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Cybersecurity Information Sharing: Analysing
an Email Corpus of Coordinated Vulnerability
Disclosure

Kiran Sridhar, Allen Householder, Jonathan Spring, Daniel W. Woods

Abstract

Information sharing is widely held to improve cybersecurity out-
comes whether its driven by market forces or by cooperation among
firms and individuals. Formal institutions may be established to facili-
tate cooperative information sharing. This paper presents a case-study
of such an institution, the CERT Coordination Center (CERT/CC),
and provides quantitative insights based on the meta data of 434K
emails passing through CERT/CC since 1993. Our longitudinal re-
sults show how the volume and proportion of emails about different
products and vendors has varied over time. We also analyse the dis-
tributions of information sharing volume, participation, and duration
across 46K vulnerabilities. Finally, we run regressions to understand
how the volume of information sharing and decision to coordinate vary
based on properties of the vulnerability and the affected vendors. We
discuss what has changed, the appropriateness of a competitive or
cooperative framing, and limitations.

1 Introduction

The distribution of information about security vulnerabilities determines who
compromises which systems. After a bug has been discovered, information
can flow to actors in different ways. Benign information flows include a
vendor being notified about a bug, releasing a patch, and it being applied
before an exploit is created. Alternatively, a malicious actor could discover
and exploit a vulnerability until compromise is detected.

Information sharing research seeks to understand how and why informa-
tion flows. Attention has predominantly been focused on proprietary threat
intelligence feeds [1, 2], bug bounty programs [3-8], vulnerability credits [9],
and illegal markets [10-12] for which access and participation are driven by

1



financial incentives. Voluntary information sharing also takes place without
these incentives, such as via informal relationships between security profes-
sionals or in voluntary networks facilitated by institutions like Information
Sharing and Analysis Centers (ISACs) [13].

Increased voluntary information sharing is widely viewed as desirable [14—
16], but there is less consensus about what prevents it from happening.
Barriers identified in the literature include free-riding [14, 17], lack of stan-
dards [18], reputation damage [19], and social norms [13]. Rather than trying
to explain why a phenomena does not happen, we identify determinants of
when it does by conducting a case-study of one of the longest standing cy-
bersecurity information sharing institutions.

This paper explores factors that explain whether and how much cyberse-
curity information is shared. We make empirical observations based on a set
of 434K emails passing through the CERT Coordination Center (CERT/CC),
which is tasked with facilitating information sharing about vulnerabilities
among vendors and consumers of affected products. Our descriptive statis-
tics highlight how one institution and its constituents have adapted to de-
velopments since 1993 like the establishment of a vulnerability numbering
system, and the proliferation of bug-bounty programs and IoT products. We
then show how the volume of information shared and decision to coordinate
can be explained by factors like the risk associated with the vulnerability as
well as the number and maturity of affected vendors.

CERT/CC should not be confused with US-CERT. US-CERT was an
element of the US Department of Homeland Security (DHS) from 2003 to
2018. In 2018, US-CERT’s functions were subsumed under the Cybersecurity
and Infrastructure Security Agency (CISA). CERT/CC formed in 1988 and
has been operated by Carnegie Mellon University from 1988 to the present.
While the funding for CERT/CC is US-centric and includes DHS, CERT/CC
does not limit vulnerability coordination by geographic region. CERT/CC
primarily coordinates in English; the extent to which language limits infor-
mation exchange in this context is unclear.

The paper is organized as follows. Section 2 identifies related work. Sec-
tion 3 describes our research design. Section 4 provides longitudinal descrip-
tive analysis of the emails, and also an analysis of the distribution of three
proxies for information sharing per vulnerability. Section 5 seeks to identify
factors that explain the variance in the volume of messages about specific
vulnerabilities and the decision of which vulnerabilities to share information
about. Section 6 interprets the results and highlights areas for future work.
Section 7 concludes the paper.



2 Related Work

Research into software vulnerabilities can be structured according to a time-
line of events [20]. Putting aside the metaphysical question of whether an
undiscovered vulnerability exists, timelines begin when the first individual
discovers a vulnerability. Employers exert influence over vulnerabilities found
by their employees, such as those discovered as part of secure software engi-
neering [21] or via the vulnerabilities equity process [22, 23]. Miller [24] pro-
vides a useful taxonomy of possible next steps for independent researchers:
publicly announcing the vulnerability, privately reporting it to the vendor,
selling the information to a legitimate buyer, and selling the information on
the black market.

One should distinguish between legitimate markets in which vendors pay
for vulnerability reports to be used internally (bug bounties) and interme-
diaries who pay for vulnerability reports to be re-sold (vulnerability bro-
kers) [25]. Kannan and Telang [26] introduced a theoretical model showing
that private vulnerability brokers always lead to worse social outcomes than
a public broker would. The private brokers of 2005 have morphed into exploit
acquisition platforms like Zerodium. Public vulnerability brokers remain fed-
erated [27]: examples include JPCERT/CC in Japan and CISA (part of the
Department of Homeland Security) for infrastructure in the US.

