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ARTICLE

Bovine host genome acts on rumen microbiome
function linked to methane emissions
Marina Martínez-Álvaro 1, Marc D. Auffret2, Carol-Anne Duthie1, Richard J. Dewhurst 1,

Matthew A. Cleveland3, Mick Watson 4 & Rainer Roehe 1✉

Our study provides substantial evidence that the host genome affects the comprehensive

function of the microbiome in the rumen of bovines. Of 1,107/225/1,141 rumen microbial

genera/metagenome assembled uncultured genomes (RUGs)/genes identified from whole

metagenomics sequencing, 194/14/337 had significant host genomic effects (heritabilities

ranging from 0.13 to 0.61), revealing that substantial variation of the microbiome is under

host genomic control. We found 29/22/115 microbial genera/RUGs/genes host-genomically

correlated (|0.59| to |0.93|) with emissions of the potent greenhouse gas methane (CH4),

highlighting the strength of a common host genomic control of specific microbial processes

and CH4. Only one of these microbial genes was directly involved in methanogenesis (cofG),

whereas others were involved in providing substrates for archaea (e.g. bcd and pccB),

important microbial interspecies communication mechanisms (ABC.PE.P), host-microbiome

interaction (TSTA3) and genetic information processes (RP-L35). In our population, selection

based on abundances of the 30 most informative microbial genes provided a mitigation

potential of 17% of mean CH4 emissions per generation, which is higher than for selection

based on measured CH4 using respiration chambers (13%), indicating the high

potential of microbiome-driven breeding to cumulatively reduce CH4 emissions and mitigate

climate change.
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Ruminants harbour a unique symbiotic gut microbial
population that transforms indigestible fibrous feed into
high-quality products such as meat and milk for human

consumption. Moreover, ruminant livestock is vital to meet global
food security and contribute to poverty1 reduction in an
increasing world population2. Yet to be solved is the negative
environmental impact, as dairy and beef cattle account for 9.5%
of all anthropogenic greenhouse gas (GHG) emissions3. Of those,
ruminal microbial fermentation represents 40–50%; in particular,
due to the highly potent GHG methane (CH4)4. Additionally,
CH4 emissions imply a considerable energy loss to the animal,
ranging from 2 to 12% of gross energy intake5. Therefore,
decreasing CH4 emissions is acknowledged to contribute to the
mitigation of climate change and optimize the economic effi-
ciency of cattle production6. Ruminal methanogenesis is a com-
plex process dependent on the cooperation of taxonomic
communities with different metabolic activities7–10. A diverse
community of bacteria, ciliate protozoa, and anaerobic fungi11

convert complex diet carbohydrates, proteins, and lipids into
volatile fatty acids, lactate, microbial proteins, and vitamins while
releasing CO2, H2, and other compounds. Four orders of ruminal
methanogenic archaea use electrons derived from H2, formate or
methyl compounds to reduce carbon dioxide into CH4 to obtain
energy for growth12. Dietary interventions designed to alter the
microbiome for CH4 mitigation (e.g. protozoa defaunation13,14,
seaweed15, and 3-NOP16 additives) have often failed in the long
term due to microbiota adaptation to the new environment17 or
are associated with increased production costs. In contrast, the
genomic selection that targets the part of the host genome
modulating microbiome composition related to low CH4-emit-
ting cattle opens up the opportunity to provide a cost-effective
permanent solution to reduce CH4 emissions from ruminants.

There is increasing evidence of a host genetic impact on the
composition of the microbiota in the rumen of bovines7,18–25,
monogastric livestock26,27, and humans28–33. These previous
metagenomic studies were based on microbiota profiles mostly
identified using sequence polymorphisms of the 16S rRNA gene
and therefore did not consider the functional versatility of unique
rumen microbial species, nor the ability of some microbial
organisms to integrate foreign DNA from other microbial
organisms into their DNA. Novel microbial species in the rumen
have recently been identified using metagenome-assembled gen-
omes generated from whole metagenomic sequence data of
microbial DNA from rumen samples8,34, but how their abun-
dances are shaped by host genomics is still unknown. There is
also a lack of knowledge of the host genomic associations with the
abundances of functional microbial KEGG genes which were
found to predict methane emissions on the phenotypic level with
a prediction ability of r2= 0.817. Moreover, a microbiome-driven
selection strategy based on this functional information of
microbial genes in animal breeding and a study of its effect on the
response to selection is to the best of our knowledge not available,
since previous research emphasized host genetic effects on the
taxonomical composition of the microbiome22,35,36. To identify
the functionality of the rumen microbiome directly, we applied
genome-resolved metagenomics to generate abundances of the
microbial KEGG genes based on whole metagenomic sequencing.
Based on these data, we carried out comprehensive research that
elucidates how host genomics influences complex functions of
ruminal microbes (determined by their microbial genes) geno-
mically correlated to CH4 emissions. Furthermore, we developed
a microbiome-driven selection strategy showing how this infor-
mation can best be included in cattle breeding to directly change
the rumen microbiome function and reduce these emissions.

We identified the host genomic (using single-nucleotide
polymorphism (SNP) information) influence on an extensively

characterized microbiome in relation to CH4, using whole
metagenome sequencing of rumen microbial DNA samples
from a bovine population designed for a powerful host genomic
analysis37–39 with high standardization of diets and other hus-
bandry effects. We characterized the core ruminal microbiome
by identifying 1,108 cultured microbial genera by mapping our
sequences to the Hungate1000 reference genome collection40

and RefSeq41 databases (Supplementary Data 1); 225 ruminal
uncultured genomes (RUGs) by de novo metagenome-assembly
of genomes34, 34 of them classified at strain level (Supplemen-
tary Data 2), and 1142 functional microbial genes (Supple-
mentary Data 3); present in all (n= 359) and for RUGs in >200
of our animals. Our specific hypothesis is that the host genome
influences the abundance of not only functional microbial genes
involved in metabolism, but also in interspecies communication,
host–microbiome interactions, and genetic information pro-
cessing. These functions may play a key integrating role in
achieving a ruminal balance where fermentation of feed into
essential nutrients utilized by the host is optimized and sub-
strates utilized by methanogenesis e.g. H2 excess are minimized.
Our comprehensive description of ruminal microbiome func-
tionalities includes the abundances of 34 microbial genes carried
by methanogenic archaea directly implicated in CH4 metabo-
lism; 511 involved in other metabolic pathways of bacteria,
archaea, ciliate protozoa or fungi, indirectly influencing
methanogenesis by minimizing required substrates through
non-methanogenic routes that yield beneficial nutrients for
ruminants42 (e.g. acetogenesis, propionogenesis13,43–45), or
generating methanogen-inhibitor metabolites46–48; 207 in
microbial communication processes and host-microbiome
interaction (e.g. ABC transporters of different metabolites or
fucose sensing) carried by fungi, bacteria and archaea49–51, of
importance because the synthesis of CH4 in cooperation with
other main metabolic routes in the rumen52–54 are syntrophic
processes amongst microbial communities55; 330 involved in
genetic information processes (e.g. ribosomal biosynthesis)
related to microbial growth56; and 60 at present not functionally
characterized. For each of these 2475 functional and taxonomic
characteristics of the rumen microbiome, the host genomic
determination and correlation with CH4 emissions were ana-
lysed. After stringent adjustment for multiple testing, we
demonstrate that our hypothesis of a common host genomic
control is valid by discovering heritabilities (h2) of microbial
profiles and host-genomic correlations with CH4 emissions
(rgCH4) significantly deviating from zero, which shows the
effectiveness of this strategy. Our results are obtained in bovines,
but also provide an indication of potential host genomic effects
on functional microbial genes and their biological processes in
other species.

Besides providing a better understanding of the complex host
genomic effects on the rumen microbiome function, this research
provides the basis for a cost-effective microbiome-driven breed-
ing strategy to mitigate CH4 emissions from cattle without
measuring it directly, which is necessary considering the cost-
prohibitive limitations of measuring individual animal CH4

emissions.

Results
Bovine host genomics affected CH4 emissions produced by
ruminal archaea. CH4 emissions57 were accurately measured
from individual beef cattle (n= 285) using the gold-standard
method of respiration chambers. Animals within the same breed
or diet expressed high phenotypic variability in CH4 emissions
with coefficients of variation from 16.3 to 28.5% (Supplementary
Fig. 1a, b). Genomic h2 of CH4 emissions revealed that 33%
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(Bayes Factor for genomic effects (BF)= 5.91) of this phenotypic
variation was explained by host genome variation, which is
consistent with other studies58–60. The h2 obtained for CH4

emissions is at the level of other traits for which substantial gains
due to breeding are achieved, such as growth rate61 and milk
yield62. In addition, there was large genomic variation for CH4

emissions as deviation from the mean ranged from −2.67 to
3.51 g/kg of dry matter intake (DMI) with no difference between
breeds (P > 0.16), which suggests that bovines have most likely
not been indirectly selected for CH4 emissions as a result of a lack
of genetic correlation to those traits under selection.

