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G E N E T I C S

Convergent consequences of parthenogenesis on  
stick insect genomes
Kamil S. Jaron1,2,3*†, Darren J. Parker1,2*†, Yoann Anselmetti4‡, Patrick Tran Van1,2, Jens Bast1§, 
Zoé Dumas1, Emeric Figuet4, Clémentine M. François4||, Keith Hayward1,2, Victor Rossier1,2, 
Paul Simion4¶, Marc Robinson-Rechavi1,2#, Nicolas Galtier4#, Tanja Schwander1*#

The shift from sexual reproduction to parthenogenesis has occurred repeatedly in animals, but how the loss of sex 
affects genome evolution remains poorly understood. We generated reference genomes for five independently 
evolved parthenogenetic species in the stick insect genus Timema and their closest sexual relatives. Using these 
references and population genomic data, we show that parthenogenesis results in an extreme reduction of 
heterozygosity and often leads to genetically uniform populations. We also find evidence for less effective posi-
tive selection in parthenogenetic species, suggesting that sex is ubiquitous in natural populations because it 
facilitates fast rates of adaptation. Parthenogenetic species did not show increased transposable element (TE) 
accumulation, likely because there is little TE activity in the genus. By using replicated sexual-parthenogenetic 
comparisons, our study reveals how the absence of sex affects genome evolution in natural populations, provid-
ing empirical support for the negative consequences of parthenogenesis as predicted by theory.

INTRODUCTION
Sex: What is it good for? The reason why most eukaryotes take a 
complicated detour to reproduction, when more straightforward 
options, such as parthenogenesis, are available, remains a central 
and largely unanswered question in evolutionary biology (1, 2). 
Animal species in which parthenogenetic reproduction is the sole 
form of replication typically occur at the tips of phylogenies, and 
only a few of them have succeeded as well as their sexually repro-
ducing relatives (3). In other words, most parthenogenetic lineages 
may eventually be destined for extinction. These incipient evolu-
tionary failures, however, are invaluable as by understanding their 
fate something may be learned about the adaptive value of sex.

Parthenogenesis is thought to be favored in the short term because 
it generates a transmission advantage (4, 5), as well as the advantage 
of assured reproduction when mates are scarce (6, 7). The short-term 
benefits of parthenogenesis, however, are believed to come along with 
long-term costs. For example, the physical linkage between loci it 
entails can generate interferences that decrease the efficacy of natural 
selection [e.g., (8–10), reviewed in (11)]. This is expected to trans-
late into reduced rates of adaptation and increased accumulation of 
mildly deleterious mutations, which may potentially drive the ex-
tinction of parthenogenetic lineages.

In addition to these predicted effects on adaptation and mutation 
accumulation, parthenogenesis is expected to drive major aspects of 

genome evolution. A classical prediction is that heterozygosity (i.e., 
intraindividual polymorphism) increases over time in the absence 
of recombination, as the two haploid genomes diverge independently 
of each other, generating the so-called “Meselson effect” (12, 13). 
Parthenogenesis can also affect the dynamics of transposable ele-
ments (TEs), resulting in either increased or decreased genomic TE 
loads (14, 15). Last, some forms of parthenogenesis might facilitate 
the generation and maintenance of structural variants (SVs), which 
in sexuals are counter-selected due to the constraints of properly 
pairing homologous chromosomes during meiosis (16).

We tested these predictions by comparing the genomes of five 
independently derived parthenogenetic stick insect species in the 
genus Timema with their close sexual relatives (Fig. 1). These replicate 
comparisons allowed us to solve the key problem in understanding 
the consequences of parthenogenesis for genome evolution: separating 
the consequences of parthenogenesis from lineage-specific effects 
(16). Timema are wingless, plant-feeding insects endemic to western 
North America. Parthenogenetic species in this genus are diploid 
and of nonhybrid origin (17) and ecologically similar to their sexual 
relatives. Previous research, based on a small number of microsatellite 
markers, has suggested that oogenesis in parthenogenetic Timema 
is functionally mitotic, as no loss of heterozygosity between females 
and their offspring was detected (17).