Bug bounties have proliferated. HackerOne manages programs for many
companies [8], and firms including Facebook, Google, and Apple run inde-
pendent schemes [28]. Research into bug bounty programs spans theoretical
work into optimal design [28-30] and empirical work evaluating the effective-
ness of existing programs [3-8].

[legitimate markets for vulnerabilities also exist. Such markets are diffi-
cult to study because anything observable to academic researchers is even
more likely to be observed by law enforcement [31]'. Consequently, re-
search focuses on the least sophisticated criminals who operate in public
channels [32].

The other end of the vulnerability timeline concerns patch deployment.
Cavusoglu [33] derived the optimal patching rate in a model assuming homo-
geneous vulnerabilities, an assumption that was relaxed in [34], and showed
how cost sharing or liability can synchronise patch release and deployment.
Inconsistent deployment of patches motivated research into dynamics [35—
40], notification [41-44] and prioritisation [45-47]. However, deployment is
premised on patch availability, which is the focus of this paper (see Figure 1).

1Unless researchers are better at infiltrating forums, using methods like those employed
by Allodi et al. [11, 12].



Figure 1: Coordination takes place when one vulnerability affects multiple
vendors. In this example, a vulnerability impacting F}, F5 and F3 is discov-
ered at t,,;,. The CERT/CC is unaware until coordination begins at t.,se
and it ends when all firms have developed a patch.
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Patch release timing can be researched since patch availability is ex-
ternally observable, whereas patching effort occurs privately (either totally
within the firm or among multiple firms) and is thus harder to observe. Arora
et al. [48] provide evidence that patch release is accelerated by public dis-
closure of the vulnerability and that vendors are more responsive to more
severe vulnerabilities. Using a similar research design, Temizkan et al. [49]
show that vulnerabilities affecting multiple vendors lead to patch release 1.64
times faster than with vulnerabilities affecting a single vendor. They argue
competition between vendors drives vendors to prioritise release.

This paper describes the cross-firm effort that goes into patch develop-
ment. We build on prior work [48, 49] by testing similar hypotheses, which
will be justified and explored in Section 5. We also build on Howard’s seminal
thesis covering CERT from 1989-1995 [50] and recent qualitative work [27].

3 Research Design

We derive our hypotheses about coordinated vulnerability disclosure in Sec-
tion 3.1. We then describe data generation in Section 3.2.



3.1 Hypothesis Generation

The first set of hypotheses concern how much information is shared, and the
second set concern whether CERT/CC decide to coordinate a vulnerabil-
ity. The second question is asked for the policy regime in which CERT/CC
stopped coordinating every vulnerability.

How Much Information Sharing Just as Arora et al. [48] found that
severe vulnerabilities were patched more quickly than less severe vulnera-
bilities, we would expect that more severe vulnerabilities are the subject of
higher volumes of information sharing than less severe vulnerabilities.

H1: More severe vulnerabilities receive a higher volume of information shar-
ing.

Previous studies [49, 51] have found that patches are developed more
quickly for vulnerabilities affecting multiple vendors. Temizkan et al. [49]
suggest that competition with peers leads vendors to prioritise releasing a
patch. This zero-sum logic suggests that vendors are less likely to share in-
formation for multi-party vulnerabilities. A more cooperative framing, which
was also invoked for H1, suggests more information will be shared for multi-
party vulnerabilities.

H2a: Vulnerabilities that impact a greater number of vendors receive a lower
volume of communications than vulnerabilities that impact fewer ven-
dors.

H2b: Vulnerabilities that impact a greater number of vendors receive a
greater volume of communications than vulnerabilities that impact
fewer vendors.

Multi-vendor communications could also display different distributions
over time. Past empirical results [48, 49] suggest that multi-vendor vulnera-
bilities are swiftly patched, in which case we would expect communications to
resolve sooner. However, multi-party vulnerability exchanges could be held
up by the least responsive vendor, in which case information sharing would
continue for longer.

H3a: Communication volume decreases quicker for vulnerabilities that im-
pact a greater number of vendors than those that impact a smaller
number of vendors.

H3b: Communication decreases slower for vulnerabilities that impact a greater
number of vendors than those that impact a smaller number of vendors.



In the first hypothesis (H3a), time to resolve resembles the min of involved
participants, whereas the second is closer to the max.

Next, we turn our attention to the vulnerabilities for which CERT/CC
had prior notice before publication. If CERT/CC begins its coordination
activity before a vulnerability is broadly known, then it is likely a locus of
communication. This may suggest that it receives higher volumes of com-
munication for these vulnerabilities. Alternatively, Arora et al. [48] find that
the specter of disclosure motivates vendors to more quickly resolve bugs. If
vendors are more receptive to communications that take place before publi-
cation, this could obviate the need for high levels of communication.

H4a: There is [ess information sharing for vulnerabilities in which commu-
nications began before the vulnerability was published.

H4b: There is more information sharing for vulnerabilities in which com-
munications began before the vulnerability was published.