Host genomics affects the ruminal microbiome composition.
We next investigated the proportion of the ruminal micro-
biome variation at taxonomic and functional levels explained
by the host genomic variation among individuals, by estimat-
ing h2 of the ruminal abundances of 1107 genera, 225 RUGs,
and 1141 microbial genes. Our results demonstrate significant
host genomic effects with h2 in a range between 0.13 and 0.61
for the abundances of 194 microbial genera, 14 RUGs, and 337
microbial genes representing cumulatively 58.4, 5.63, and
27.2%, respectively, of the total relative abundance (RA) (Fig. 1
and Supplementary Data 4–6). Among the 194 genera, 20 were
highly heritable (h2 > 0.40), which belonged exclusively to
bacteria (e.g. Firmicutes Acidaminococcus (RA= 0.3%),
h2= 0.54, BF= 8.82 × 10+5) and archaea (e.g. hydro-
genotrophic methanogen Methanospirillum63 (RA= 0.0005%,
h2= 0.40, BF=; 1.04 × 10+2). Host genome also shaped the
abundance of the hydrogenotrophic/methylotrophic55 metha-
nogen Candidatus Methanoplasma (RA= 0.002%, h2= 0.32,
BF= 6.31 × 10+2), and to a lesser extent the abundance of
ubiquitous Methanobrevibacter (RA= 5.02%, h2= 0.24, BF=
9.10)—which is coherent with estimates from other
studies18–20—Candidatus Methanomethylophilus (RA= 0.05%,
h2= 0.26, BF= 4.18), Methanothermus (RA= 0.002%, h2=

0.25, BF= 1.26 × 10+1) and Methanoplanus (RA= 0.0008%,
h2= 0.24, BF= 9.56). Reinforcing the evidence of a host-
genomic component in the abundance of methanogenic
archaea, 5 RUGs annotated as uncultured Methanobrevibacter
strains (RA > 0.27%) demonstrated moderate to high h2 esti-
mates (0.39–0.48, BF from 3.5 to 4.65 × 10+1), indicating that
more specific classification using RUGs provides the oppor-
tunity to find highly heritable strains. The most abundant
complex carbohydrates degraders in the rumen—Eubacterium
(RA= 1.02%), Prevotella (RA= 39.2%), Butyrivibrio (RA=
2.54%), Bacteroides (RA= 1.39%) and Pseudibutyrivibrio
(RA= 0.54%)—were highly (h2= 0.51 for Eubacterium, BF=
9.72 × 10+3) or moderately (h2= 0.23–0.33 for the others, BF
from 7.42 to 9.73 × 10+1) heritable; with 7 highly abundant
RUGs (RA > 0.25%) classified as uncultured Prevotellaceae
bacterium having h2 from 0.32 to 0.45 (BF from 7.48 to
1.67 × 10+2). These results support the concepts of a “core
heritable microbiome”21,64 and stability over time of certain
microbial genera abundance such as Prevotella65. None of the
fungi and protist genera, which are considered to be non-
essential for rumen function and highly variable within dif-
ferent host species66, were highly heritable.

We elucidated that the specific functional capacity of the
ruminal microbiome is heritable by estimating the h2 of a
comprehensive set of microbial genes, of which 33 were highly
(h2 > 0.4), and 304 were moderately (0.2 < h2 < 0.4) heritable.
These microbial genes are involved in a wide variety of metabolic
functions (Fig. 1b and Supplementary Data 6), e.g. synthesis of
microbial proteins or volatile fatty acids, suggesting that the host
genome influences the growth of microbes responsible for the
release of nutrients during microbial fermentation67,68. Among
34 microbial genes involved in the CH4 metabolism pathway,
13 showed moderate h2 of 0.22–0.29 (BF from 3.96 to
7.82 × 10+1), e.g. mcrA, mcrB, mtrD, mtrE, and cofG. Ribosomal
biosynthesis was revealed to be under strong host-genomic

Fig. 1 Genomic heritability (h2) estimates of additive log-ratio-transformed abundances of microbial taxa and their genes in the rumen of 359 bovines.
Bars show the h2 values of 194/14/337 rumen microbial genera/uncultured genomes (RUGs)/genes tested exhibiting non-zero h2 estimates and
significant host genomic effects (based on Bayes Factor >3 and Deviance Information Criterion difference between models with or without host genomic
effects ≤−20). a Cultured microbial genera and RUGs classified within the phylum. b Microbial genes grouped by microbial biological processes: microbial
communication and host-microbiome interaction (Comm. & Host Interact.), genetic information processes (Genetic Inform.), metabolism other than
methane (Other Metabol.), and methane metabolism (CH4 Metabol.). Source data is in Supplementary Data 4–6.
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control with 56 heritable microbial genes, representing a
cumulative RA of 6.57%, including 9 highly heritable genes
(h2= 0.40–0.53, BF= 1.62 × 10+2 to 1.18 × 10+8) synthesizing
the large ribosomal subunit. Intracellular ribosomal biosynthesis
reflects the growth rate of microbial organisms, given that
ribosomes can account for up to 40% of their cellular dry mass56,
and cell fitness and optimal growth are tightly coupled to efficient
protein synthesis69. Demonstrating that differences among
animals in complex microbiome functions are partly due to host
genomic variation opens up opportunities to consider a new
source of genetic variation not only in ruminants but also in
humans, where the h2 of microbial gene abundances was
estimated to be even larger (0.65–0.91)70.

Ruminal microbial mechanisms related to CH4 emissions are
influenced by host genomics. The existence of a common host
genomic influence on CH4 emissions and the rumen microbiome
was evaluated by estimating host-genomic correlations between
CH4 emissions and each microbial genus/RUG/gene abundance
(rgCH4). Based on the probability of rgCH4 being different from 0
(P0) ≥ 0.95, our study revealed 29 microbial genera, 22 RUGs, and
115 functional microbial genes strongly host-genomically correlated
with CH4 emissions (rgCH4 from |0.59| to |0.93|, Supplementary
Data 7–9). Among the significant microbial communities, most
were bacteria (22 genera/17 RUGs) belonging to Bacteroidetes (5/
14), Firmicutes (6/2), and Proteobacteria (9/1) phyla. Most micro-
bial genes with strong rgCH4 were not directly involved in CH4

metabolism pathways, but rather mechanisms indirectly affecting
CH4 production most likely by limiting substrates for
methanogenesis10,71, inhibiting methanogens, playing a role in
coordinating actions among microbial communities and the host or
leading microbial genetic processes. Only H2-oxidizing Methanor-
egula (RA= 0.003%) with unknown activity in rumen49 and the

microbial gene cofG involved in F420 coenzyme biosynthesis72,73

resulted in significant negative rgCH4 (−0.82 and −0.71, P0 ≥ 0.95),
suggesting that these are abundant under ruminal conditions
unfavourable for high CH4 producing methanogens. Four uncul-
tured Methanobrevibacter strains showed negative rgCH4 (<−0.72,
P0 ≥ 0.95) and one was positive (0.91, P0= 0.99), indicating that the
relationship between the abundance of Methanobrevibacter and
CH4 emissions is complex as different strains may have functional
versatility. We hypothesize that some Methanobrevibacter sp. can
produce CH4 even under a challenging ruminal environment (e.g.
low pH value), however, at a substantially lower level than those
adapted to more favourable conditions. To visualize which micro-
bial genus/gene abundances in the rumen are influenced by a
common host genomic background, we constructed a co-
abundance network based on Pearson correlations among dereg-
ressed host genomic effects for each microbial genus/RUG/gene
(Supplementary Fig. 2 and Supplementary Data 10). This approach
revealed co-abundance clusters of bacterial and fungal genera74

with strong rgCH4 and methanogenic archaea, e.g. fungal Metsch-
nikowia (rgCH4= 0.77, P0= 0.96) and archaeal Methanosarcina
(cluster 9 in Supplementary Fig. 2); and of microbial genes not
directly involved in CH4 metabolism but with strong rgCH4 (e.g. RP-
L6, rgCH4 0.71, P0= 0.96) and those involved directly in CH4

metabolism (e.g. fbaA, cluster 1 in Supplementary Fig. 2). The most
important host-genomically affected ruminal microbial mechan-
isms associated with CH4 production (based on rgCH4) are as
follows:

Microbial metabolism. An extensive group of microbial genes
involved in amino acid metabolic and transport pathways dis-
played negative rgCH4. Part of this group of microbial genes was
involved in the biosynthesis of arginine75 and branched-chain
amino acids76,77 via oxocarboxylic acid metabolism (argF, argD
and ilvA with rgCH4=−0.84 to −0.88, P0 ≥ 0.96; and argJ,