RESULTS AND DISCUSSION
De novo genome assemblies reveal extremely low 
heterozygosity in parthenogenetic stick insects
We generated 10 de novo genomes of Timema stick insects, from 5 
parthenogenetic and 5 sexual species (Fig. 1 and tables S1 and S2). 
Genomes were subjected to quality control, screened for contami-
nation, and annotated (see Methods and Supplementary Text). The 
final reference genomes were largely haploid, spanned 75 to 95% of 
the estimated genome size [1.38 gigabase pairs (Gbp); (18)], and were 
sufficiently complete for downstream analyses, as shown by the count 
of single copy orthologs conserved across insects [96% of BUSCO 
genes (19) detected on average; table S3]. A phylogeny based on a 
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conservative set of 3975 1:1 orthologous genes (data S1) corroborated 
published phylogenies and molecular divergence estimates in the 
Timema genus (fig. S1). Last, we identified 55 candidate horizontal 
gene transfers (HGTs) from nonmetazoans. Using long reads, we 
were able to corroborate six of the eight HGT candidates present in 
one species (T. douglasi; see Supplementary Text), indicating that 
most of our HGT candidates are likely true HGTs rather than false 
positives. The two remaining HGT candidates in T. douglasi were 
most likely misassembled chimeric contigs. All 55 candidate HGTs 
occurred early on in Timema evolutionary history, well before the 
evolution of parthenogenesis in the genus (see Supplementary Text).

We estimated genome-wide nucleotide heterozygosity in each 
reference genome directly from sequencing reads, using a reference- 
free technique [genome profiling analysis (20)]. These analyses 
revealed extreme heterozygosity differences between the sexual and 
parthenogenetic species. The five sexual Timema featured nucleo-
tide heterozygosities within the range previously observed in other 

sexual species [Fig. 2; (21)]. The heterozygosities in the partheno-
genetic species were substantially lower, and so low that reference- 
free analyses could not distinguish heterozygosity from sequencing 
error (see Supplementary Text). We therefore compared hetero-
zygosity between sexuals and parthenogens by calling single-nucleotide 
polymorphisms (SNPs) in five resequenced individuals per species. 
This analysis corroborated the finding that parthenogens have ex-
tremely low (<10−5) heterozygosity, being at least 140 times lower 
than that found in their sexual sister species [permutation analysis 
of variance (ANOVA), reproductive mode effect P = 0.0049; Fig. 2]. 
Screening for SVs (indels, tandem duplications, and inversions) in 
sexual and parthenogenetic individuals revealed the same pattern: 
extensive and variable heterozygosity in sexual species and homo-
zygosity in the parthenogens (see Fig. 2 and Supplementary Text). 
Some heterozygosity in Timema parthenogens could be present in 
genomic regions not represented in our assemblies, such as centro-
meric and telomeric regions. These regions, however, represent a 

T. shepardi

T. cristinae

T. landelsensis

T. knulli

T. sp Cuesta ridge’’

T. petita

T. tahoe

T. genevievae

T. chumash

T. boharti

T. bartmani

T. californicum

T. monikensis

T. podura

T. douglasi South

T. poppensis T. douglasi South

T. californicum T. shepardi

T. cristinae T. monikensis

T. podura T. genevievae

T. bartmani T. tahoe

20 mm

T. poppensis
A B

Northern
clade

Southern
clade

Santa Barbara
clade

T. shepardi

T. californicum

T. cristinae

T. monikensis

T. genevievae

T. podura

T. tahoe

T. bartmani

Sexual species Parthenogenetic species Sister species

’’
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relatively small fraction of the total genome, meaning that, for most 
of the genome at least, Timema parthenogens are either largely 
or completely homozygous for all types of variants (see Supplemen-
tary Text).

We are able to demonstrate that extremely low heterozygosity is 
a convergent consequence of parthenogenesis in Timema. However, 
while extremely low heterozygosity is the rule for Timema parthe-
nogens, this is not the case for all parthenogenetic species. For 
example, we have previously shown that some parthenogenetic 
animal species, particularly those of hybrid origin, are characterized 
by relatively high heterozygosity levels (16). This indicates that the 
consequences of parthenogenesis for heterozygosity are likely to be 
lineage-specific.