Finally, we anticipate that vulnerabilities affecting products further up
supply chains, such as hardware and operating systems, require more coordi-
nation effort than vulnerabilities in applications. CERT/CC may prioritize
these vulnerabilities, since they require a greater number of stakeholders
to resolve and because they affect many people. It also may be harder to
exhume and remediate these vulnerabilities, leading to higher volumes of in-
formation sharing [52]. We thus expect operating system (OS) or hardware
vulnerabilities to be the source of greater volumes of information sharing
than application vulnerabilities.

Hb5: Vulnerabilities further up the software supply chain require higher vol-
umes of communication to coordinate.

H6: Vulnerabilities further up the software supply chain require longer du-
rations of time to coordinate.

We now turn to the decision to coordinate.

Whether to Coordinate CERT/CC states that it “prioritize[s] reports
that affect multiple vendors” [53].

H7: Vulnerabilities which are associated with more vendors are more likely
to be coordinated by CERT/CC.

Similarly, CERT/CC states that it prioritizes the vulnerabilities that are
most impactful and which pose the most imminent danger to ”critical or



internet infrastructure” [53]. We can test whether this in fact aligns with
CERT/CC coordination practice, or whether a threat-based metric better
aligns with coordination.

H&: More severe vulnerabilities are more likely to be coordinated by CERT /CC.

H9: Vulnerabilities with publicly released exploit code are more likely to be
coordinated by CERT/CC than those without one.

Some vendors have engaged in vulnerability remediation since the 1990s.
They have developed processes, refined processes, and recruited internal tal-
ent. Moreover, many organizations who have processed high volumes of
vulnerability reports for years have established their own product security
incident response teams (PSIRTSs) who handle vulnerability coordination in
place of CERT/CC. Some industries have created groups for increasing the
expertise of their constituent organizations, either by joining FIRST or a
sector-specific ISAC, such as the Health ISAC or Financial Services ISAC.
Those who are encountering I'T vulnerabilities for the first time, such as In-
ternet of Things (IoT) providers, are much more likely to have immature
cybersecurity controls and processes [54]. CERT/CC prioritizes vulnerabil-
ity management for the companies and industries which lack the capacity to
handle vulnerability disclosure on their own.

H10: Vulnerabilities impacting vendors who have more experience dealing
with bug remediation are less likely to receive CERT/CC coordination.

3.2 Data Generation

To test these hypotheses, we combine email metadata from CERT/CC’s
Coordinated Vulnerability Disclosure program with the information ecosys-
tem surrounding the National Vulnerability Database. Table 1 provides an
overview of variables for each of our units of analysis.

CERT/CC Internal Case We were granted access to anonymized meta-
data about emails passing through CERT/CC’s Coordinated Vulnerability
Disclosure program. Once a vulnerability has been identified, CERT/CC
begin to facilitate communications between affected parties including the
finder of the vulnerability, vendors of the vulnerable product, and system
owners that should mitigate or remediate the vulnerability. The disclosure
occurs with the publication of a vulnerability note or other public docu-
mentation, which is another method of communicating with system owners,



Table 1: The variables associated with each unit of analysis. Emails may be
associated with multiple CVE 1Ds.

Symbol  Description

CERT/CC Internal Case

nmsg The number of case emails

ndays The number of days between first and last message

nrecp The number of unique addresses across all case emails

VU# The internal case identifier

CVE IDs All CVEs associated with the case

CVE ID

datepub.,. Date published

typecye Type of affected products in CPE ID (os, app, hw and miz)

vendorse,. F of unique vendor strings in CPE 1D
impact.,,  CVSS impact score

exploit.,e ~ Whether an exploit was discovered [55]
PTioOTepe Whether first CERT /CC email came before datepub

CERT/CC email

date Date sent

age Years since the first message was sent

VU# The internal case identifier

CERT/CC email with non-empty CVE IDs label
type typeeve across CVE IDs

vendors Average of vendors.,. across CVE IDs

impact Average of impact.,. across CVE IDs
exploit max(exploit.,.) across CVE IDs
vendorage Average years since NVD debut across vendorsg, in CVE [Ds.

especially when the population of system owners is large and diverse. Partic-
ipants may want to know about the existence of a new vulnerability; which
systems or versions are affected; under what conditions the vulnerability can
be exploited; methods for detecting or preventing exploitation; the existence
of a software patch to remediate the vulnerability; and whether attackers are
actively exploiting the vulnerability in the wild.

CERT/CC has a long standing policy of holding email contents as confi-
dential to maintain trust and cooperation in the coordination process. Any
content analysis has the potential to leak information. The email metadata
contains important new information, such as message volume and timing.



Table 2: Summary Statistics

Statistic Mean  St. Dev. Min  Pctl(25) Pctl(75) Max

cert_n_rcpt 8.4 29.969 1 2 7 1,222
impact 6.36 2.09 1 ) 7.5 10
exploit 0.046 0.209 0 0 0 1
prior 0.523 0.499 0 0 1 1
n_days 123.4 343.8 0 0 95 6,226
n_msg 1 2 4 224 12 2363

Howver, because a vulnerability disclosure publicizes a vulnerability and the
stakeholders involved as a matter of course, we judge we can manage the
small risk of disclosing case dynamics via anonymization and grouping re-
sults.