Fig. 2 Reaction scheme of 2-oxocarboxylic acid metabolism and glycine, serine, threonine, arginine, lysine, and Coenzyme B biosynthesis in which
additive log-ratio transformed microbial gene abundances strongly host-genomically correlated with methane emissions (rgCH4) are involved. Small
rectangles symbolize proteins encoded by the microbial genes. Microbial genes are highlighted in red when their rgCH4 estimates range between −0.74 and
−0.93 and show a probability of being different from 0 (P0)≥ 0.95, and in orange when they range between |0.55| and |0.77| and P0≥ 0.85. Source data is
in Supplementary Data 9. Compounds are denoted by their short names. Full names of compounds and microbial genes are given in Supplementary
Data 17.
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argC, alaA, ilvH, leuB, and leuD with rgCH4=−0.55 to −0.77
at lower evidence P0 ≥ 0.85, Figs. 2 and 3). Aconitate hydratase
(ACO) catalysing the isomerization of citrate to isocitrate in
the early stage of the oxocarboxylic chain extension, and bcd and
pccB degrading branched-chain amino acids into branched-
chain volatile fatty acids, which have an inhibitory effect on
methanogens46, also expressed negative rgCH4=−0.76 to −0.90
(P0 ≥ 0.95). We also estimated negative rgCH4 for microbial genes
coding ABC transporters of polar and branched-chain amino
acids (ABC.PA.A, ABC.PA.S, livH, livG, and livK rgCH4=−0.83
and −0.93, P0 ≥ 0.95). Another group of microbial genes was
related to the metabolism of aromatic amino acids tryptophan,
tyrosine, and phenylalanine (AROA2, trpA, trpD, trpE, tyrA2 and
paaH with rgCH4=−0.74 to −0.87, P0 ≥ 0.95 and aroC, aroA,
aroF, trpG, and trpB, with rgCH4=−0.68 to −0.74 at lower evi-
dence P0 ≥ 0.85, Fig. 4). More specifically, trpE, trpD, and trpA

take part in the metabolism of L-tryptophan (Fig. 4) whose
catabolites (e.g. indole) are important signalling molecules
in biofilm formation78, and activation of the host immune
system79. Moreover, 2-oxocarboxylic acid and tyrosine catabolites
are precursors for the biosynthesis of coenzyme B77,80 and
methanofuran73 methanogenic cofactors, and their diversion into
the synthesis of other substrates (e.g. arginine, branched-chain
amino acids or tryptophan) could explain their negative rgCH4.
Lastly, four microbial genes with negative rgCH4 (−0.61 to −0.87,
P0 ≥ 0.95) were associated with methionine metabolism (metE,
DNMT1) and transport (metQ and metN). Methionine is asso-
ciated with minor methylotrophic methanogenesis pathway81 in
the rumen82,83 and with an enhancement of microbial long-chain
fatty acid production84, a highly H2 demanding process44. Our
study highlights that the negative association between microbial
amino acid metabolism and CH4

85,86 has a host genomic

Fig. 3 Reaction scheme of 2-oxocarboxylic acid metabolism and branched-chain amino acid biosynthesis, in which additive log-ratio transformed
microbial gene abundances strongly host genomically correlated with methane emissions (rgCH4) are involved. Small rectangles symbolize proteins
encoded by the microbial genes. Microbial genes are highlighted in red when their rgCH4 estimates range between−0.74 and −0.93 and show a probability
of being different from 0 (P0)≥ 0.95, and in orange when they range between |0.55| and |0.77| and P0≥ 0.85. Source data is in Supplementary Data 9.
Compounds are denoted by their short names. Full names of compounds and microbial genes are given in Supplementary Data 17.

Fig. 4 Reaction scheme of phenylalanine, tyrosine and tryptophan biosynthesis in which additive log-ratio transformed microbial gene abundances
strongly host genomically correlated with methane emissions (rgCH4) are involved. Small rectangles symbolize proteins encoded by the microbial genes.
Microbial genes are highlighted in red when their rgCH4 estimates range between −0.74 and −0.93 and show a probability of being different from
0 (P0)≥ 0.95, and in orange when they range between |0.55| and |0.77| and P0≥ 0.85. Compounds are denoted by their short names. Source data is
in Supplementary Data 9. Full names of compounds and microbial genes are given in Supplementary Data 17.
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component. This could be partly due to host genomic effects19 on
ruminal feed retention times, which have opposite effects on
microbial protein synthesis efficiency67 and CH4 production87.

We obtained negative rgCH4 (from −0.60 to −0.85, P0 ≥ 0.95)
for the abundance of several microbial genes responsible for
sucrose metabolism (sacA, maIZ, bgLB, SPP, and sucrose
phosphorylase, Fig. 5), including the highly abundant sucrose
fermenter88 Eubacterium (RA= 1.02%), transporters of multiple
sugars across the membrane85 (ABC.MS.P1, ABC.MS.S, and
ABC.MS.P), and the microbial gene PTS-EI that catalyses the
phosphorylation of incoming sugar substrates concomitantly with
their translocation across the cell membrane. Microorganisms
capable of fast growth on soluble sugars are suggested to be
favoured in hosts with low rumen size and high digesta turnover
rate85,89, features also associated with low CH4 emissions87.
Degradation of easily fermentable carbohydrates, such as sucrose
or starch, causes a pH decline which has a strong CH4 reducing
effect as a result of pH sensitivity of methanogens or H2-
producing microbes90. Furthermore, previously mentioned
microbial genes aroA and trpE are involved in the shikimate
pathway91 linking sugar metabolism with the synthesis of
microbial proteins (aromatic amino acids, tyrosine, phenylala-
nine, and tryptophan) which are an important source of amino
acids for the host. Microbial protein yield from sucrose is
suggested to be more persistent over time in comparison to other
carbohydrates92, and partially stored by sucrose utilizers (e.g.
Eubacterium) for the maintenance of the microbial population92.

We also found negative rgCH4 for the abundance of hydrogeno-
trophic acetogenic bacteria Blautia45, together with Eubacterium93

(rgCH4=−0.60 and −0.73, P0 ≥ 0.95), and the fhs microbial gene
involved in the reductive Wood–Ljungdahl acetyl-CoA pathway
(rgCH4=−0.79, P0= 0.98). Acetogens produce volatile fatty acids
(mainly acetate but also propionate and butyrate94), which serve as
host nutrients to improve animal performance42 and simulta-
neously compete against methanogens for metabolic H2

9,43,45.
Despite acetogenesis being thermodynamically less favourable than
the reduction of CO2 into CH4

95 in the rumen, this may vary upon

microbial interactions and host-genomically influenced ruminal
environmental factors42,45,68. Propionogenesis via acrylate34,85,89,96

and lactaldehyde routes40 was another microbial mechanism under
host genomic influence lowering CH4 emissions as indicated by
negative rgCH4 (−0.76 to −0.90, P0 ≥ 0.95) for the abundances of
microbial genes bcd and pccB involved in propanoyl-CoA
metabolism and fucO catalysing the reduction of lactaldehyde into
1,2-propanediol, as well as the highly abundant (RA= 0.08%)
lactate-producing bacteria Kandleria (rgCH4=−0.87, P0= 0.99).
Propionate production from lactate not only reduces H2 availability
for methanogenesis13,97 but also prevents rumen acidosis98 and
results in a more efficient rumen fermentation99,100. The abundance
of six microbial genes encoding [4Fe-4S] cluster containing proteins
(bioB, cobL, cofG, nifU, ACO, and pflA) involved in electron transfer
mechanisms in redox reactions presented rgCH4 from −0.71 to
−0.87 (P0 ≥ 0.96). The first two proteins are involved in the
synthesis of substrates required for methanogenic cofactors; i.e. bioB
catalyses the conversion of dethiobiotin to biotin101, which
competes with coenzyme B for the synthesis of its alkyl
portion102,103; and cobL together with hemC (rgCH4=−0.91,
P0= 1.00) take part in porphyrin metabolism, required for different
processes including the synthesis of porphyrin-based cofactors
vitamin B12 and F430104. Nitrogen fixation protein nifU carries out
N2 reduction into ammonia105, which can act as an alternative H2-
consuming sink competing with ruminal methanogenesis. Further
negative rgCH4 were obtained for microbial genes in thiamine
metabolism (iscS, thiD, thiH, and thiE with rgCH4 from −0.88 to
−0.70, P0 ≥ 0.91)106; hydration of long-chain fatty acid oleate into
anti-tumoral hydroxystearic acid107,108 (ohyA, −0.81, P0= 0.95), or
import of methanogen inhibitors long-chain fatty acids47 (ABCB-
BAC109, rgCH4=−0.9, P0= 0.99). Moreover, highly abundant
bacteria genera with ruminal fatty acid biohydrogenation
activity110,111, Eubacterium and Butyrivibrio (RA= 2.54%, rgCH4=
−0.37, P0= 0.80) were negatively correlated with CH4.