The unexpected finding of extremely low heterozygosity in 
Timema parthenogens raises the question of when and how hetero-
zygosity was lost. For example, the bulk of heterozygosity could 
have been lost during the transition from sexual reproduction to 
obligate parthenogenesis (22). This would be the case if functionally 
mitotic parthenogenesis was derived from automictic parthenogen-
esis, meaning that recombination and meiosis take place, and dip-
loidy is restored secondarily, for example, via fusion of two of the 
four meiotic products. Similar to inbreeding, automictic partheno-
genesis thus results in the rapid loss of heterozygosity over time 
(23). Automixis can then be co-opted into functionally mitotic par-
thenogenesis via recombination suppression, and by solely fusing 
meiotic products separated during meiosis I and not meiosis II (17). 
Alternatively, heterozygosity loss in Timema parthenogens could be 
a continuous and ongoing process. To distinguish these options, we 
investigated the origin of the genetic variation present among dif-
ferent homozygous genotypes in each parthenogenetic species. We 
found that only 6 to 19% of the SNPs called in a parthenogen are at 
positions that are also polymorphic in the sexual relative (table S4). 
This means that most of the variation in parthenogens likely results 
from mutations that appeared after the split from the sexual lineage. 

Although it is possible that some of the parthenogen-specific poly-
morphisms may represent ancestral polymorphisms that were purged 
in the sexual species, it is unlikely that this would be the case for 
most SNPs in parthenogens. This implies that heterozygosity generated 
through new mutations is most likely lost continuously in partheno-
gens and was not solely lost at the inception of parthenogenesis. The 
most likely explanation for these findings is that parthenogenetic 
Timema are not functionally mitotic but automictic. Formally dis-
tinguishing between automixis and functionally mitotic partheno-
genesis with gene conversion will require cell biological data, which 
is currently not available for Timema. It is important to note that 
the key theoretical predictions regarding the consequences of sex do 
not change between automixis or functionally mitotic parthenogenesis. 
Thus, although automixis can allow for the purging of hetero-
zygous deleterious mutations (24), the classical predictions for the 
long-term costs of asexuality extend to automictic parthenogens 
because, as for obligate selfers, linkage among genes is still much 
stronger than in classical sexual species (25). This is especially 
the case in largely homozygous parthenogens, where recombina-
tion and segregation, even if mechanistically present, have no effect 
on genotype diversities.

Functional mitosis in Timema parthenogens was previously in-
ferred from the inheritance of heterozygous microsatellite geno-
types between females and their offspring (17), a technique widely 
used in nonmodel organisms with no cytological data available 
[e.g., (26, 27)]. The most likely reconciliation of these results with 
our finding of extreme homozygosity is that heterozygosity is main-
tained in only a small portion of the genome, for example, the cen-
tromeres or telomeres, or between paralogs. Consistent with this idea, 
we were unable to locate several of the microsatellite-containing 
regions in even the best Timema genome assemblies (see Supple-
mentary Text), suggesting that these regions are not present in 
our assemblies due to the inherent difficulty of assembling repetitive 
genome regions from short read data (28).
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Extensive variation in genotype diversity between 
parthenogenetic populations
Parthenogenesis and sexual reproduction are expected to drive 
notably different distributions of polymorphisms in genomes and 
populations. Within genomes, different regions experience differ-
ent types of selection with sometimes opposite effects on the levels 
of polymorphisms within populations, such as purifying versus balancing 
selection (29). The increased linkage among genes in parthenoge-
netic as compared to sexual species is expected to homogenize di-
versity levels across different genome regions. At the species level, 
parthenogens are expected to have reduced genetic diversities rela-
tive to sexual species because of likely bottlenecks occurring during 
the origin of parthenogenesis. At the population level, recurrent 
sweeps of specific genotypes in parthenogenetic populations can 
lead to extremely low genetic diversity and even to the fixation of a 
single genotype, while sweeps in sexual populations typically reduce 
diversity only in specific genome regions.

To address these aspects in the genomes of sexual and partheno-
genetic Timema species, we mapped population-level variation for 
the SNPs and SVs inferred above to our species-specific reference 
genomes. We then anchored our reference genome scaffolds to the 
12 autosomal linkage groups of a previously published assembly of 
the sexual species T. cristinae [v1.3 from (30); see Supplementary 
Text]. This revealed that different types of polymorphisms (SNPs 
and SVs) tended to co-occur across the genomes in all species, inde-
pendently of reproductive mode (Fig. 3).