Our data set records the time each individual email was sent, the num-
ber of recipients and domains, and whether the email was sent (outbound)
or received (inbound) by CERT/CC. The emails were hand-labelled with an
internal vulnerability ID VU#. As recommended by Howard [50], the vulner-
ability ID is used to group emails into cases, which can be thought of as the
collection of email threads related to a vulnerability. We use three proxies
for information sharing per case. nmsg counts the number of emails, ndays
is the time between first and last message, and numrecp counts the number
of unique email addresses in a case. The final proxy was calculated internally
and shared for each case? To link email meta data to information sharing,
we assume the distribution of information content across emails is constant.
For example, = emails share x times as much information as 1 email. We
discuss this later in Section 6.

We then group emails by vulnerability. CERT/CC define a vulnerability
to be “a set of conditions or behaviors that allows the violation of an explicit
or implicit security policy. Vulnerabilities can be caused by software defects,
configuration or design decisions, unexpected interactions between systems,
or environmental changes” [53, §1.2]. Cases contain a field, CVE IDs, for
associated Common Vulnerability Enumeration ID, but there is no one-to-
one correspondence. Not all cases are associated with CVE IDs, and some
cases are associated with multiple CVE IDs.

CERT/CC’s case triage policy has changed during the data collection
period. Until 2006, CERT/CC aimed to document all known vulnerabilities.

2This was impossible for us to calculate as we did not know which addresses (real or
anonymised/hashed) sent/received each message.



With the recognition that the NVD had successfully assumed this role, in
2006 there was a shift to only open cases for valid vulnerabilities (as defined
above) directly reported to CERT/CC or of particular interest to staff. The
CERT/CC vulnerability reporting form states its new policy:

“CERT/CC does not accept or respond to every report. We pri-
oritize reports that affect multiple vendors or that impact safety,
critical or internet infrastructure, or national security. We also
prioritize reports that affect sectors that are new to vulnerability
disclosure. We may be able to provide assistance for reports when
the coordination process breaks down” [56].

We believe this text has been consistent since 2011, but the Internet Archive
has it documented from 2018 [56]. More detailed guidance on why CERT/CC
may decline a case was published in 2015 [57]. As part of SSVC version 2,
CERT/CC published further details about how analysts make coordination
triage decisions [47]. Although these details have been updated over time,
the policy remains materially consistent from 2006 to 2020. Consistent ana-
lyst application of this policy is driven by training and peer review. Several
CERT/CC staff members have been participating in vulnerability coordi-
nation for 15 to 20 years; this low turnover increases our confidence that
the policy in practice remained consistent enough during the data collection
period.

CVE ID The CVE labels allow us to pull from the information ecosystem
surrounding the National Vulnerability Database (NVD) to classify emails
according to vulnerability characteristics.

We extract three salient information items associated with each CVE ID.
The Common Platform Enumeration (CPE) provides information about the
products affected by the vulnerability. Each product is classified as either
an application (app), operating system (0s), or hardware (hw). We use this
classification (typeq,.) unless the vulnerability affects multiple products of
different types, in which case we classify it as miz. In addition, we extract
the name of the vendor for each affected product. wvendors.,. counts the
number of unique vendor names. We use the impact score from the Common
Vulnerability Scoring System as a proxy for the severity of the vulnerability
(vendorseye).

Two additional variables use supplemental information. As a proxy for
whether CERT/CC had prior notice, priore,. is set to one if a CERT/CC
email associated with a given CVE was received before datepub.,.. Finally,
we use a data set [55] built by scraping ExploitDB and MetaSploit to identify
whether a public exploit had been published for each CVE ID (exploitye).
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CERT/CC email The emails are grouped into months or years using the
date the email was sent. The variable age tracks the number of years since the
first communication. We then use the internal case number (VU#) to link
each email to associated CVE IDs (CVE IDs). To address the lack of one-
to-one correspondence, we take averages across vendorsey,. and impact.,.. We
label the case as miz if the CVE IDs have different types (typee.), otherwise
it takes the type of the associated CVE IDs. Finally, we set exploit to 1 if
there is an exploit available for any of the associated CVE IDs.

To develop a proxy (vendorage) for the age of each vendor, we count the
years between when the vendor first appeared in the NVD and when the
email was sent. Each email may be associated with multiple CVEs and each
CVE may be associated with multiple vendors, each of which has a unique
vendorage value. We then take the arithmetic mean of all associated vendors
so that each email has one vendorage value.

For the duration of the data collection, the technology stack used by
CERT/CC was Thunderbird, Lotus Notes, GnuPG, and a small number of
custom tools for doing things like managing encrypted mailing lists (that
tool is SRmail). In June 2020, CERT/CC began to transition to a fully cus-
tomized coordination tool, the Vulnerability Information and Coordination
Environment [58]. However, that transition does not impact our data col-
lection. The basic analyst workflow during the collection period is captured
by [59].