Microbial communication and host–microbiome interaction
mechanisms. The majority of methanogens in the rumen are

Fig. 5 Reaction scheme of starch and sucrose metabolism in which additive log-ratio transformed microbial gene abundances strongly host
genomically correlated with methane emissions (rgCH4) are involved. Small rectangles symbolize proteins encoded by the microbial genes. Microbial
genes are highlighted in red when their rgCH4 estimates range between −0.74 and −0.93 and show a probability of being different from 0 (P0)≥ 0.95, and
in orange when they range between |0.55| and |0.77| and P0≥ 0.85. Source data is in Supplementary Data 9. Compounds are denoted by their short
names. Full names of compounds and microbial genes are given in Supplementary Data 17.
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integrated into the biofilm on the surface of feed particles where
H2 producing bacteria are active112–114. We found strong nega-
tive rgCH4 (−0.78 to −0.92, P0 ≥ 0.96) for abundances of microbial
genes mediating microbial interactions, involved in ABC trans-
port of cobalt/nickel (cbiO and cbiQ) and quorum sensing-related
peptide/nickel ions (ABC.PE.P, ABC.PE.S, ABC.PE.A, ABC.PE.P1)
—cobalt and nickel being detrimental for hydrogenotrophic and
aceticlastic methanogenic activity48—protein export (secD and
secF) and chemotaxis (cheA and mcp); and positive rgCH4 for
transcription protein cbpA (0.85, P0= 0.97) acting as a microbial
response to maintain plasmids replication during amino acid
starvation115. CH4 emissions were also host-genomically corre-
lated with abundances of microbial genes mediating host-
microbiome interaction; e.g. cbh and baiN116 (rgCH4=−0.80,
P0 ≥ 0.96) involved in bacterial biosynthesis of secondary bile
acids which activate metabolic receptors within gut, host liver,
and peripheral tissues116,117 and inhibit CH4 production in the
rumen by transferring metabolic H2 into propionate
production118. Another interesting finding is that TSTA3,
involved in the metabolism of host-microbiome crosstalk med-
iator fucose119, displays a positive rgCH4 (0.85, P0= 0.98). Fucose
is a component of mucins present in saliva120, which is produced
abundantly by ruminants and acts as a pH buffer during ruminal
fermentation due to its phosphate and bicarbonate content121.
Cellulolytic Fibrobacter, an indicator of high pH levels in
rumen122, was positively host-genomically correlated to TSTA3 in
our data (0.66, P0= 0.94), while lactic acid producer Kandleria,
generally associated with low pH levels and negative rgCH4, was
host-genomically correlated to TSTA3 negatively (−0.70,
P0= 0.90). Thus TSTA3 could be involved in signalling enhanced
saliva production, resulting in increased rumen pH that is known
to stimulate the growth of methanogenic archaea and CH4

emissions123.

Genetic information processes. Ribosomal biogenesis represented
by RP-S10, RP-S12, RP-S17, RP-L2, RP-L3, RP-L6, RP-L23, RP-
L28, RP-L34, and RP-L35, was one of the few microbial
mechanisms with positive rgCH4 from 0.71 to 0.84 (P0 ≥ 0.95). All
of them are universal ribosomal proteins homologous in bacteria,
archaea, and eukarya; except for RP-L28, RP-L34, and RP-L35
exclusively found in bacteria124,125. Given that protein synthesis
is highly coupled with cellular growth69, these results suggest that
the rumen environment provided by low CH4-emitter host gen-
omes are related to lower growth or activities of specific microbes
directly or indirectly involved in methanogenesis.

RUGs enriched with CH4-related microbial genes are strongly
host-genomically correlated to CH4 emissions. The 20 highly
prevalent (present in >200 animals) RUGs containing the highest

number of unique proteins from the 115 microbial genes with
strong rgCH4 were all bacterial RUGs carrying between 114 to 180
unique proteins classified into 60 to 84 microbial genes (Fig. 6
and Supplementary Data 11 and 12). Of these 20 highly enriched
bacterial RUGs, 18 showed negative rgCH4 consistently with the
majority of the microbial genes; 6 of them with rgCH4 <−0.65
(P0 ≥ 0.85) from which 5 RUGs were classified as uncultured
Lachnospiraceae bacterium (RUG10082, RUG13438, RUG13308,
RUG13002, RUG12132) and 1 as uncultured Clostridiales bac-
terium (RUG10940). The abundance of Blautia and Dorea
microbial genera within Lachnsopiraceae family (identified by
alignment to Hungate1000 collection and Refseq databases) also
presented negative rgCH4 <−0.72 (P0 ≥ 0.95, Supplementary
Data 7). We also investigated the enrichment of these 115
microbial genes in the 6 RUGs with rgCH4 (P0 ≥ 0.95) annotated at
the genus level (Supplementary Data 8), and in those RUGs
annotated in the same phylogeny level as any of the 29 microbial
genera with rgCH4 (P0 ≥ 0.95, Supplementary Data 7), which had
low occupancies in our cattle population (<200 animals) and
therefore were not included in the 225 considered for breeding
(see methods). Our findings show that part of the mechanisms
identified in this study occurs in the 5 RUGs classified as
uncultured Methanobrevibacter strains, each carrying at least 45
out of the 115 microbial genes (Supplementary Fig. 3). The
uncultured Methanobrevibacter strain with positive rgCH4

(RUG12982) carried fewer unique proteins (67 vs. 75 to 93) and
microbial genes (51 vs. 55 to 62) than the other 4 uncultured
Methanobrevibacter sp. RUGs with negative rgCH4; lacking, for
example, argD in arginine biosynthesis, tyrA2 in tyrosine and
tryptophan metabolism, and DNMT1 in methionine metabolism,
which reinforces the hypothesis of functional versatility amongst
different Methanobrevibacter strains explaining their different
effects and estimated rgCH4 on CH4 emissions. Low-occupancy
RUGs annotated as Eubacterium ruminatum, Eubacterium pyr-
uvativorans, Kandleria vitulina, and uncultured sp. of Blautia
RUGs carried at least 49 out of the 115 microbial genes each
(Supplementary Fig. 3). Interestingly, their counterparts identified
at the genera level presented negative rgCH4 <−0.60 (P0 ≥ 0.95,
Supplementary Data 7).

Microbiome-driven breeding of the bovine host for mitigation
of CH4 emissions. The comprehensive findings of the host-
genomic associations between microbial genus/RUG/gene abun-
dances and CH4 emissions enabled us to predict its mitigation
potential when applying genomic selection targeting each of them
individually (Supplementary Data 13), indirectly informing about
the impact of each microbial mechanism on methanogenesis.
Considering 30% of our cattle population being selected based on
the abundances of each microbial gene, maiZ in sucrose

Fig. 6 Top 20 rumen uncultured genomes (RUGs) highly enriched with the 115 microbial genes host-genomically correlated to methane emissions with
a probability of being higher or lower than 0 (P0)≥ 0.95. Colour scale represents the number of unique proteins mapping into each KEGG orthologous
group (i.e. microbial gene). Source data is in Supplementary Data 11. Full names of microbial genes are given in Supplementary Data 18.
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metabolism, ABC.PE.P in quorum sensing peptide/nickel trans-
port, hemc in porphyrin or upp in pyrimidine metabolism are
predicted to result in the highest CH4 mitigation potential (−5.2,
−5.3, −5.8 and −6.54% of CH4 emissions mean respectively,
P0 ≥ 0.99). Subsequently, our study aimed to find a group of
heritable (BF > 3 and Deviance Information Criterion difference
between models with or without host genomic effects ≤−20)
ruminal microbial genera/RUGs/genes (RA > 0.01%) with strong
rgCH4 (P0 ≥ 0.95) to be used collectively for selecting the host
genomes associated with low CH4 emissions. We identified 2
microbial genera (Eubacterium and Blautia), 3 RUGs (two
annotated as uncultured Methanobrevibacter sp. and one as
uncultured Prevotellaceae bacterium) and 38 microbial genes
meeting these requirements (Supplementary Data 14). We
selected 30 out of the 38 microbial genes (Fig. 7a) covering several
microbial mechanisms, e.g. sugar and nickel transport (ABC.PE.P,
ABC.MS.P1 and ABC.MS.S), fucose sensing (TSTA3), chemotaxis
(mcp), ribosomal biosynthesis (RP-L6, RP-L23, RP-L28, RP-L35,
RP-S12 and RP-S17), reductive acetogenesis (fhs) and metabolism
of amino acids (argD), sucrose (SPP), CH4 (cofG), biotin (bioB),
propionate (pccB), porphyrin (hemC), thiamine (thiD) and pyr-
imidine (upp). A deep study of the host-genomic correlations
among these 30 selected microbial genes showed a common host
genomic background influencing the abundance of ABC.PE.P,
ABC.MS.P1, fhs, cofG, argD, hemC, thiD, upp, tlyC, NTH, and
copB with host-genomic correlations among each other ranging
from 0.62 (P0= 0.90) to 0.99 (P0= 1.00) (Fig. 7b).

Finally, we evaluated the accuracies and response to selection
in CH4 emission mitigation in our population based on the
prediction of CH4 host genomic effects using three different
sources of information: (1) CH4 emissions measured by the
“gold-standard” technique of respiration chambers, (2) the 30
microbial gene abundances exhibiting strong rgCH4, and (3)
combining both preceding criteria. A single (1) or multiple (2, 3)
trait genomic estimation approach was applied in each case. In
(2) and (3), CH4 host genomic effects were estimated based on
observations of the 30 microbial gene abundances, the genomic
relationship matrix amongst individuals, and the estimated host-
genomic and residual (co)variance matrix comprising CH4 and
the 30 microbial gene abundances; assuming unknown (2) or

known (3) CH4 observations (see methods). Using microbiome-
driven breeding based on the abundance of 30 specific microbial
genes (2) resulted in the mean estimation accuracy of
host genomic effects for CH4 emissions to be 34% higher than
using measured CH4 emissions (1) (0.70 ± 0.18 vs. 0.52 ± 0.11)
and confirmed that functional microbial genes are an extremely
valuable source of information to perform host genomic
evaluations for CH4 emissions. Using the combined selection
criteria (3), the accuracy of estimation was 14% larger than using
rumen microbial gene information alone (0.80 ± 0.20). Response
to selection in CH4 emissions achieved by selecting animals with
low CH4 emission host genomic effects predicted exclusively by
microbial gene abundance information resulted in a reduction in
emissions of −1.43 ± 0.14 to −3.32 ± 0.77 g CH4/kg DMI per
generation, depending on selection intensity (from 1.16 to 2.67 in
the analysed population, Fig. 8 and Supplementary Data 16).
These results indicate that in our population, microbiome-driven
breeding for CH4 emissions reduced its magnitude by 7–17% of
its mean per generation, without the necessity for costly measures
of CH4 emissions.