The focal population for three of the five parthenogenetic spe-
cies (T. genevievae, T. tahoe, and T. shepardi) consisted largely of a 
single genotype with only minor variation among individuals. By 
contrast, genotype diversity was considerable in T. monikensis and 
T. douglasi (Fig. 3A). In the former species, there was further a con-
spicuous diversity peak on LG8, supporting the idea that partheno-
genesis is automictic in Timema. Under complete linkage (functionally 
mitotic parthenogenesis), putative effects of selection on this LG 
would be expected to propagate to the whole genome. Independently 
of local diversity peaks, overall diversity levels in T. monikensis and 
T. douglasi were comparable to the diversities in populations of some 
of the sexual Timema species (Fig. 3A). Different mechanisms could 
contribute to such unexpected diversities in parthenogenetic Timema, 
including the presence of lineages that derived independently from 
their sexual ancestor, or rare sex. While a single transition to par-
thenogenesis is believed to have occurred in T. monikensis, the 
nominal species T. douglasi is polyphyletic and known to consist of 
independently derived clonal lineages. These lineages have broadly 
different geographic distributions but can overlap locally (31). 
Identifying the causes of genotypic variation in these species, in-
cluding the possibility of rare sex, requires further investigation and 
is a challenge for future studies.

Independently of the mechanisms underlying polymorphism in 
the parthenogenetic species T. monikensis, the polymorphism peak 
on LG8 is notable (Fig. 3B). This peak occurs in a region previously 
shown to determine color morph [green, green-striped, or brownish 
(“melanistic”)] in the sexual sister species of T. monikensis, T. cristinae 
(30). Our focal T. monikensis population features four discrete color 
morphs (green, dark brown, yellow, and beige), suggesting that ad-
ditional color morphs may be regulated by the region identified in 
T. cristinae. We also found a peak in polymorphism on LG8, span-
ning over approximately two-thirds of LG8, in the sexual species 
T. californicum, which features a different panel of color morphs 

than T. cristinae (32). This diversity peak in T. californicum was 
generated by the presence of two divergent haplotypes (approximately 
24 Mbp long), with gray individuals homozygous for one haplotype 
and green individuals heterozygous or homozygous for the alterna-
tive haplotype (see Supplementary Text). Note that the gray color 
morph is not known in the monomorphic green parthenogenetic 
sister of T. californicum (T. shepardi), and we therefore do not ex-
pect the same pattern of polymorphism on LG8 in this species.

Faster rate of adaptive evolution in sexual than 
parthenogenetic species
We have shown previously that parthenogenetic Timema species 
accumulate deleterious mutations faster than sexual species (33, 34), 
a pattern also reported in other parthenogenetic taxa [reviewed in 
(16, 35)]. This is expected given that increased linkage among loci in 
parthenogens reduces the ability of selection to act individually on 
each locus, which generates different forms of selective interference 
(9, 10, 36). In addition to facilitating the accumulation of deleterious 
mutations, selective interference among loci in parthenogens should 
also constrain the efficiency of positive selection. While there is 
accumulating evidence for this process in experimental evolution 
studies [e.g., (37–39)], its impact on natural populations remains 
unclear (16, 35). To compare the efficiency of positive selection in 
sexual and parthenogenetic Timema, we used a branch-site model 
on the gene trees [see (40) and Methods]. We compared the termi-
nal branches leading to sexual or parthenogenetic species in one-to-
one orthologous genes identified in at least three species pairs (data S1), 
using a threshold of q < 0.05 to classify which terminal branches 
show evidence of positive selection.

We found a greater number of positively selected genes in sexual 
than parthenogenetic species [binomial generalized linear mixed model 
(GLMM) P = 0.005; Fig. 4]. In addition, we also examined if there 
was more evidence for positive selection in sexual species in a threshold- 
free way by comparing the likelihood ratio test statistic between 
parthenogenetic and sexual species. This confirmed that the evidence 
for positive selection was stronger for sexual species (permutation 
glm P = 0.011).

The positively selected genes that we identified are most likely 
associated with species-specific adaptations. Few of them were shared 
between species, with overlap between species not greater than ex-
pected by chance (false discovery rate < 0.4; fig. S3), and there was 
little enrichment of functional processes in positively selected genes 
[0 to 19 Gene Ontology (GO) terms per species; table S5]. Most of 
the significant GO terms were associated with positively selected genes 
in parthenogenetic Timema (table S5), likely because a much smaller 
proportion of positively selected genes in sexual species had anno-
tations (fig. S4). We speculate that positively selected genes in sexuals 
could often be involved in sexual selection and species recognition. 
Genes associated with processes such as pheromone production and 
reception often evolve very fast, which makes them difficult to anno-
tate through homology-based inference (41). For the parthenogenetic 
species, although some terms could be associated with their mode 
of reproduction (e.g., GO:0033206 meiotic cytokinesis in T. douglasi), 
most are not clearly linked to a parthenogenetic life cycle.