There is little automation in the process of vulnerability coordination.
Although automated processes such as fuzzing [60] and program verifica-
tion [61] can automate initial vulnerability discovery, these tools cannot yet
provide a human-intelligible report on what the vulnerability is and why it
is important. Much of this coordination work must be done manually. Auto-
mated tools prepared reports for VU#528719 and VU#582497 because these
vulnerabilities were protocol implementation errors (for SNMP and TLS, re-
spectively) which automated tools could diagnose.

4 Descriptive Statistics
Section 4.1 provides a longitudinal perspective on information sharing coordi-

nated by CERT/CC and also the CVE labelling system. Section 4.2 presents
univariate analysis of three proxies for information sharing per vulnerability.
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Figure 2: Emails passing through CERT/CC have remained relatively con-
stant since the early 2000s despite high month to month variation. The
number of CVE IDs gradually increased since its inception until 2017 when
the yearly number spiked and remained high. Note log-scale y-axis.

4.1 Longitudinal

Taking a high-level perspective, Figure 2 shows the number of emails pass-
ing through CERT/CC separated according to whether the email has been
labelled with a CVE ID. The volume of emails grew until mid-2006, at which
time CERT /CC made a policy shift away from trying to document all known
vulnerabilities. Since 2008, email volume has stayed relatively level. We also
show the monthly number of CVE IDs according to the date the vulnera-
bility was disclosed to the public, which may be different than the date the
CVE ID entry was published®. CVE IDs have jumped almost an order of
magnitude since 2017, to the extent that some months have more CVE IDs
published than there are emails. We try to shed light on this puzzle, but first
we need to contextualise the data.

The high-level view should give way to a perspective in which CERT/CC
simultaneously coordinate multiple cases, each of which corresponds to one
vulnerability. For each of the 46.7K cases, we can track three proxies for
information sharing: the number of messages sent (nmsg), the number of
unique recipients (numrecipients), and the days between first and last mes-
sage (ndays). Calculating the Spearman’s rank correlation coefficient shows
intuitive results: the number of messages is positively correlated with the
case length (p(nmsg, ndays) = 0.76)) and the number of unique recipients

3For example, MITRE created CVE IDs for a number of historic vulnerabilities and
the date published field is earlier than the CVE system in some cases.
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Figure 3: How three proxies for coordination effort vary across three distinct
reporting periods; pre-CVE (until around 2000), including every CVE (until
2008), and selective coordination (2008 and onward).

(p(nmsg, numrecipients) = 0.7). The relationship between the length of
the case and the number of recipients is weaker (p(numrecipients, ndays) =
0.59)).

The different reporting periods can be seen in Figure 3, which shows the
yearly mean for each proxy. Before the CVE labelling system was created,
the typical CERT/CC vulnerability required about 50 messages and almost
a year before information sharing ceased. Then MITRE launched the CVE
dictionary in 1999 and CERT/CC began a policy by which they would send
at least one email about each CVE ID. MITRE selectively included historic
vulnerabilities that had already been discovered.

Figure 2 shows how CVE IDs proliferated and this drove down the average
number of messages per case in Figure 3 to below 5 in 2008. All three proxies
began to rise when CERT/CC became selective over which vulnerabilities
they coordinated. Interestingly, after the policy change, mean case length
never reached 1990s levels unlike messages per case, which suggests cases are
now resolved in less time. The three proxies in Figure 3 are right censored
because cases opened in recent years are still being coordinated.

The metadata provided by CERT/CC quantifies properties of commu-
nications rather than the properties of the vulnerabilities associated with
each case. Such information can be drawn from the National Vulnerabil-
ity Database for the subset of emails labelled with a CVE ID (the mustard
coloured line in Figure 2). Although the preceding analysis throw away un-
labelled cases, it allows us to ingest information about the vulnerabilities for
which information is shared.

Returning to the aggregate view, we can track how information sharing

13



Proportion of emails with CVE ID by product type

1995 2000 2005 2010 2015 2020

Proportion of CVE IDs by product type

1990 1995 2000 2005 2010 2015 2020

Figure 4: Proportion of information sharing and CVE IDs according to type
of affected product. One email may be mapped to multiple CVE IDs. If
these are labelled differently, then the email will be labelled as mix.
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is distributed across the type of the affected product (e.g hardware, OS or
application). Figure 4 shows that the majority of CVE IDs and information
sharing is concerned with applications. Recent years seem to have seen a rise
in vulnerabilities affecting multiple product types. But properties of recent
data may also reflect the ongoing process of labeling cases with CVE IDs as
the CVE ID may not be published when the case is opened and must later
be labeled.

We can also link CVE IDs to the vendor of the affected products. There
are over 23 000 unique vendors, which can be grouped into bins according to
the frequency with which they are linked to emails with CVE IDs. Figure 5
uses such bins to show the proportion of emails and CVE IDs according to
the volume related to each vendor. From 2000 to around 2008, an increasing
fraction of CVE IDs affect new/unpopular vendors (e.g vendors outside the
top 100) but then this trend changes direction culminating in 2017 when
there was as many CVE IDs affecting the top 10 vendors as for the remaining
23 000.