Robustness of estimation of genomic parameters of CH4

emissions and microbiome traits from a cross-classified design
of breeds and basal diets. The data, from the highly envir-
onmentally standardized experiments, comprised of animals from
different breeds that were offered different diets, which could be
challenging as different breeds might have different genomic
backgrounds for the analysed traits, and different diets could have
inflated their variances. To consider the difference in means of
these effects we fitted a combination of experiment, breed, and
diet effects so that an adjustment of each of these effects and their
interactions was achieved. To analyse whether after this adjust-
ment the genomic variances of CH4 emissions and the abun-
dances of 30 microbial genes selected for microbiome-driven
breeding are homogeneous across breeds and diets, we computed
their posterior distributions separately (Supplementary Figs 4 and
5), following the partition of the variance suggested by Sorensen
et al.126, and recently used by Lara et al.127. Using this metho-
dology, we found that our genomic parameter estimates for CH4

emissions are based on similar genomic variances across breeds

Fig. 7 Microbial genes selected to be used collectively for selecting the host genomes associated with low CH4 emissions, meeting 3 criteria: showing
significant heritability (h2) based on Bayes Factor >3 and Deviance Information Criterion difference between models with or without host genomic
effects ≤−20; a host genomic correlation with CH4 (rgCH4) with a probability of being higher or lower than 0 (P0) > 0.95, and showing a relative
abundance >0.01%. a Estimates of h2 and rgCH4 (error bars represent the highest posterior density interval enclosing 95% probability). Microbial genes
grouped by microbial biological processes: methane metabolism (CH4), microbial communication and host–microbiome interaction (Comm. & host
interact.), genetic information processes and metabolism other than CH4 (Metabolism). b Correlogram showing the median of the pairwise host-genomic
correlations estimates among the additive log-ratio transformed microbial gene abundances selected for breeding purposes. Source data is in
Supplementary Data 14. Full names of microbial genes selected for breeding purposes are given in Supplementary Data 19.
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(with medians of 3.8, 3.7, 4.0, and 3.9 (g/kg DMI)2 for Aberdeen
Angus, Limousin, Charolais crosses and pure breed Luing,
respectively) and diets (with medians of 3.8 and 3.9 (g/kg DMI)2

for Forage and Concentrate based diets) with almost entirely
overlapping distributions indicating their homogeneity (Supple-
mentary Fig. 4). We also identified homogeneous genomic var-
iances for the abundances of microbial genes with overlapping
distributions across breeds (Supplementary Fig. 5a) and diets
(Supplementary Fig. 5b); for example, we estimated genomic
variances with medians between 0.024–0.028 (g/kg DMI)2 across
breeds and 0.028–0.029 (g/kg DMI)2 across diets for RP-L35, or
between 0.25–0.30 (g/kg DMI)2 across breeds and 0.292–0.296 (g/
kg DMI)2 across diets for cofG (Supplementary Fig. 5). These
results indicate that the data recorded under controlled experi-
mental conditions with a cross-classified breed and diet two-way
experimental design and progeny groups balanced over diets
resulted in reliable and robust genomic parameters estimates.

Discussion
Previous metagenomic studies using 16S rRNA identified
microbiota revealed host genomic effects on the rumen microbial
community7,18–25, e.g., Wallace et al.21 found significant herit-
abilities for several members of Prevotella and Butyrivibrio gen-
era. These species, together with other non-heritable OTUs from
the core microbiota, explained up to 40% of the phenotypic
variation of CH4 emissions21 that is expected to be the result of
both genetic and environmental correlations, which we estimated
in the present study separately for each taxa and microbial gene.
Moreover, the challenge of previous studies is the lack of taxo-
nomic resolution to sufficiently explain these associations21,
which we resolved using metagenome-assembled RUGs. For
example, we revealed that different Methanobrevibacter strains
expressed divergent host-genomic correlations with CH4 emis-
sions which correspond to the diverse microbial gene content of
these strains.

To increase the predictability of CH4 emissions, Roehe et al.7,
suggested genome-resolved metagenomics and identified 20
microbial gene abundances, mainly involved in the methano-
genesis pathway, which explained 81% of the phenotypic varia-
tion in the emissions. In contrast, the present study uses a host
genomic-microbiome analysis strategy and provides a robust and

comprehensive insight into joint host-genomic correlations
between rumen microbial genes known to affect complex func-
tional mechanisms and CH4 emissions which further enabled us
to predict the expected response of selection in the emissions
based on each and a combination of the microbial genes. The
findings of this research will be of major importance for the
mitigation of the highly potent GHG CH4 in bovine through
genomic selection on the functional microbiome associated with
CH4 referred to as microbiome-driven breeding. The highlights of
our research are that the host genome influences CH4 emissions
by favouring the growth of reductive acetogenic microbes limiting
the excess of metabolic H2 substrate (specifically, Blautia,
Eubacterium genera and microbial gene fhs found in the genome
of uncultured Lachnospiraceae bacterium, Eubacterium pyr-
uvativorans, Eubacterium ruminatum, uncultured Eubacterium
and Blautia sp. RUGs); and promoting the shift in the fermen-
tation towards volatile fatty acids (Kandleria genera and micro-
bial genes bcd, pccB, fucO, carried by uncultured Lachnospiraceae
bacterium and Kandleria vitulina RUGs) and microbial proteins
yield including arginine and branched-chain amino acids (argF,
argD, ilvA, AROA2), tryptophan, tyrosine and phenylalanine
(trpA, trpD, trpE, tyrA2, paaH) and methionine (metE or
DNMT1), which are expected to lead to animals with improved
efficiency of converting feed into nutrients42,128. Moreover, host
genome contributes to lower CH4 emissions by enhancing the
growth of microbes that consume H2 in alternative pathways (e.g.
nitrogen fixation (nifU)); by promoting the pathways that divert
specific substrates (e.g. tyrosine and 2-oxocarboxylic acid cata-
bolites) required to produce methanogenic coenzymes or cofac-
tors (coenzyme B and methanofuran) to other routes; and that
inhibit methanogenic organisms (e.g. by the presence of
branched-chain amino acids or cobalt/nickel (cbiO, cbiQ)) and
maintain a lower optimum ruminal pH (sucrose metabolism
(sacA, maIZ, bgLB, SPP, sucrose phosphorylase)) preventing gut
disorders (e.g. thiamine metabolism (iscS, thiD, thiH, thiE)). The
latter result supports our hypothesis that hosts who are geno-
mically resilient to gut disorders produce less CH4, which is
compatible with nutritional studies demonstrating that blocking
methanogenesis has no undesirable effects on cattle health status
or feed intake86. A further highlight of our study is that the host
genome influenced the ABC transport of different metabolites
(some of them in quorum sensing processes (ABC.PE.P,

Fig. 8 Response to selection per generation on methane (CH4) emissions estimated using direct genomic selection based on measured CH4 emissions
(light blue), indirect genomic selection based on 30 microbial gene abundances most informative for host genomic selection for CH4 (dark blue) or
selection on both criteria (green). Intensities of selection 1.1590, 1.400, 1.755, 2.063, or 2.665 are equivalent to selecting 30, 20, 10, 5, or 1%, respectively,
of our n= 285 animal population with CH4 and metagenomic data based on the above-described selection criteria. Dots display the medians and violin
plots represent the estimated marginal posterior distributions of the response to selection for each intensity of selection and breeding strategy. Source data
is in Supplementary Data 16.
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ABC.PE.S, ABC.PE.A, ABC.PE.P1)), interspecies electron transfers
(bioB, cobL, cofG), sensitivity of environmental conditions (cheA,
mcp), and host–microbiome interaction mechanisms (cbh, baiN,
TSTA3), all host-genomically associated with CH4 emissions.
These results shed light on the complex processes of methano-
genesis regulated by different microbial mechanisms where
communication between microbial communities and their inter-
actions with the host plays an essential role. Genetic information
processes in the microbiota (e.g. ribosomal biosynthesis (e.g. RP-
S10)) also had a substantial host genomic effect on CH4 emis-
sions, potentially reflecting different microbial community
growth profiles.