TE content is similar between species with sexual 
and parthenogenetic reproduction
Upon the loss of sexual reproduction, TE dynamics are expected to 
change (14, 42). How these changes affect genome-wide TE loads is, 
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however, unclear as sex can facilitate both the spread and the elimi-
nation of TEs (16). In parthenogens, TE load might initially increase as 
a result of weaker purifying selection, a pattern well illustrated by the 
accumulation of TEs in nonrecombining parts of sex chromosomes 

and other supergenes (43, 44). However, TE loads in parthenogens 
are expected to decrease over time via at least two nonmutually ex-
clusive mechanisms. First, TEs are expected to evolve lower activity 
over time as their evolutionary interests are aligned with their hosts 
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Fig. 3. Population polymorphism levels in parthenogenetic (blue) and sexual (red) Timema species. (A) Phylogenies based on 1:1 orthologous genes reflect the 
different levels of genotype diversities in parthenogenetic Timema species. (B) Distribution of SVs (dark blue and red) and SNPs (light blue and orange) along the genome. 
Scaffolds from the 10 de novo genomes are anchored on autosomal linkage groups from the sexual species T. cristinae (see Supplementary Text).
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(14, 42). Second, TE copies that were purged via excision can recol-
onize a sexual but not a parthenogenetic genomic background (15). 
Last, it is important to note that the predicted effects of reproduc-
tive mode on genomic TE loads require sufficient levels of TE activity 
(transposition or excision). If TE activity is very low, TE contents will 
remain relatively stable in closely related species independently of 
their reproductive mode.

We generated a Timema genus-level TE library by merging de 
novo TE libraries generated separately for each of the 10 Timema 
species. We then quantified TE content in each Timema genome by 
mapping reads to this merged library (see Methods). The overall TE 
content was very similar in all 10 species (20 to 23.6%), with signif-
icant differences in abundance of TE superfamilies between species 
groups but no significant effect of reproductive mode (P = 0.43; 
Fig. 5 and fig. S5).

The oldest node in our Timema phylogeny has an age estimate of 
30 million years (45), but the overall TE contents of the two clades 
separating at this node only differ by 1.3%. This suggests that there 
has been little TE activity during the evolution of the genus or that 
transposition and excision rates are in balance. TE sequence diver-
gence landscapes further revealed that there were few recently du-
plicated TEs in the Timema genomes, again suggesting little recent 

TE activity (see Supplementary Text and fig. S13). Although addi-
tional studies are required to formally distinguish between low TE 
activity and balanced transposition and excision rates, our results 
suggest that TE content likely evolves too slowly in Timema for any 
putative reproductive mode effects to become apparent. Low activity 
of TEs might facilitate the persistence of incipient parthenogenetic 
strains (16) and thus help to explain the high frequency of estab-
lished parthenogenetic species in Timema.

In conclusion, we present genomes of five independently derived 
parthenogenetic lineages of Timema stick insects, together with their 
five sexual sister species. This design with replicated species pairs 
allows us to disentangle consequences of parthenogenesis from 
species-specific effects. All parthenogenetic Timema species are largely 
or completely homozygous for both SNPs and SVs, and frequently 
feature lower levels of population polymorphism than their close sex-
ual relatives. Low population polymorphism can exacerbate the effects 
of linkage for reducing the efficacy of selection, resulting in reduced 
rates of positive selection in parthenogenetic Timema, in addition to 
the accumulation of deleterious mutations previously documented 
(33). Despite these negative genomic consequences, parthenogenesis 
is an unusually successful strategy in Timema. It evolved and per-
sisted repeatedly in the genus, and parthenogenetic species often occur 
across large geographic areas. Because Timema are wingless and their 
populations are subjected to frequent extinction- recolonization dy-
namics in their fire-prone Californian shrubland habitats, the genomic 
costs of parthenogenesis are likely offset by one of the most classical 
benefits of parthenogenesis: the ability to reproduce without a mate.

METHODS
Sample collection and sequencing
For each of the 10 species, the DNA for Illumina shotgun sequenc-
ing was derived from virgin adult females collected in 2015 from 
natural populations in California (table S1). Extractions were done 
using the Qiagen MagAttract HMW DNA Kit, following the man-
ufacturer’s indications. Five polymerase chain reaction (PCR)–free 
libraries were generated for each reference genome (three 2× 125-bp 
paired-end libraries with average insert sizes of 350, 550, and 700 bp, 
respectively, and two mate-pair libraries with 3000- and 5000-bp 
insert sizes, respectively); one library (550-bp insert size) was gen-
erated for each resequenced individual. Libraries were prepared using 
the Illumina TruSeq DNA PCR-Free or Nextera Mate Pair Library 
Prep Kits, following the manufacturer’s instructions, and sequenced 
on the Illumina HiSeq 2500 system, using v4 chemistry and 2× 125-bp 
reads at FASTERIS SA, Plan-les-Ouates, Switzerland and the Lausanne 
Genomic Technologies Facility, Switzerland.