Despite MITRE assigning CVE IDs to so many vendors, information
sharing is more focused on those vendors whose products are regularly asso-
ciated with CVE IDs. The proportional share of CERT/CC emails displays
much more year on year variability likely because individual vulnerabilities
are weighted by the number of associated emails, which means one vulner-
ability can have a large effect. However, we do see a general trend towards
information sharing about the top 100 to 250 vendors. It is unclear what
effect large vendors establishing product security teams (PSIRTSs) and bug
bounty programs has had on the number of reports about those vendors to
CERT/CC.

4.2 Information Sharing per Vulnerability

The yearly averages presented in the previous section obscure the variance
of information across vulnerabilities. For example, one case (VU#582497)
involved over 27 000 emails and it can be seen as the 2014 spike in Figure 2.
This motivates considering the distribution of the three proxies, namely the
number of messages, recipients and length of each CERT/CC vulnerability.

We model this with the powerlaw package [62]. Figure 6 shows the em-
pirical complementary cumulative distribution of nmsg, nrecp, and ndays,
along with four distributions fitted by leaving the minimum value as a free
parameter and only setting a maximum value for the case length (equal to
the age in days of CERT/CC). The number of observations (n = 46.7K)
far exceeds the rule of thumb (n > 50) for extracting reliable parameter
estimates [63].
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Proportion of emails about vendors' products
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Figure 5: Information sharing coordinated by CERT/CC is concentrated
among around 250 vendors, whereas CVE IDs affect over 23K vendors. From
20002008, the proportion of CVE IDs affecting the top 25 vendors declined
before this trend reversed direction. This culminated in 2017 when the top
10 vendors were affected by more CVE IDs than all others combined.
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The fitted minimum value for case length (1220 days) excludes a lot of
data relative to the other minimum values (12 messages and 3 recipients).
The difference can also be seen in the scaling parameter « of the power law,
which provides information about whether the standard deviation and mean
are defined via the test of @ < 2 and « < 3 respectively [62]. The results
(Qnmsg = 2.01 and ey = 2.23) suggest an undefined standard deviation
for the number of messages and recipients per vulnerability, whereas it is
defined for case length (anaeys = 3.05 > 3).

We explore whether each distribution has a heavy tail by fitting an expo-
nential distribution [64, p.412]. Both the distribution of sent messages and
recipients are better explained by a power law than an exponential (p < 1078
for both), but we cannot rule this out for case length (p = 0.08). Visual con-
firmation for this can be found in Figure 6.

Both number of messages and recipients are better explained by a trun-
cated power law (p < 107 for both) and a lognormal (p < 0.05 for both)
than an unconstrained power law. We found no statistical support for dis-
tinguishing between the truncated power law and the lognormal.

In summary, we found reasonable support for the number of messages sent
and the number of recipients following a heavy-tailed distribution. However,
comparisons with alternative distributions suggest the tail is less extreme
than a pure power law. This finding is consistent with other distributions
associated with vulnerability discovery [37] and the Internet [63, 65].

5 Regression Analysis

This section explores hypotheses about the determinants of information shar-
ing. Section 5.1 considers the volume of emails associated with each CVE ID
between 1995 and 2019. Section 5.2 explores which vulnerabilities CERT /CC
coordinated following 2008, after the policy stabilized from the mid-2006 pol-
icy change to become more selective.

5.1 Volume of Information Sharing

We begin our empirical analysis by leveraging an unbalanced panel, com-
prising of 434,000 emails sent between the years 1995 and 2019. We seek
to estimate the number of emails Y;; in year j about the vulnerability with
CVE ID ¢. This analysis assumes each email shares the same amount of
information, a limitation we later return to.
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Model specification We posit the following regression model:

log(Yi;) = Bo + b1 - impact; + [a - nvendors; + 35 - prior; + B4 - 0s;+
Bs - mix; + B - hardware; + B - age;; + Ps - nvendors; - age;;j + By - 0s; - age;;~+
Bro - miz; - age;; + Py - hardware; - age;j + Bia - log(numrecipients;) (1)

The following provides an intuitive interpretation of each variable, whereas
Section 3.2 and Table 1 explain how each was calculated.

We control for the number of email recipients of communications about
a vulnerability via log(numrecipients;) because we expect that emails sent
to more people will receive a higher number of responses independent of
substance. We take the natural log because the variable distribution has an
extreme right skew (see Figure 6).

The impact; variable is the vulnerability’s CVSS impact score and the
exploit; variable is a dummy variable indicating whether exploit code for the
vulnerability is ever made publicly available. A positive [3; coefficient would
validate H1

We run a further robustness test where we include a dummy variable,
exploit;, in our regression model. This variable takes on the value 1 if a public
exploit is ever released. Unfortunately, the exploit variable dataset only starts
in 2012; for the robustness check, we include a modified panel containing
all emails from 2012 through 2019. The nvendors; variable is a numerical
variable indicating how many vendors were impacted by a vulnerability. A
negative [ coefficient would support H2a while a positive coefficient would
support H2b.

