we can take to be small or even zero. In other words, this is not a gravitational backreaction effect from the
mass of the probe, but rather the net angular momentum carried by the soft gravitons exchanged between the NUT
and the probe.

Consequently, the modified Jacob-Wick formula (65) is also valid in the mass-NUT case, with appropriate phase
shifts δj . To compute these phase shifts, we solve the Klein-Gordon equation(

DµD
µ − ~−2m2

)
Φ = 0 , (80)

in the background (77). Writing the D’Alembertian explicitly and substituting the ansatz Φ = e−iĒt T (r, θ, φ), we get

~2(r2 +G2`2)−1∂r
[(
r2 −G2`2

)
∂rT

]
+

[
r2 +G2`2

r2 −G2`2
E2 − ~2J2 − q2

r2 +G2`2
−m2

]
T = 0 . (81)

Here k2 = E2 −m2, q = 2G`E, and the squared angular momentum operator J2 is given by the same expression as

the monopole case, (70), whose eigenfunctions are Dj̄∗q̄,−q̄(ϕ, θ,−ϕ) = e2iqϕ dj̄q̄,−q̄(θ). Now we can separate variables as

T (r, θ) =
∑
j̄

(2j̄ + 1)Rj̄(r) e
2iqϕ dj̄q̄,−q̄(θ) , (82)

and find (cf. [164, 169])

~2(r2 −G2`2)−1∂r
[(
r2 −G2`2

)
∂rRj̄

]
+

[
r2 +G2`2

r2 −G2`2
E2 −

j2 − ~2

2 − q
2

(r2 −G2`2)
−m2

]
Rj̄ = 0 . (83)

We will now solve this equation and extract the classical scattering angle in two ways: first, by the WKB-Hamilton-
Jacobi method, followed by taking the classical limit of the full quantum solution.

B. WKB-Hamilton-Jacobi Analysis

Substituting the WKB ansatz Rj̄ = (r2 − G2`2)−1/2 ei~
−1Ir(r), we deduce the radial Hamilton-Jacobi equation

[141, 165–168]. To leading order in ~, this is

∂rIr(r) =
√
FNUT(r), FNUT(r) ≡ r2 +G2`2

r2 −G2`2

(
r2 +G2`2

r2 −G2`2
E2 − j2 − q2

r2 +G2`2
−m2

)
, (84)

The formal solution for this radial equation is then

Ir(r) =

∫ r

rturn

√
FNUT(r) dr, (85)

where rturn is the largest real zero of FNUT(r), corresponding to the classical turning point. To determine the scattering
angle, we use the Hamilton-Jacobi relation

∆ϕ = −2 lim
r→∞

dIr(r)

dj
=

∫ ∞
rturn

2j

(r2 −G2`2)
√
FNUT(r)

dr . (86)

The above integral can be carried out analytically, giving the all-order expression to the classical scattering angle of
a probe scalar in a NUT background

∆ϕ =
2j

kr+
K

(
r−
r+

)
, (87)

where K(kmod) is Legendre’s complete elliptic integral, and in this case it is a function of kmod ≡ r−/r+. Note that
in Mathematica, elliptic integrals are expressed as functions of mmod = k2

mod. The characteristic radii r± are defined
by

(r −G`)2

k
FNUT(r) = (r2 − r2

+)(r2 − r2
−) , (88)
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with r− ≤ r+ ≡ rturn. Explicitly, r± are

r± =
j√
2k

√√√√1− 3

2

q2

j2
±

√
1− (β2 + 3)

q2

j2
+

[
1

4
(β2 + 1) + 2

]
q4

j4
, β = k/E . (89)

Expanding ∆ϕ to 6PM order, we find

∆ϕ = π +
3π
(
5E2 −m2

)
16E2

(
2G`E

j

)2

+
3π
(
515E4 − 246E2m2 + 19m4

)
1024E4

(
2G`E

j

)4

+
15π

(
3257E6 − 2599E4m2 + 515E2m4 − 21m6

)
16384E6

(
2G`E

j

)6

+ . . . (90)

It is nice to note that this expression is consistent with the 2PM result obtained by on-shell methods in [117]. This
resolves the apparent discrepancy in [117] in a simple way - by evaluating the integral (86) analytically as an elliptic
integral.