Genome assembly and annotation
The total coverage for the reference genomes (all libraries combined) 
ranged between 37× and 45× (table S2). Trimmed paired-end reads 
were assembled into contigs using ABySS (46) and further scaffolded 
using paired-end and mate pairs using BESST (47). Scaffolds iden-
tified as contaminants were filtered using BlobTools (48). The 
assembly details can be found in the Supplementary Materials (see 
Supplementary Text).

Publicly available RNA sequencing libraries for Timema (33, 49, 50) 
were used as expression evidence for annotation. Trimmed reads were 
assembled using Trinity v2.5.1 (51) to produce reference-guided 
transcriptomes. The transcriptomes and protein evidence were 
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Fig. 4. Number of genes showing evidence for positive selection in each species 
(total number of genes = 7155). In addition to reproductive mode, species pair 
also had a significant influence on the number of positively selected branches 
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and if genes with polymorphic positively selected sites were excluded (fig. S2B).
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combined with ab initio gene finders to predict protein coding genes 
using MAKER v2.31.8 (52). The annotation details can be found in 
the Supplementary Materials (see Supplementary Text).

Orthologs
Timema orthologous groups (OGs) were inferred with the OrthoDB 
standalone pipeline (v. 2.4.4) using default parameters (53). In short, 
genes are clustered with a graph-based approach based on all best 
reciprocal hits between each pair of genomes. The high level of frag-
mentation typical for Illumina-based genomes constrains the ability 
to identify 1:1 orthologs across all 10 Timema species. To maximize 
the number of single-copy OGs covering all 10 Timema species, tran-
scriptomes were included during orthology inference. Thus, tran-
scripts were used to complete OGs in the absence of a gene from the 
corresponding species. Using this approach, 7157 single-copy OGs 
covering at least three sexual-parthenogenetic sister species pairs 
were obtained (data S1).

Horizontal gene transfers
To detect HGT from nonmetazoan species, we first used the pipe-
line of foreign sequence detection developed by Francois et al. (54). 
We used the set of coding DNA sequences (CDS) identified in pub-
licly available transcriptomes (33) and the genome assemblies before 
the decontamination procedure with BlobTools (48). The rationale 
is that some genuine HGT could have been wrongly considered as 
contaminant sequences during this decontamination step and thus 

been removed from the assembly. Scaffolds filtered during decon-
tamination are available from our github repository (https://github.
com/AsexGenomeEvol/Timema_asex_genomes/tree/main/4_
Horizontal_Gene_Transfers/contamination_sequences) and will be 
archived upon acceptance.

Briefly, a DIAMOND BlastP (v0.8.33) (55) allows us to detect 
candidate nonmetazoan genes in the set of CDS of each species. 
Taxonomic assignment is based on the 10 best blast hits to account 
for potential contaminations and other sources of taxonomic mis-
assignment using a curated reference database designed to cover all 
domains of life [see Francois et al. (54) for details]. Candidate non-
metazoan sequences are then subjected to a synteny-based screen 
with Gmap (v2016-11-07) (56) to discriminate between contami-
nant sequences and potential HGT-derived sequences. A sequence 
is considered as an HGT candidate if it is physically linked to (i.e., 
mapped to the same scaffold as) at least one “confident-arthropod” 
CDS (previously identified in the DIAMOND blast).

We then clustered all HGT candidates identified in each of the 
10 Timema species into HGT families using Silix (v1.2.10) (57), re-
quiring a minimum of 85% identity (default parameters otherwise). 
These HGT families were then “completed” as much as possible by 
adding homologs from the genome assemblies not identified as HGT 
candidates (this could occur if the corresponding sequences are frag-
mented or on short scaffolds for example). To this end, the longest 
sequence of each HGT family was mapped (using Gmap) on the genomic 
scaffolds of all species, requiring a minimum of 85% identity.
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For each completed HGT family, a protein alignment of the can-
didate HGT sequence(s) and its (their) 50 best DIAMOND blastP 
hits in the reference database (first step of the pipeline) was gener-
ated with MAFFT (v7) (58). The alignments were cleaned using 
HMMcleaner (stringency parameter = 12) (59), and sites with more 
than 50% missing data were removed. Phylogenetic trees were in-
ferred using RAxML (v8.2) (60) with the model “PROTGAMMALGX” 
of amino acid substitution and 100 bootstrap replicates. Phylogenetic 
trees were inspected by eye to confirm whether an evolutionary his-
tory was consistent with the hypothesis of HGT.