The dummy variable prior; captures whether CERT /CC began communi-
cating about a vulnerability before it was published in the NVD. A negative
B3 coefficient would provide evidence for H4a while a positive (4 coefficient
would support H4b.

The os;, hardware;, and mux; variables are dummy variables indicating
whether the vulnerability affected products classified as an application, op-
erating system, hardware, or a mix. To avoid perfect multicolinearity, the
regression is normalized to the app classification. The coefficient values of (5
through [; correspond to H5.

The age; variable is the number of years since a vulnerability’s first com-
munication via CERT/CC; we know that over time, vulnerabilities are the
subject of less communication. The regression has a series of interaction
terms: the age; variable is interacted with the category of vulnerability and
with the number of vendors that are impacted by the vulnerability. A nega-
tive [y value on the vendor age interaction term would validate 3a; a positive
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value would validate 3b. The (3¢ through pis coefficients are employed to
test H6.

We ran an F-test to see whether to include fixed-effects, a common econo-
metric practice. We resoundingly conclude (p-value = 0.00) that we should
include year fixed-effects, but not vulnerability fixed-effects.

Results Table 3 presents an expanded model as well as a parsimonious
model without interaction terms. The expanded model has a slightly higher
overall adjusted R? and a significantly higher “within” R?, which means
that it explains more of the variation in communication about individual
vulnerabilities over time. Thus, we conclude that this expanded model is
more appropriate.

We posited that more severe vulnerabilities lead to higher levels of infor-
mation sharing. Contra H1, vulnerabilities with higher CVSS scores do not
receive higher volumes of communication; our coefficient measures were sta-
tistically insignificant. Looking at our robustness check conveyed in Table 7,
we would expect vulnerabilities with publicly available exploits to receive 4%
fewer communications than those without public exploits; this measure is al-
most statistically significant at the 5% level. This suggests that bug severity
and exploitability do not drive increased communications.

In the first year that CERT/CC coordinates a vulnerability, it sends 20%
more emails for each additional vendor who is impacted by the vulnerability.
This validates H2b. We also find that the interaction term between vendor
and vulnerability age is negative and statistically significant, validating H3b.
However, the effects of the vendor term are far larger than the effects of the
vendor vulnerability age interaction term. Ninety percent of vulnerabilities
receive no CERT/CC communications after they are three years old.

Our model suggests that CERT/CC will communicate 2% more about
vulnerabilities that it started coordinating before they were published in the
NVD than about vulnerabilities it began coordinating after they were pub-
lished in the NVD. This statistically significant coefficient estimate supports
H4b, but the effect is marginal.

We find more evidence against H5 than for it. Looking at the parsimo-
nious regression model, although mixed vulnerabilities have greater amounts
of overall communication than application vulnerabilities, as we had hypoth-
esized, there is no statistically significant difference between the communica-
tions of hardware and OS vulnerabilities relative to application vulnerabili-
ties.

However, H6 is supported. There are a handful of vulnerabilities that
take greater than five years to coordinate; these are most likely to be mixed
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Table 3: Panel Data Analysis: The dependent variable Y;; is the number of
emails in the month j about a CVE ID z. The explanatory variables are
drawn from the NVD and the metadata (see Table 1).

Parsimonious Expanded

impact 0.00 0.00
(0.00) (0.00)
numvendors 0.02%** 0.20™*
(0.00) (0.00)
prior 0.04** 0.02*
(0.01) (0.01)
0s 0.03** —0.06
(0.01) (0.04)
mix 0.13*** —0.18*
(0.02) (0.07)
hardware —0.04* —0.01
(0.02) (0.09)
vulnage —0.36™ —0.22%
(0.00) (0.00)
Irecp 0.25%* 0.28**
(0.01) (0.01)
numvendors*age —0.03***
(0.00)
os*age 0.01*
(0.01)
mix*age 0.05***
(0.01)
hardware*age —0.01
(0.01)
Adjusted Within R? 0.12 0.15
Adjusted R? 0.92 0.92

***p < 0.001; **p < 0.01; *p < 0.05
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vulnerabilities. The longest mixed vulnerability coordination was thirteen
years. When a mixed vulnerability is thirteen years old, it receives 47% more
vulnerabilities than an application vulnerability of the same age, impacting
the same vendors, and of the same severity.

We also examine the results of the time fixed effects. There is a major
shift in the second half of the panel. From 2006 to 2016, the annual output
of CVEs stayed relatively flat. However, in 2017, there was a surge in CVE
IDs: 14,688 vulnerabilities were published that year, compared to just 6,449
in the prior year.

Despite the fact that more vulnerabilities were published later in the time
series, information sharing volume does not decrease later in the time series
for vulnerabilities coordinated by CERT/CC (see Figure 7 which captures
time fixed effects). This suggests that CERT/CC has grown more selective
as more vulnerabilities are published. Indeed, CERT/CC now coordinates
a fraction of the vulnerabilities which are published in the National Vul-
nerability Database. While it coordinated 5.8% of all NVD vulnerabilities
released in 2012, it coordinated 0.2% of the NVD vulnerabilities released in
2019. The annual drop from 2016 to 2017 was most pronounced: CERT/CC
coordinated 2.04% of vulnerabilities in 2016 and 0.83% of vulnerabilities in
2017. We thus wanted to study the factors that predict whether CERT/CC
coordinates vulnerabilities.

