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Abstract. Several of the United Nations’ Sustainable Development Goals
(SDGs) are directly or indirectly concerned with improving health and
well-being of the world population. This paper presents an informatics-
based approach to the management and monitoring of infectious dis-
eases, in the context of one of these SDGs focusing on the eradication
of vector-borne diseases such as malaria, Zika and other neglected trop-
ical diseases. Here we outline the challenges faced by many conventional
approaches to ecoepidemiological modelling and proposes a distributed
interactive architecture for teamwork coordination, and data integration
at different levels of information, and across disciplines. This approach
is illustrated by an application to the surveillance of Leishmaniasis, a
neglected tropical disease, in remote regions.

Keywords: Sustainable Development Goals · agent-based modelling ·

serious games · mobile games · game engines · vector-borne diseases ·

tropical neglected diseases.

1 Introduction

The 17 Sustainable Development Goals (SDGs) of the United Nations [21], set
as part of its 2030 Agenda for Sustainable Development, “are an urgent call
for action by all countries - developed and developing - in a global partnership”
towards achieving “peace and prosperity for people and the planet, now and into
the future” [21]. Health and well-being clearly play important roles in this global
vision of peace and prosperity. Therefore, it is not surprising that at least one
of the 17 SDGs – Goal 3 – is related directly to health and well-being, aiming
to “ensure healthy lives and promote well-being for all at all ages” [22]. Indeed,
target 3.3 of this goal aims to “end the epidemics of AIDS, tuberculosis, malaria
and neglected tropical diseases and combat hepatitis, water-borne diseases and
other communicable diseases” by 2030.
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Despite these ambitious future goals, the past decade has actually seen the
(re)emergence of several vector-borne diseases [23], including malaria and most
neglected tropical diseases [10]. The increased spread of such diseases is fre-
quently associated with increased human mobility [1] and climate change [4, 20],
which is also related to various environmental factors targeted by several other
UN SDGs.

Many neglected tropical diseases are zoonoses, and as such, they spread as
a result of the complex interactions and through cycles of transmission between
humans and a range of domestic or wild animals [20]. The effectiveness of their
related control actions is, therefore, contingent on the availability of consistent,
user-friendly and up-to-date epidemiological, environmental and socioeconomic
data. However, obtaining and checking the quality of such spatial and temporal
data remains challenging, particularly in the case of environmental data, known
as Earth Observation [9].

In this paper, we argue that novel approaches to epidemiological surveillance,
prevention and control of vector-borne diseases should be considered in order to
address these challenges. These approaches should aim to better integrate mod-
els of transmission and hitherto fragmented data infrastructures. This paper
discusses an informatics-based approach, underpinned by agent-based modelling
(ABM) methods, which incorporate data gathering and simulations that encom-
pass various agents – i.e., vectors, reservoirs, human susceptible populations –
and environmental factors, such as micro- and macro-climatic variations, vege-
tation cover, and sanitation standards under a single platform.

2 Challenges of Dealing with Vector-borne Diseases

As identified by the UN SDG number 3, eradication of vector-borne diseases
such as malaria and other neglected tropical diseases is an important step to-
wards global health and well-being. Similarly, in its recent roadmap 2021-2030,
the World Health Organization (WHO) also sets global targets for prevention,
control, elimination and eradication of neglected tropical diseases by 2030 [26].
Achieving these goals, however, remains a major challenge, as many such diseases
are widespread in mostly less-developed parts of the world, with little access to
adequate health resources [24].

The Zika crisis of 2017, which affected several developing countries, under-
scored this challenge. As the crisis unfolded, WHO emphasized the need for
new and more efficient instruments to control Zika (re)emergence. Similarly,
the Brazilian Association of Collective Health called upon health authorities
and funding agencies to provide more support for environmental sanitation and
epidemiological surveillance measures that had been neglected in the 2016 Zika
emergency [2]. The Zika virus outbreak reached pandemic levels in Latin America
and continued to spread in other parts of the world [25]. In these countries, tradi-
tional approaches to epidemiological surveillance methods and control strategies
based on conventional modelling have long been insufficient to respond to such
emergencies.
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In Brazil, for instance, although a unified epidemiological surveillance system
exists for Zika [18] and other arboviruses, access to up-to-date data is often diffi-
cult, with health-planning professionals having to rely on information aggregated
at relatively coarse spatial resolutions (e.g., municipal level), and with signifi-
cant time delays. In addition, relevant vector, climate, geographical and social
data usually have to be obtained from separate sources, causing temporal and
spatial resolution issues, and highlighting needed multidisciplinary teamwork.
These challenges are common to resource-limited countries vulnerable to Zika
[3] where, as in the Brazilian case, the available databases are often outdated
and fragmented. Low spatial resolution is also a common problem, as is the lack
of data on human-induced microgeographic factors influencing potential Aedes
aegypti breeding habitats [11].