Heterozygosity
Genome-wide nucleotide heterozygosity was estimated using ge-
nome profiling analysis of raw reads from the reference genomes 
using GenomeScope (v2) (20). The second SNP-based heterozygosity 
estimate was generated using resequenced individuals. We resequenced 
five individuals per species, but three individuals of T. shepardi, two 
individuals of T. poppensis, and one T. tahoe individual did not pass 
quality control and were discarded from all downstream analyses. 
SNP calling was based on the Genome Analysis Toolkit best practices 
pipeline (61). We used a conservative set of SNPs with quality scores 
≥300 and supported by 15× coverage in at least one of the individuals. 
SNP heterozygosity was then estimated as the number of heterozy-
gous SNPs divided by the number of callable sites in each genome. 
Because of stringent filtering criteria, our SNP-based heterozygosity 
is an underestimation of genome-wide heterozygosity.

Structural variants
We used Manta (v1.5.0) (62), a diploid-aware pipeline for SV calling, 
in the same set of resequenced individuals used for SNP heterozy-
gosity estimates. We found a high frequency of heterozygous SVs with 
approximately twice the expected coverage (fig. S6), which likely 
represent false positives. To reduce the number of false positives, we 
filtered very short SVs (30 bases or less) and kept only variant calls 
that had either split read or paired-end read support within the ex-
pected coverage range, where the coverage range was defined indi-
vidually for each sample by manual inspection of coverage distributions. 
The filtered SV calls were subsequently merged into population SV 
calls using SURVIVOR (v1.0.2) (63). The merging criteria were SV 
calls of the same type on the same strand with breakpoint distances 
shorter than 100 bp.

Genome alignment
We anchored our genome assemblies to the reference of T. cristinae 
(BioProject Accession PRJNA417530) (30) using MUMmer (version 
4.0.0beta2) (64) with parameter --mum. The alignments were pro-
cessed by other tools within the package: show-coords with parameters -  
THrcl to generate tab-delimited alignment files and dnadiff to generate 
one-to-one alignments. We used only uniquely anchored scaffolds 
for which we were able to map at least 10,000 nucleotides to the 
T. cristinae reference genome.

Transposable elements
For each species, specific repeat libraries were constructed and 
annotated to the TE superfamily level (65), wherever possible. For 
collecting repetitive sequences, we used a raw read-based approach 
DNAPipeTE v1.2 (66) with parameters -genome_coverage 0.5 -sample_
number 4 and respective species genome size, as well as an assembly- 
based approach (RepeatModeler v1.0.8 available at www.repeatmasker.

org/RepeatModeler/), such that repeats not present in the assembly 
can still be represented in the repeat library. The two raw libraries 
were merged and clustered by 95% identity (the TE family threshold) 
using usearch v10.0.240 (67) with the centroid option. To annotate 
TEs larger than 500 bp in the repeat library, we used an approach 
that combines homology and structural evidence [PASTEClassifier 
(68)]. Because PASTEClassifier did not annotate to TE superfamily 
levels, we additionally compared by BlastN (v. 2.7.1+) (69) the 
repeat libraries to the well curated T. cristinae TE library from 
Soria-Carrasco et al. (18). Blast hits were filtered according to TE 
classification standards: identity percentage >80%, alignment 
length >80 bp, and the best hit per contig was kept. The two classi-
fication outputs were compared, and in case of conflict, the classifi-
cation level of PASTEClassifier was preferred. All nonannotated 
repeats were labeled “unknown.” Repeat library header naming was 
done according to RepeatMasker standard, but keeping the Wicker 
naming for elements (i.e., Wicker#Repeatmasker, e.g., DTA#DNA/
hAT). TE libraries were sorted by header, and TE annotations to 
similar families were numbered consecutively. Species-specific TE 
libraries were merged into a genus-level Timema TE library to ac-
count for any TE families that might have not been detected in the 
single species assemblies.