C. Full Quantum Solution and its Classical Limit

Here we find the exact phase shifts of the full quantum problem, and show that their classical limit reproduces (87).
Changing variables in (83) as Rj̄(r) = F (x) with x = 2Er

q , and remembering that q = 2G`E, we deduce the radial
equation

∂x
[(

1− x2
)
∂xF

]
+

[
λ̄+ γ̄2(1− x2)− µ̄2

1− x2

]
F = 0 (91)

where

~2λ̄ = j2 − ~2

4
− q2

2

(
β2 + 3

)
, ~γ̄ =

βq

2
, ~µ̄ = iq , (92)

and β = k/E. This is a prolate spheroidal equation with a complex separation constant µ̄ - a very well studied
equation [170–172]. The solution we are looking for is the one which satisfies an absorbing boundary condition at
r = G` [96]:

F (x)|x→1 ∼ e−iĒr∗ , r∗ = G`

[
x− log

(
x+ 1

x− 1

)]
. (93)

Here r∗ is the “tortoise” coordinate [140, 173, 174], which satisfies limr→G` r∗ = −∞. This solution is conventionally

denoted by F (x) = S
(1);µ̄
ν̄ (γ̄, x). The parameter ν̄ is the index of the radial spheroidal function, and is related to λ̄, µ̄

and γ̄ by a transcendental equation, which is explicitly given in Appendix A. We explicitly checked that the other

solution to the radial equation, S
(2);µ̄
ν̄ (γ̄, x), only leads to quantum corrections that die off in the ~ → 0 limit. The

asymptotic behavior of the solution at x→∞ is given by

S
(1);µ̄
ν̄ (γ̄, x)|x→∞ ∼ jν̄(γ̄x) = jν̄(k̄r) . (94)

In appendix A we show how to calculate ν̄ explicitly. By a similar argument to the monopole case, we have −2δj =
π(ν + ~) and so the classical scattering angle is given by

cos
(χ

2

)
=

√
1− q2

j2
cos

(
∆ϕ

2

)
, (95)

where

∆ϕ = π lim
~→0

dν

dj
, (96)

and ν = lim~→0 ~ν̄ is given to all orders in appendix A. This expression coincides to all orders with the one obtained
by the WKB-Hamilton-Jacobi method, equation (87).
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Note that although the consistency of (96) and (87) is guaranteed by the correspondence principle between quantum
and classical physics at ~→ 0, the actual all-order equality involves a highly non-trivial number theoretical identity:

π
dν

dj
= π lim

~→0

2j

~
dν̄

dλ̄
=

2j

kr+
K

(
r−
r+

)
, (97)

or in other words

lim
s→∞

s−2 dλ (sν, sγ, sµ)

dν
= πkr+

[
K

(
r−
r+

)]−1

, (98)

where γ = kq
2E , µ = iq and s is ~−1. Here ν is given implicitly as the value which solves

λ (sν, sγ, sµ) = s2

[
j2 − q2

2

(
β2 + 3

)]
− 1

4
, (99)

where β = k/E. The function λ(ν, γ, µ) is known in the literature as the (analytically continued) spheroidal eigenvalue
[170, 172]. Here we uncover a very non-trivial relation between its derivative in the limit ν, γ, µ→∞ and the elliptic
integral K. We are not aware of previous derivations of this relation in the literature.

VIII. OUTLOOK: TOWARDS NON-PERTURBATIVE SELF-FORCE CALCULATIONS

Our results clearly demonstrate that classical effects that appear to be non-perturbative in the PM expansion can
be fully captured in the ~→ 0 limit of quantum wave equations. In and of itself, this should not surprise the reader
much, as it is a consequence of the correspondence principle between quantum and classical physics. However, we
uncovered in detail exactly how the quantum amplitude encodes the classical scattering data in the ~ → 0 limit,
namely

• The phase shifts go over to their WKB-Hamilton-Jacobi values, which are in turn related to the classical radial
action by (2).

• The Poisson resummed partial wave decomposition has a saddle point at the classical j, which in turn leads to
the classical scattering angle (59) (cf. (15) for the scalar case).

We applied this formalism in the probe limit to calculate classical effects that are inherently non-perturbative from the
qunatum point of view. For example, we reproduced the winding of classical trajectories for relativistic Coulomb and
Schwarzschild scattering, as well as the effect of the extra angular momentum −qr̂ in the gravitational (electromag-
netic) field for probe mass-NUT (charge-monopole) scattering. In the two latter cases, we also correctly reproduced

the fact that the classical trajectories are confined to a cone around the total angular momentum ~J .
Finally, our quantum-classical matching uncovers previously unknown (to us) number-theoretic relations such as

(98). We expect a similar number-theoretic relation to hold in the context of probe scattering off Schwarzschild: that
is, between the phase shift emerging from the HeunC function, and the Appell F1 function which we know describes
the classical trajectory.

An obvious direction for future work is to apply similar methods to black hole scattering away from the probe
limit, i.e. to all orders in G/j but perturbatively in κ = m1m2

(m1+m2)2 . In other words, it would be interesting to apply

our method to calculate O(κn) “self-force” corrections. Since our method is non-perturbative in G/j, its application
away from the probe limit will inevitably involve both energy loss to radiation and conservative tail effects that are
nonlocal in time [83–91].