Researchers working with standard models of transmission of Zika and related
arboviruses acknowledge that lacking or incomplete knowledge of the A. aegypti
ecoepidemiology constitutes one of the greatest obstacles to effective surveillance
and control actions [7]. In standard mathematical models, transmission dynam-
ics is modelled as a system of ordinary differential equations which describe rates
of change in measurable human and entomological population variables, as well
as population and behaviour estimates. While these models enable researchers
to explore how different epidemiological scenarios might develop under alterna-
tive parametrizations through numerical methods, their actual use in context
is affected by difficulties in incorporating relevant data, such as their inabil-
ity to accommodate high spatial resolutions, complex boundary conditions, and
temporal constraints. Consequently, data which are currently gathered through
geo-monitoring, and (increasingly) citizen input and sensor networks, often re-
main underutilized in epidemiological work.

Novel approaches to epidemiological surveillance and prevention of vector-
borne diseases are therefore needed – particularly those which move beyond
traditional modelling frameworks [19] and fragmented data infrastructures. Such
approaches could also prove relevant for the control of other infectious diseases,
as illustrated by the increased interest in alternative methods during the COVID-
19 pandemic, including large-scale agent based simulations [17].

3 Agent-Based Modelling Approach

Considering these challenges, we advocate an informatics-based approach under-
pinned by ABM, with support for data gathering, and simulations encompassing
vectors, reservoirs, populations and environment under a single paradigm. The
ABM approach differs considerably from other conventional approaches based
on Differential Equations Modelling (DEM). Table 1 provides a summary com-
parison of the main characteristics of these two approaches.

Our research group has adopted an ABM approach in South-western Amazo-
nia (see Figure 1) to coordinate the actions of a multidisciplinary team working
on vector-borne neglected tropical diseases research. This work focused on Amer-
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Table 1. A summary comparison of ABM and DEM used for modelling the spread of
infectious diseases.

ABM DEM

Granularity Individual agent behaviour System-level properties
Modelling
units

Sets of rules, algorithms Sets of differential equations

Geographical
properties

Modelled as agents Model only high level properties

Complex
boundaries

Easily implemented Non-trivial (e.g., multigrid)

Small
populations

Easily modelled Not suitable for small populations

Robustness to
noise

May be affected by noisy data Robust to noise

InterpretabilityInterpretable but transition from
local to global patterns often non-
trivial

Interpretable at global level

Realism Realistic simulations Abstract simulations

ican Cutaneous Leishmaniasis (ACL) which, in that region, presents complexities
shared by several other vector-borne diseases, including:

– increased human mobility due to new roads linking Brazilian soy-beans pro-
ducing regions to the Pacific ports of Peru;

– climatic changes in a region under intense land use and land cover changes;
– unplanned urbanization and rural occupation, leading to close coexistence of

vectors, domestic and sylvatic animals, and infected and susceptible people;
– poor public and private sector support for appropriate preventative mea-

sures, with the consequent reliance on old and toxic drugs to mitigate trans-
mission sources; and

– the unique geographical setting, which combines regional ACL hyperen-
demicity with increasing population vulnerability to Visceral Leishmaniasis,
from the Brazilian North-eastern region towards the West, and Bartonellosis,
From the Peruvian Western plateaus towards the East.

In this complex research context, our ABM approach has facilitated three
broad lines of action:

1. the use of mobile devices for gathering and sharing of ecoepidemiological
data from remote areas by local healthcare personnel [13];

2. health education through the use of “serious games” for improving community-
level knowledge of transmission and prevention mechanisms; and

3. the use of spatiotemporal data visualization tools [5] to support the identi-
fication of critical points in the chain of transmission [16].

The tools that we have developed as part of these lines of action support a
combination of online/offline access and database synchronization to overcome
connectivity issues in remote areas [13].
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Brazil

Peru

Bolivia

Acre

PandoMadre de 
Dios

Fig. 1. South-western Amazonia, where our multidisciplinary team working on vector-
borne neglected tropical diseases has conducted its research.

An ABM describing the relevant environmental (climatic, geographical), en-
tomological (vectors), zoological (reservoirs) and socioeconomic variables pro-
vided an infrastructure for incorporation of existing databases, newly gathered
data, and expert knowledge, as well as a simulation mechanism for analysis pur-
poses and for the health education application itself. The ABM also supported
data validation by highlighting discrepancies between incoming data collected
by local personnel and model predictions.