To estimate the TE content of reference genomes and resequenced 
individuals, we first repeat-masked the assemblies with the genus- 
level TE library using RepeatMasker v4.1.0 with parameters set 
as -gccalc -gff -u -a -xsmall -no_is -div 30 -engine rmblast (70). 
Second, we mapped the 350-bp insert paired-end reads back to the 
reference genome assemblies using BWA-MEM v0.7.17 (71) with 
standard parameters. We then counted the fraction of reads map-
ping to TEs out of total mappable reads by counting the number of 
reads that mapped to each genomic location annotated as TE using 
htseq-counts (v0.6.1.1p1) (72) with parameters set to -r name -s 
no -t similarity -i Target --nonunique none, using the mapped read 
alignments and the gff output of RepeatMasker (filtered for TE 
length of >80 bp). TE content was compared among species using a 
permutation ANOVA with 5000 bootstrap replicates.

To generate the TE activity landscapes, utilities scripts calcDivergence 
FromAlign.pl and createRepeatLandscape_mod.pl were used on 
the outputs of Repeatmasker v4.1.0. The createRepeatLandscape_
mod.pl was modified to match the TE families found in Timema.

Positive selection analysis
Only one-to-one orthologs in at least three pairs of species (sister- 
species sex-asex) were used. The species phylogeny was imposed on 
every gene as the “gene tree.” We used a customized version of the 
Selectome pipeline (73). All alignment building and filtering was 
performed on predicted amino acid sequences, and the final amino 
acid MSAs (multiple sequence alignments) were used to infer the 
nucleotide MSAs used for positive selection inference. MSAs were 
obtained by MAFFT (v. 7.310) (58) with the allowshift option, which 
avoids overaligning nonhomologous regions (e.g., gene prediction 
errors, or alternative transcripts). All the next steps “mask” rather 
than remove sites, by replacing the amino acid with an “X” and the 
corresponding codon with “NNN.” MCoffee (v11.00.8cbe486) (74) 
was run with the following aligners: mafft_msa, muscle_msa, clustalo_
msa (75), and t_coffee_msa (76). MCoffee provides a consistency 
score per amino acid, indicating how robust the alignment is at that 
position for that sequence. Residues with a consistency score less 
than five were masked. TrimAl (v. 1.4.1) (77) was used to mask columns 
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with less than four residues (neither gap nor X). Following this step, 
2 of the 7157 ortholog alignments consisted only of gaps and were 
excluded from further analyses.

The branch-site model with rate variation at the DNA level (40) 
was run using the Godon software (https://bitbucket.org/Davydov/
godon/, version 2020-02-17, option BSG --ncat 4). Each branch was 
tested iteratively, in one run per gene tree. For each branch, we ob-
tain a lnL that measures the evidence for positive selection, a cor-
responding P value and associated q value (estimated from the 
distribution of P values over all branches of all genes), and an esti-
mate of the proportion of sites under positive selection, if any. All 
positive selection results, and detailed methods, are available at https://
selectome.org/timema. To determine whether the number of posi-
tively selected genes differed between sexual and parthenogenetic species, 
we used a binomial GLMM approach [lme4 (78)] with q value threshold 
of 0.05 or 0.01. Significance of model terms was determined with a 
Wald statistic. In addition, we also examined if there was more evi-
dence for positive selection in sexual species in a threshold-free way 
by comparing lnL values between parthenogenetic and sexual spe-
cies. To do this, we used a permutation glm approach where repro-
ductive mode (sexual or parthenogenetic) was randomly switched 
within a species pair. To determine whether the overlap of positive-
ly selected genes was greater than expected by chance, we used the 
SuperExactTest package (v. 0.99.4) (79) in R. The resulting P values 
were multiple test–corrected using Benjamini and Hochberg’s algo-
rithm implemented in R. To assess the impact of polymorphism on 
our results, we repeated our analysis after excluding positively selected 
genes with nonsynonymous polymorphic variants at positively se-
lected sites (those with a posterior probability of >0.95 detected by 
Bayes empirical Bayes analysis in Godon). Functional enrichment 
analyses were performed using TopGO (v. 2.28.0) (80) using the 
Drosophila melanogaster functional annotation (see Supplementary 
Text). To determine whether a GO term was enriched, we used a 
Fisher’s exact test with the “weight01” algorithm to account for the 
GO topology. GO terms were considered to be significantly enriched 
when P < 0.05.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg3842

View/request a protocol for this paper from Bio-protocol.
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