Our findings on the functional microbial level are com-
plementary to studies investigating the biological mechanisms
underlying host genome influence on the colonization and
maintenance of specific ruminal microbial groups, such as host
genomic effects on rumen size87, muscle contraction associated
with passage rate19, or ruminal pH20. Other studies in bovines
have elucidated host candidate genes for CH4 emissions involved
in similar mechanisms87,129,130, fitting into our demonstrated
hypothesis that the host genome commonly influences rumen
microbiome profile and CH4 emissions. From nutritional
studies66, it is well known that the rumen pH has an overarching
effect on the rumen microbial community and its metabolism.
The rumen pH is intimately related to the production level of
buffer-acting saliva98 that is rich in fucose120. We found that the
abundance of TSTA3, encoding the sensor for host–microbiome
crosstalk mediator fucose119, was host-genomically positively
correlated to CH4 emissions and to Fibrobacter genera, an
indicator for high pH122, making TSTA3 a highly valuable
biomarker for rumen pH, CH4 metabolism and potentially, for
host–microbiome mediation to enhance saliva production.

Our results provide comprehensive insight into which com-
munities and functions of the rumen microbiome can be mod-
ified by genomic selection to obtain low CH4-emitter animals. We
revealed that specific microbiome functionalities (i.e. microbial
gene abundances) are more informative for breeding purposes
than specific taxonomies, as indicated by a higher number of
microbial genes than genera/RUGs being host-genomically cor-
related to CH4 emissions. This could be due to the closely defined
function of those genes, e.g. being involved in producing specific
substrates or mediating a specific pathway that interferes with
CH4 metabolism; while each microbial genera expresses many
microbial gene functions as indicated by functional versatility
within different niche-specific species or clades classified in the
same genus12,34,89,131,132 (as observed within different RUGs
annotated as uncultured Methanobrevibacter strains); or as a
result of horizontal transfer of genes among microbial
species133,134. Thus, the knowledge generated in this study
overcomes previous efforts exploring the breeding possibilities of
rumen microbiome, where overall functional description was not
considered and the number of taxonomic units associated with
CH4 was limited21. Our previous research has shown that the
abundance of microbial communities, in particular their genes
and interactions, are excellent biomarkers for the phenotypic
prediction of CH4 emissions7,10,37; however, the data sets were
insufficient to estimate host genomic influence on these
biomarkers7. The present study using a unique data set with
highly standardized hosting and management conditions repre-
sents a large step further by discovering 38 heritable microbial
gene abundances strongly host-genomically correlated with CH4

emissions and by designing a microbiome-based breeding strat-
egy to evaluate their potential to mitigate CH4. Microbiome-
driven (indirect) genomic selection for CH4 emissions collectively
using 30 of these microbial gene abundances resulted in our
population in substantial mitigation of CH4 (up to 17% of its

mean per generation; approximately 8% per year using genomic
selection), even larger than direct genomic selection based on the
accurately measured CH4 emissions. This mitigation potential is
permanent and can be cumulatively increased over generations.
The selection strategy would at least partially avoid the high cost
involved in measuring CH4 emissions, and the cost-effectiveness
of indirect selection could be further improved by the develop-
ment of a microarray to quantify the abundances of the most
informative microbial genes135. Another advantage of the pro-
posed selection strategy is that it is based on host-genomic cor-
relations between microbial gene abundances and CH4 emissions
which as we discussed have specific biological meanings.

Methods
Animals. Animal experiments were conducted at the Beef and Sheep Research
Centre of Scotland’s Rural College (SRUC). The experiment was approved by the
Animal Experiment Committee of SRUC and was conducted following the
requirements of the UK Animals (Scientific Procedures) Act 1986. The data were
obtained from 363 steers used in different experiments38,39,136–138 conducted over
5 years (2011, 2012, 2013, 2014, and 2017) in the same farm under the same
hosting conditions. In these experiments, we tested different breeds (rotational
cross from Aberdeen Angus and Limousin breeds, Charolais-crosses, and pure
breed Luing) and two basal diets consisting of 480:520 and 80:920 forage: con-
centrate ratios (DM basis) and subsequently referred to as forage and concentrate
diet. Supplementary Data 15 gives the distribution of the animals across experi-
ments, breeds, and diets. Each experiment was balanced for the breed and diet
effects, as well as the progenies of each sire was balanced over each diet, so that the
experimental design by itself has high power to disentangle genomic effects from
diet effects. Additionally, a power analysis indicated that for the given number of
animals per experiment, a genetic design of sires with on average 8 progeny per sire
showed the highest power to identify genetic differences between sires in methane
yield with an achieved power of 0.93 using the sire estimates and root mean square
error of 3.27 as obtained in experiment of our previous study7.

Methane emissions data. Methane emissions were individually measured in 285
of the 363 animals for 48 h within six indirect open-circuit respiration chambers39.
One week before entering the respiration chambers, the animals were housed
individually in training pens, identical in size and shape to the pens inside the
chambers, to allow them to adapt to being housed individually. At the time of
entering the chamber, the average age of the animals was 528 ± 38 days and the
average live weight was 659 ± 54 kg. In each experiment, the animals were allocated
to the respiration chambers in a randomized design within breed and diet. Ani-
mals were fed once daily, and the weight of the feed offered and refused was
recorded. Methane emissions were expressed as g of CH4/kg of DMI, by dividing
the average CH4 emissions (g/day) by the average DMI (kg/day) recorded both
over 48 h.

Hosts genomic samples. For host DNA analysis, 6–10 ml of blood from the
363 steers were collected from the jugular or coccygeal vein in live animals or
during slaughter in a commercial abattoir. In addition to the 363 samples, 7 blood
and 23 semen samples from sires of the steers were available (n= 393 samples in
total). Blood was stored in tubes containing 1.8 mg EDTA/ml blood and imme-
diately frozen to −20 °C. Genomic DNA was isolated from blood samples using the
Qiagen QIAamp toolkit and from semen samples using Qiagen QIAamp DNA
Mini Kit, according to the manufacturer’s instructions. The DNA concentration
and integrity were estimated with Nanodrop ND-1000 (NanoDrop Technologies).
Genotyping was performed by Neogen Genomics (Ayr, Scotland, UK) using
GeneSeek Genomic Profiler (GGP) BovineSNP50k Chip (GeneSeek, Lincoln, NE).
Genotypes were filtered for quality control purposes using PLINK version 1.09b139.
Single Nucleotide Polymorphisms were removed from further analysis if they met
any of these criteria: no known chromosomal location according to Illumina’s
maps140, non-autosomal locations, call rates less than 95% for SNPs, deviation
from Hardy–Weinberg proportions (χ2 test P < 10−4), or minor allele frequency
(MAF) <0.05. Seven animals, showing genotypes with a call rate <90%, were
removed so that 386 animals and 36,780 autosomal SNPs remained for the
analyses.

Hosts metagenomic samples. For microbial DNA analysis, post mortem digesta
samples (approximately 50 ml) from 363 steers were taken at slaughter immedi-
ately after the rumen was opened to be emptied. Five ml of strained ruminal fluid
was mixed with 10 ml of PBS containing glycerol (87%) and stored at −20 °C. DNA
extraction from rumen samples was carried out following the protocol from Yu and
Morrison141 based on repeated bead beating with column filtration and DNA
concentrations and integrity was evaluated by the same procedure (Nanodrop ND-
1000) as for blood samples. Four animals out of 363 did not yield rumen samples of
sufficient quality for metagenomics analysis. DNA Illumina TruSeq libraries were

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03293-0

10 COMMUNICATIONS BIOLOGY |           (2022) 5:350 | https://doi.org/10.1038/s42003-022-03293-0 | www.nature.com/commsbio

www.nature.com/commsbio


prepared from genomic DNA and sequenced on Illumina HiSeq systems 2500
(samples from 4 animals from the experiment year 2011), HiSeq systems 4000
(samples from 284 animals from experiment years 2011, 2012, 2013 and 2014)8,34

or NovaSeq (samples from 76 animals from the experiment year 2017) by Edin-
burgh Genomics (Edinburgh, Scotland, UK). Paired-end reads (2 × 100 bp for
Hiseq systems 2500 and 2 × 150 bp for Hiseq systems 400 and NovaSeq) were
generated, resulting in between 7.8 and 47.8 GB per sample (between 26 and 159
million paired reads).