One possible way forward would be to consider quantum scattering in the full Arnowitt-Deser-Misner Hamiltonian
[175, 176], without integrating out the gravitational field. This would lead to a set of coupled wave equations for the
two black holes and the gravitational field, which could be solved to all orders in G/j but order-by-order in κ. To
focus on conservative dynamics, we could impose the boundary condition of a pure Schwarzschild metric at r → ∞,
such that there is no leakage of energy via gravitational waves. However, tail effect will be captured since outgoing
gravitational waves would be reflected back to the center by the ambient Schwarzschild metric in the far zone.

Calculating self-force corrections in terms of wave equations would have the additional advantage of smoothing out
the inherent divergences which are ubiquitous in coupling point masses to GR, which requires very careful regulariza-
tion in the standard treatments [121, 131, 132, 176–179].

Turning away from gravitational wave physics, our methods may have an application to the study of the double
copy beyond perturbation theory [110, 180–189]. It is by now well-established that a pure NUT is related to the
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magnetic monopole by the double copy in perturbation theory; indeed, this was an initial motivation for our work on
the pure NUT. We have now seen how to construct amplitudes for monopoles and NUTs to all orders, so we have the
theoretical data to explore this double copy to all orders. Of course this would just be a prelude to the study of the
double copy relating a charge and Schwarzschild to all orders.
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Appendix A: Characteristic Equation for the NUT Spheroidal Equation

In this appendix we calculate the index ν̄ for the prolate spheroidal equation Eq. 91. The index is linked to the
scattering phase shift by −2δj = π lim~→0 ν. The index ν̄ is related to the parameters of the spheroidal equation
λ̄, µ̄, γ̄ by a transcendetal equation. Following [172], we define the following variables:

A2k = −γ̄2 (ν̄ − µ̄+ 2k − 1)(ν̄ − µ̄+ 2k)

(2ν̄ + 4k − 3)(2ν̄ + 4k − 1)

B2k = (ν̄ + 2k) (ν̄ + 2k + 1) − 2γ̄2 (ν̄ + 2k) (ν̄ + 2k + 1) + µ̄2 − 1

(2ν̄ + 4k + 3)(2ν̄ + 4k − 1)

C2k = −γ̄2 (ν̄ + µ̄+ 2k + 1)(ν̄ + µ̄+ 2k + 2)

(2ν̄ + 4k + 3)(2ν̄ + 4k + 5)
, (A1)

as well as

α2k = A2kC2k−2

β2k = B2k . (A2)

The variables λ̄, γ̄ and µ̄ for NUT scattering are defined in (92). In this appendix k is an integer index, not to be
confused with the plane wave momentum k. In terms of α2k, β2k, we define two continued fractions, whose sum is
required to vanish. These are

F+ = β0 − λ̄−
α0

β−2 − λ̄−
α−2

β−4 − λ̄−
. . .

F− = − α2

β2 − λ̄−
α4

β4 − λ̄−
. . . (A3)

The transcendental equation for ν is then given by

F+ + F− = 0 . (A4)

Note that it is usually treated as an equation for λ̄, which is known as the “spheroidal eigenvalue” of the problem. In
this case the index ν̄ is treated as an integer enumerating the eigenvalue λ̄(ν̄). In particular, ν̄ and λ̄(ν̄) related by
Eq. A4 satisfy the continuity relation lim

γ̄→0
λ̄(ν̄) = ν̄(ν̄ + 1). Here we use the same machinery in a different manner,

by fixing λ̄, γ̄, µ̄ and solving for ν̄. It is particularly useful for our purposes to substitute an ansatz for ν̄ of the form

ν̄ =

√√√√λ̄+

∞∑
i=0

ciλ̄−i −
1

2
, (A5)
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We can solve for the coefficients explicitly by substituing this ansatz in the transcendental relation (A4). The first 4
coefficients (corresponding to a 6PM expansion) are then

c0 =
1

4

(
2γ̄2 + 1

)
c1 = − γ̄

2

32

[
γ̄2 − 4 (4µ̄2 − 1)

]
c2 =

γ̄2

128

[
2γ̄4 − (8µ̄2 + 1) γ̄2 + 12 (4µ̄2 − 1)

]
c3 = − γ̄2

8192

[
77γ̄6 − 96 (4µ̄2 + 1) γ̄4 + 32 (104µ̄4 − 172µ̄2 + 41) γ̄2 − 576 (4µ̄2 − 1)

]
. (A6)

See (92) for the definitions of λ̄, γ̄, µ̄.
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[109] C. Csáki, S. Hong, Y. Shirman, O. Telem, and J. Terning, “Multi-particle Representations of the Poincaré Group,”
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