Therefore, in this informatics-based approach, the ABM functioned both as a
predictive tool and as a database for integration of surveillance, population and
spatiotemporal data. In the case of ACL, for instance, we were able to group mu-
nicipalities according to statistical similarities – rather than the official grouping
based on the river basins of the region – with implications to government policy
and interventions. ABMs are better suited to such data-intensive analysis than
other frequently used frameworks, even those supporting more detailed biological
and environmental information, such as CIMSiM [15].

In the ABM framework, models are built by describing the behaviour of rel-
evant “agents” (representing algorithmic abstractions of humans, vectors, and
the environment), gathering data to instantiate their behaviour and characteris-
tics through computer simulation, and exploring different scenarios by tracking
system-level properties under varied parameters. These parameters can be set
at the agent level – e.g., diversity in behaviours for male and female mosquitoes,
in bloodmeal search by females according to lifecycle, in human exposure ac-
cording to socioeconomic and neighbourhood-specific environmental factors – so
that system-level properties emerge from the local interactions among heteroge-
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neous agents. Therefore, modelling individuals along with spatial and temporal
constraints becomes straightforward, allowing the incorporation of various data
sources [12] and input from different disciplines and stakeholders. Homogeneity
assumptions can also be relaxed or eliminated by, for instance, explicit specifica-
tion of agent contact graphs [6], which can be defined using novel data sources,
such as those accessible through the internet or collected using mobile devices.

Although ABMs are bottom-up models, they can incorporate features of
top-down Ross-MacDonald models [19] through pattern-oriented modelling tech-
niques now commonly employed in ecological research [8]. An overall informatics-
based approach can thus be employed to support the work of personnel involved
in the different facets of data gathering, in order to supply the model with
the required information for use in context. Furthermore, a game-based ABM
approach can support data gathering through community participation, with po-
tential for feeding considerable amounts of population and environmental data
into large-scale simulations. This could enhance modelling capabilities by inter-
polation and extrapolation from available data with increasing accuracy as more
detailed local information is supplied.

It has been pointed out that agent-based models tend to have a large number
of parameters, which could limit their analytic power[8]. However, while simpler
models may lend themselves better to macro-level analyses under assumptions
of population homogeneity and size, agent-based modelling provides greater re-
alism and specificity, accounting for spatial and populational heterogeneity. In
fact, at one extreme (still beyond the reach of current technological capabili-
ties) one could conceive of a maximally realistic ABM as a detailed monitoring
system capable of integrating data on households and public areas, and deliver-
ing information to epidemiological surveillance personnel in real time. Currently,
these systems open up possibilities for gathering data through community par-
ticipation, with potential for feeding considerable amounts of population and
environmental data into large-scale simulations. This would enhance modelling
capabilities by interpolation and extrapolation from available data with increas-
ing accuracy as more detailed local information is supplied. In our view, these
are characteristics of a promising tool for timely responses to public health emer-
gencies such as the present Zika outbreak.

4 Serious Game Simulation

To investigate the feasibility of using and ecoepidemiological ABM as part of
a game engine – to be deployed as a unifying mechanism for health promotion
and data gathering by local citizens – we developed a module encompassing
several variables that influence the spread of infectious vector-borne diseases.
Table 2 gives an example of our ABM approach and a typical example of a
DEM approach to allow their comparison.

Figure 2 provides an overview of the architecture of the overall game engine,
which consists of the BADAGUA ABM simulator [14], a GUI-based game client,
and a “gatekeeper” module that keeps track of the users and coordinates their
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Table 2. Typical examples of ABM and DEM approaches to the modelling of infectious
disease spread.

Example

ABM Modelling an individual vector in Badagua/Mason:

public stat ic double DEFattToWater = . 3 ;
public stat ic double DEFattToLeaves = . 4 ;
public stat ic double DEFattToAnimal = . 6 ;
public stat ic double DEFattToSandfly = . 7 ;

[ . . . ]
public double attractionToAnimal = 0 ;

public void step ( SimState s t a t e ) {
Badagua bagua = (Badagua ) s t a t e ;

i f ( age++ > l ongev i ty ) {
this . d i e ( bagua ) ;
return ;

}
i f ( this . i sFemale ( ) ){

Bag fb = bagua .map . getObjectsAtLocat ion ( l o c a t i on . x , l o c a t i on . y ) ;
i f ( fb != null ){