Bioinformatics. For phylogenetic annotation of rumen samples, the sequence reads
of 359 samples were aligned to a database including cultured genomes from the
Hungate 1000 collection40 and Refseq genomes41 using Kraken software142. From
1178 cultured microbial genera identified, we used only those present in all the
samples and with a RA > 0.001% (1108 microbial genera) for downstream analysis,
equivalent to 99.99% of the total number of counts. We used the 4941 RUGs
generated by Stewart et al.34 with sequences of 282 rumen samples included in this
study to identify and quantify the abundance of uncultured species. A detailed
description of the metagenomics assembly and binning process and estimation of
the depth of each RUG in each sample is described in Stewart et al.34. For breeding
purposes, microbial taxa that are present in a large proportion of the animals are
required; so we discarded those RUGs present in <200 animals (using a cut-off of
1× coverage) and kept 225 RUGs. RUGs coverages <1, which comprised 17.7% of
the whole RUGs data set were imputed based on a Geometrical Bayesian-
multiplicative method (GBM) of replacement by using cmultrepl function in
zCompositions package143. This algorithm imputes zero values from a posterior
estimate of the multinomial probability assuming a Dirichlet prior distribution
with default parameters for GBM method144 and performs a multiplicative read-
justment of non-zero components to respect original proportions in the compo-
sition. The 225 RUGs considered showed a mean relative abundance ≥0.15%.
Bioinformatic analysis for the identification of rumen microbial genes was carried
out as previously described by Wallace et al.145. Briefly, to measure the abundance
of known functional microbial genes whole metagenome sequencing reads were
aligned to the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database
(https://www.genome.jp/kegg/ko.html)146 using Novoalign (www.novocraft.com).
Parameters were adjusted such that all hits were reported that were equal in quality
to the best hit for each read and allowed up to a 10% mismatch across the frag-
ment. The KEGG orthologous groups (KO) of all hits that were equal to the best hit
were examined. If we were unable to resolve the read to a single KO, the read was
ignored; otherwise, the read was assigned to the unique KO, the resulting KO
grouping corresponding to a highly similar group of sequences. We identified 3,602
KO (also referred to as microbial genes), common in all animals. As for microbial
genera, we used only core microbial genes present in all the samples and with a
RA > 0.001% (1142 microbial genes) for downstream analysis, equivalent to 96.25%
of the total number of counts. We combined information from KEGG, UniProt,
and Clusters of Orthologous Groups of protein databases to classify 1141 microbial
genes into classes depending on the biological processes they are involved in CH4

metabolism (34), metabolism other than CH4 pathway (511), genetic information
processes (329), microbial communication and host-microbiome interaction (207)
and other unknown or at present poorly characterized (61).

Statistics and reproducibility
Log-ratio transformation of metagenomic data. To describe the composition of the
microbiome at the taxonomic level (cultured microbial genera and RUGs) and
functional level (KO or microbial genes) we estimated their RA by dividing each
microbial genus/gene (in counts) by the total sum of counts of microbial genera/
genes identified in each sample (Supplementary Data 1–3). To compute host
genomic analysis on the microbial cultured genera and gene abundances, we first
applied a log-ratio transformation to attenuate the spurious correlations due to
their compositional nature147. We used additive log-ratio transformation by using
a reference microbial genera/gene because of the linear independence achieved
between each variable and all the variables in the composition and because of the
facility of its interpretation148,149. Assuming J denotes the number of variables in
each microbial database (J= 1142 for microbial genes and 1108 for cultured
microbial genera), and J−1 all of them excluding the reference microbial genera/
gene, the RA of each microbial genus/gene within a sample was transformed as
follows150:

ln

�
xj
xref

�
¼ lnðxjÞ � lnðxref Þ; j ¼ 1; ¼ ; J � 1; j≠ref ð1Þ

where xj is the RA of each microbial genus/gene j and xref is the RA of a specific
microbial genus/gene in the database selected as a reference. We selected the 16S
rRNA gene and Oribacterium as reference microbial gene and microbial genus,
respectively. These reference variables were selected based on the criteria recom-
mended by Greenacre et al.151: (1) present in rumen samples of 359 animals; (2)
highly abundant (mean RA 8.56% and 0.35%, respectively); (3) not mentioned to
be associated with CH4 emissions in previous literature; (4) low log-ratio variance
so the variation mainly proceeds to the numerator (0.09 and 0.24, both located in
the first quartile when ordering the microbial variables by log-ratio variance in
decreasing order) and (5) reproducing the geometry of the full set of log-ratios in
the original data set shown by the estimate of the Procrustes correlation148,152

between the geometrical space defined by all log-ratios and the one defined by the
selected additive log-ratios (Procrustes correlation is 0.95 and 0.92). Oribacterium
is a strictly anaerobic and non-spore-forming bacterial genus from the order
Clostridiales and family of Lachnospiraceae; commonly found in the rumen of
cattle19,153 and also in the human oral cavity154,155. The abundance of RUGs was
centred log-ratio transformed149 as additive log-ratio transformation was here
hampered by the difficulty of selecting a reference RUG present in all animals.
Assuming J denotes the total number of RUGs (J= 225):

ln

�
xj

½Qjxj�
1
J

�
¼ lnðxjÞ �

1
J
∑
j
lnðxjÞ; j ¼ 1; ¼ ; J ð2Þ

where xj is the depth of each RUG j.

Influence of breed, diet, and experiment on CH4 emissions and microbial traits. In
our genomic models, we applied an optimal adjustment of the fixed effects as a
combination of experiment, breed, and diet so that adjustment of each of these
effects and their interactions was achieved (see below section: Estimation of host
genomic parameters of CH4 emissions and microbial traits). Sequencer effects were
except for only 4 samples nested within the experiment and therefore were
accounted for due to the inclusion of this effect. Since these are nuisance effects
with the potential of influencing the estimation of genomic effects, we carried out
further exploratory analyses and revealed that they were appropriately adjusted and
do not interfere with the estimation of genomic parameters. In this exploratory
analyses, we evaluated the effect of breed, diet, and experiment on microbial genes,
genera, and RUGs using a PERMANOVA analysis with 999 permutations com-
puted with the R package vegan156. Diet and experiment showed the largest effects
on the composition of the rumen microbiome. Diet accounted for 18.9, 12.0, and
13.19% of the total phenotypic variance in the microbial genes/microbial genera/
RUGs databases, while experiment explained 7.5, 11.17, and 6.09%, respectively (P-
value < 0.001 in all cases). Breed effects on microbial genes/microbial genera/RUGs
databases were depreciable (0.49, 0.65, and 0.78%) and non-significant (P-
values= 0.668, 0.385, and 0.141) indicating that the breeds considered in this study
did not show substantial differences in their functional or taxonomical microbiome
composition. As expected, all effects became negligible (explaining 0% of the
phenotypic variance) after their adjustment as a combined fixed effect. We also
evaluated the effects of breed and diet on CH4 emissions mean and variance
(Supplementary Tables 1 and 2). Before adjustment, diet had a significant (P-
value= 2.2 × 10−16) large effect on CH4 (explained 41.2% of the phenotypic var-
iance), while the effect of breed (2.92%, P-value= 0.0007) was smaller but still
significant, however, both turned to 0% after the fixed-effects adjustment.
Importantly, for the reliability of estimation of genetic parameters, animals from
different breeds, or fed different diets presented homogenous CH4 phenotypic
variances (P-values of Levene test= 0.19 and 0.48).

Estimation of host genomic parameters of CH4 emissions and microbial traits.
Genomic heritabilities (h2) of CH4 emissions, log-transformed microbial genera
(n= 1107), RUGs (n= 225) and microbial genes (n= 1141) abundances were
estimated by fitting 2474 GBLUP univariate animal models described as:

y ¼ Xbþ Zg þ e ð3Þ
Data were assumed to be conditionally distributed as:

y jb; g;R � NðXbþ Zg; Iσ2e Þ; ð4Þ
where y is the n= 359 or n= 285 observations of the microbiome or CH4

emissions trait, b is the vector of fixed effects including a combination of breed,
diet, and experiment effect, g is the random host genomic effect, e is the residual of
the model, and X and Z are known incidence matrices for fixed and random effects.
Host genomic effects were normally distributed as:

gjGRM ; σ
2
g � Nð0;GRMσ

2
g Þ ð5Þ

Residuals were independently normally distributed as:

ejI; σ2e � Nð0; Iσ2e Þ; ð6Þ
in which σ2g and σ2e are the host-genomic and residual variances, I is an identity
matrix of the same order as the number of data, and GRM is the host-genomic
relationship matrix between the individuals defined as157:

GRM ¼ W0W
2∑1

npnð1� pnÞ
; ð7Þ

where W contains genotypes adjusted for allele frequency, and pn is the allele
frequency for marker n in the whole genotyped population. Host genomic and
residual effects were assumed to be uncorrelated between them. Host genomic
(rgCH4) and residual correlations among CH4 emissions and log-transformed
abundances of microbial genera, RUGs and microbial genes were estimated by
fitting 2473 GBLUP bivariate animal models including the same effects as Eq. (3).
Host genomic effects were distributed as:

gjGRM ;G0 � Nð0;GRM � G0Þ; ð8Þ
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and residuals as:

R ¼ ejR0 � Nð0; I � R0Þ; ð9Þ
where G0 and R0 are the 2 × 2 host genomic and residual (co)variance matrices
between CH4 emissions and each microbial genus, RUG, or microbial gene, I is an
identity matrix of the same order as the number of individuals with data. Bayesian
statistics were used158, assuming priors for all unknowns as implemented in
THRGIBBSF90 program159. Results were based on Markov chain Monte Carlo
chains consisting of 1,000,000 iterations, with a burn-in period of 200,000, and to
reduce autocorrelations only 1 of every 100 samples was saved for inferences. In all
analyses, convergence was tested using the POSTGIBBSF90159 program by
calculating the Z criterion of Geweke (varying between −0.05 and 0.05 in
univariate and −0.09 and 0.1 in bivariate models). Monte Carlo sampling errors
were computed using time-series procedures and checked to be at least 10 times
lower than the standard deviation of the marginal posterior distribution. As h2

estimates, we used the median of its marginal posterior distribution of CH4, each
microbial genus, RUG, or microbial gene, and the highest posterior density interval
at 95% probability (HPD95%). We considered microbial abundances with h2

estimates <0.20 being lowly heritable, 0.20 < h2 < 0.40 being moderately heritable
and h2 estimates >0.40 being highly heritable. To test the significance of host
genomic effects we analysed the fitness of the full univariate genomic model vs. the
univariate model without host genomic effect by comparing the deviance
information criterion (DIC)160 between models and computed the BF using an
approximation of the marginal likelihood probability161. BF was corrected for
multi-testing by assuming prior odds ratios equal to 1/number of hypothesis tests
performed (n= 2473). We assumed evidence of a host genomic effect on the
microbial trait when the DIC of the full model was at least 20 points lower than the
DIC in the reduced model, and corrected BF was >3162. To study the homogeneity
of genomic variances for CH4 emissions and microbial traits within each breed and
within each diet, we computed the marginal posterior distribution of the genomic
variance for the most relevant microbial traits in each of the 4 different breeds and
in each of the 2 different diets, following the same steps as described for the
partition of the variance in Sorensen et al.126,127. As an estimate for the host
genomic correlations, we used the median of its marginal posterior distribution and
the HPD95%. To investigate the confidence level of rgCH4, we estimated the
posterior probability of rgCH4 being >0 when the median of the correlation was
positive or <0 when the median was negative (P0). We only considered significant
those rgCH4 estimates with (P0) ≥ 0.95. Additionally, univariate analyses were run
using the frequentist approach using AIREMLF90159 and similar results were
obtained.

To predict the impact of indirect selection for reduced CH4 emissions using
microbial genera/genes significantly (P0 ≥ 0.95) host-genomically correlated with
CH4 emissions, we estimated the marginal posterior distribution of the correlated
response in CH4 emissions after host genomic selection for each of these microbial
genera/genes, considering only the own performance of each individual163:

RCH4j ¼ i hjrgCH4jσgCH4; ð10Þ
where RCH4j presents the selection response in CH4 emissions after selection for the
abundance of each microbial genus/gene j, i is the intensity of selection considered
to be 1.159 (equivalent to 30% of our cattle population being selected based on the
selection criterion), hj is the marginal posterior distribution of the square root of
the h2 estimate of the microbial genus/gene from univariate analyses, rgCH4j is the
marginal posterior distribution of the host-genomic correlation between CH4

emissions and microbial genus/gene j from bivariate models, and σgCH4 is
the squared root of the genomic variance of CH4 emissions. The median, standard
deviation, and the probability (P0) of the correlated response to selection to be
higher (lower) than 0 when the correlated response was positive (negative) were
computed.

Co-abundance network analysis of host genomic effects on the rumen microbiome.
To study the correlation structure among host genomic effects of the log-
transformed abundances of 1107 microbial genera, 225 RUGs, and 1141 microbial
genes, we built a co-abundance network analysis using deregressed host genomic
effects (dGEBVs) for all microbial traits in the 359 samples. Deregressed host
genomic effects were calculated from previously described univariate GBLUP
models by using ACCF90 and DEPROOF90 programs159. Co-abundance network
(Graphia software164) connected or edged microbial traits (nodes) based on a
Pearson correlation >0.70 among their dGEBVs. The complexity of the graph was
reduced by discarding nodes with a minimum number of incident edges (referred
to as node degree) of 2, i.e. only those microbial traits Pearson-correlated (>0.70)
with at least other 2 microbial traits were kept. The total number of microbial
genera, RUGs, and microbial genes included in the network was 2129 out of the
2473 tested. The number of edges of each node was reduced by ranking the edges
based on k-nearest neighbour algorithm and retaining only 80% of them. The
software applies Markov Clustering algorithm by a flow simulation model165 to
find discrete groups of nodes (clusters) based on their position within the overall
topology of the graph. The granularity of the clusters, i.e. the minimum number of
nodes that a cluster has to contain, was set to 2 nodes. The network showed 106
clusters, but only those 12 clusters including ≥3 methanogenic archaea genera,
RUGs and microbial genes involved in CH4 metabolism pathway according to

KEGG146 database or microbial genera/RUGs/genes host-genomically correlated
with CH4 emissions (P0 ≥ 0.95) were studied in depth.

Enrichment analysis of microbial gene abundances in RUGs. To identify which of
the 225 RUGs were carrying the microbial genes (KO) demonstrating a rgCH4 with
a confidence level P0 ≥ 0.95, an enrichment analysis was performed by counting the
number of unique proteins clustered in the 115 microbial genes mapped in each of
the 225 RUGs.

Identification of most informative microbial traits to predict CH4 emission
host genomic effects and maximize response to selection. Only microbial variables
present in the 359 animals, showing a RA ≥ 0.01%, with significant h2

(P ≤ 2.02 × 10−5), and host-genomically correlated with CH4 emissions (P0 ≥ 0.95)
were considered for breeding purposes. Four microbial genera and 36 microbial
genes met these conditions. Due to computation reasons, only 30 microbial gene
abundances were carried forward for downstream analysis. To use microbial gene
information to select hosts emitting less CH4, the estimation between their host
genomic and residual (co)variance matrices was required. Host-genomic and
residual (co)variances among the 30 selected microbial gene abundances were
estimated using 435 bivariate analyses. Bivariate analyses fitted the same model as
previously described for estimation of rgCH4 with the same assumptions (Eqs. (8)
and (9)). Results were based on Markov chain Monte Carlo chains consisting of
1,000,000 iterations, with a burn-in period of 200,000, and only 1 of every
100 samples was saved for inferences. Convergence was tested with POST-
GIBBSF90 program by checking Z criterion of Geweke to be between −0.12 and
0.15. Monte Carlo sampling errors were computed using time-series procedures
and checked to be at least 10 times lower than the standard deviation of the
posterior marginal distribution158. The 31 × 31 host-genomic and residual
variance–covariance matrices, including CH4 emissions and the 30 microbial genes
were built based on medians of the estimated variance components from the
bivariate analyses and mean across all previous bivariate models for host genomic
and residual variances of CH4 emissions. Both matrices needed bending to be
positive definite (tolerance for minimum eigenvalues= 0.001). The difference
between original and bent matrices was never higher than the posterior standard
error of the corresponding parameters.

Estimation of the selection response of CH4 emissions based on different sources of
information. We analysed three different scenarios to predict host-genomic effects
of CH4 emissions: (1) by using measured CH4 emissions only, (2) by using the 30
microbial gene abundances only, and (3) by using a combination of both, measured
CH4 emissions and the 30 microbial gene abundances. The three scenarios were
computed with data from 285 animals with CH4 emissions and metagenomics
information. All scenarios were calculated by GBLUP analysis assuming as fixed
variance components the previously estimated 31 × 31 host genomic and residual
variance-covariance matrices of the traits after bending. Scenario (1) was per-
formed using a univariate GBLUP analysis including only measured CH4 emis-
sions; scenario (2) was computed by fitting a multivariate GBLUP model including
the 30 microbial gene abundances host-genomically correlated to CH4 emissions
(using measured CH4 emissions as missing value166); and scenario (3) considered
besides the abundance of the 30 microbial genes, the measured CH4 emission
values. In all cases, models included the same effects as in Eq. (3). Host genomic
values estimates for CH4 emissions were based on Markov chain Monte Carlo
chains consisting of 100,000 iterations, with a burn-in period of 20,000, and to
reduce autocorrelation only 1 of every 100 samples was saved for inferences.
Response to selection was estimated as the marginal posterior distributions of the
difference between the mean of CH4 emissions host genomic values of all animals
with data and the mean of selected animals when alternatively, 1, 5, 10, 20, 30, 40,
and 50% of our population were selected. The mean accuracy of the CH4 emissions
genomic values in each scenario was estimated as the average of the individual
accuracies:

Accuracyi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sd2i

gRMiiσ
2
CH4

s
; ð11Þ

where sdi is the standard deviation of the posterior marginal distribution of the
host genomic value for animal i and gRMii is the GRM diagonal element for animal i.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Metagenomic sequence reads for all rumen samples are available under European
Nucleotide Archive (ENA) under accession projects PRJEB31266, PRJEB21624, and
PRJEB10338. The genotypes of the host animals are readily available from the authors.

Code availability
Metagenomic data processing was carried out using Kraken (https://ccb.jhu.edu/
software/kraken/) for taxonomic annotation and Novoalign (http://www.novocraft.com/
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support/download/ available under license) for functional annotation. SNP data filtering
was performed PLINK (https://www.cog-genomics.org/plink2). Host genomic analysis
were carried out using the RENUMF90, THRGIBBSF90, POSTGIBBSF90, ACCF90, and
DEPROOF90 software, which have free access in http://nce.ads.uga.edu/wiki/doku.php?
id=application_programs, except for ACCF90 and DEPROOF90 available only under
research agreement. Network analysis was carried out by free access to Graphia software
whose code source can be found at https://graphia.app/download.html.
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