Sandf ly s f ;
Animal an ;
for ( int i = 0 ; i < fb . numObjs ; i++) {

i f ( fb . ob j s [ i ] instanceof Sandf ly ){
i f ( this . i sPregnant ( ) )
continue ;
s f = ( Sandf ly ) fb . ob j s [ i ] ;
i f ( s f . i sMale ( ) ) {

this . setPregnant ( true ) ;
this . a t t ract ionToSandf ly = 0 ;
this . at t ract ionToLeaves = 0 ;
this . attractionToWater = 0 ;
this . attractionToAnimal = DEFattToAnimal ;

}
}
else i f ( fb . ob j s [ i ] instanceof Animal ) {

an = (Animal ) fb . ob j s [ i ] ;
this . suckBlood ( an ) ;

}
} // end f o r

} // end i f f b != n u l l
} // end i f t h i s . i s F em a l e ( )
// [ e t c . . . ]

DEM Susceptible-Infective-Recovered (SIR) modelling
Transmission dynamics modelled as a system of ordinary differential
equations which describe rates of change in measurable human and
entomological population variables, such as susceptible (S), infective
(I), and recovered (R) individuals in a population of size N .
Let St, It, Rt denote numbers at time t, and s(t) = St

N
etc, s.t. s(t) +

i(t) + r(t) = 1 For parameters probabilities of transmission (β) and
recovery (γ) a DEM could be set out as follows:

ds(t)

dt
= −βs(t)i(t) (1)

di(t)

dt
= βs(t)i(t)− γi(t) (2)

dr(t)

dt
= γi(t) (3)

There is an epidemic ⇐⇒ “reproductive number” R0 = β/γ > 1
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Fig. 2. Architecture of the BADAGUA serious game simulation.

access to different regions of the simulation, as well as game-specific tasks. This
game setup combines features of two game genres, namely, life simulation and
construction and management simulation. The underlying game mechanics leads
players to manage virtual environments inhabited by avatars of themselves and,
while doing so, receive information about disease prevention, and subsequently
act on such information during the game. The simulator represents a physical
environment in an area of interest for disease surveillance, consisting of human
and animal habitats, and populated by humans, disease vectors and animals.
Players can input information pertaining to the actual physical environment,
and therefore, update the simulator running on a remote server.

The environment is represented as a sparse 2-dimensional grid where posi-
tions can be occupied by different agents – i.e., humans, vectors or animals. Each
cell on the grid contains a score which determines the likelihood that an agent
will move into that cell. Such scores can be specific to different types of agents.
For instance, sand-flies in the Dr Ludens’ LSG simulation [14] are attracted to
accumulated leaves, water and rubbish, as well as nearby humans and animals.
Each of these elements is modelled as an independent feature of the environment
on a separate grid. Similarly, regularities in human behaviour can be modelled
through superimposed grids with different attractiveness scores.

The simulator uses a discrete event schedule to control the activation of the
various agents in the simulation as well as the dynamics of the environment.
Disease spread thus emerges as a dynamic process that results from the inter-
actions of several ABM variables, including population features, vector feeding
behaviour, geographical distribution, and agent mobility patterns.

In addition to being useful as a health education tool, the game simulation fa-
cilitates the integration of ecoepidemiological information into a single platform.
Such information could comprise the characteristics of the human, animal (i.e.,
reservoirs) and vector populations, and of the environment – initially specified
by a multidisciplinary team of experts, and subsequently refined and validated
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as the simulation evolves and local information gets incorporated into the central
system database.

5 Evaluation

We have conducted a preliminary evaluation of the proposed serious game among
healthcare professionals, through questionnaires and interviews [14]. The overall
perception was that the integration of a serious game and ABM has the poten-
tial to raise awareness of broader ecological issues implicated in the spread of
Leishmaniasis and to promote behaviour change among community members.
Perhaps not surprisingly, the respondents expressed concern regarding the need
to balance the fun elements of the game component against the accuracy levels
needed to make the ABM useful as a modelling and policy-informing tool. The
study participants also highlighted a potential role for extending the game into
a tool for training of health professionals as well.

6 Conclusions

In this paper, we outlined an approach to sustainable ecoepidemiological man-
agement based on ABM and informatics methods, and illustrated its use through
the description of a serious game simulator used in the context of ACL moni-
toring. We argued that this approach is capable of simplifying the aggregation
of the relevant vector, climate, geographical and social data continuously and
at scale in a distributed, interactive environment, thus addressing temporal and
spatial resolution, and multidisciplinary teamwork challenges involved in the
eradication of vector-borne diseases. By doing so, we aim to assist healthcare
professionals and local citizens in remote regions to work towards achieving one
of the United Nations’ SDGs.
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