5.2 The Decision to Coordinate

To understand the types of vulnerabilities CERT/CC coordinates and how
this has changed over time, we run cross-sectional logit regressions examining
all vulnerabilities published by the NVD from the years 2012 to 2019. We
examine the factors that increase and decrease the likelihood that an NVD
entry (that is, a vulnerability with a CVE ID) is coordinated by CERT /CC.

Model specification We run the following regression to test hypotheses
H7 through H10:

Y = P13+ (4 - numuvendors + P15 - exploit + B1g - impact + (17 - vendorage

(2)

In this regression, Y is a binary choice variable, which takes on the value
of 1 if a CVE ID is coordinated by CERT/CC and a value of 0 if it is not
coordinated by CERT/CC. The numvendors variable measures the number
of vendors who are impacted by a vulnerability. We test H7 by examining
the P14 coefficient. A positive value would support our hypothesis. The
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Table 4: Logit Regressions: Exploring the factors associated with whether
CERT/CC coordinated a given CVE ID released in the year 201z. Odds
ratios are reported.

2012 2013 2014 2015 2016 2017 2018 2019
exploit 278" 266" 239~ 231" 3.94% 808 125 552"
(0.91) (0.73) (0.75) (0.78) (1.81) (3.73) (0.46)  (3.37)
vendorage 0.94* 095 097  0.89™ 084 101 093 093"
(0.02) (0.03) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02)
impact 1.06* 117 1.12° 116" 099  1.12* 115"  1.15°
(0.03)  (0.05) (0.06) (0.05) (0.06) (0.05) (0.05) (0.08)
n_vendors 0.53* 096 096 056" 121  1.76" 1.61*** 1.26"
(0.16) (0.26) (0.22) (0.12) (0.17) (0.38) (0.14)  (0.09)
Num.obs. 5287 5186 7926 6493 6449 14638 16511 17296
0 —1132.38 —848.74 —971.45 —700.84 —538.67 —759.25 —839.76 —262.35
Deviance — 2264.75 1697.48 1942.89 1401.68 1077.33 1518.49 1679.52 524.69

***p < 0.001; **p < 0.01; *p < 0.05; £: Log Likelihood

exploit variable is a dummy variable which takes on the value 1 if there
is publicly available exploit code for a given CVE ID. The impact variable
captures the CVSS impact score. We test H8 and H9 by examining the (5
and [ coefficients respectively. Positive coefficient values would support

our hypothesis.

The vendorage variable measures the number of years since a vulnerability
first associated with a particular vendor appears on the NVD. In the case of
multi-vendor vulnerabilities, we captured the mean vendor age. We test H10
by examining the fi7 coefficient. A negative coefficient value would support

our hypothesis.

Results We run the logit regression for every year from 2012 to 2019. The
coefficient values in Table 4 represent the odds ratio: for a one unit increase
in each variable in question, the coefficient indicates the factor by which the
odds of CERT/CC coordination change. For instance, a vulnerability with
public exploit code in 2012 would be 2.78 times more likely to be coordinated

by CERT/CC than a vulnerability without public exploit code.

Over time, more vulnerabilities have been discovered. Consistent with
its remit and H7, as the number of vulnerabilities in the NVD increased,
CERT/CC became increasingly focused on the vulnerabilities affecting more
vendors. Vulnerabilities with fewer vendors were more likely to be coordi-
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nated by CERT/CC than vulnerabilities with more vendors earlier in the
time series. By 2019, adding one vendor to a vulnerability increased the
probability of CERT/CC coordinating the vulnerability by 25%.

CERT/CC became more selective about the vulnerabilities that it coor-
dinated as the number of CVE IDs increased. Some of the particularly low
values of the n_vendors coefficient, such as 2012 and 2015 in Table 4, could
have been due to outliers. The vulnerabilities with the largest numbers of
vendors in those years may not have been coordinated by CERT/CC, de-
flating the coefficient. Our robustness check, described in Table 6 (in the
Appendix) did not significantly change the coefficient on the number of ven-
dors.

CERT/CC is much more likely to coordinate a vulnerability for which
there is a public exploit (H9). However, the odds ratio for this variable
fluctuates. In 2017, CERT /CC was over eight times more likely to coordinate
a vulnerability with public exploit code; in 2018, it was just 1.25 times more
likely. Vulnerabilities with a higher CVSS impact score were more likely to
be coordinated by CERT/CC in every year except 2016 when the effect was
insignificant, which supports H8. Nonetheless, CVSS impact scores have less
bearing on CERT/CC coordination than the presence of a public exploit. In
2013, when CVSS impact scores had their most significant effect on the odds
of CERT/CC communication, a vulnerability in the third quartile of impact
scores (at 7.90) was two times as likely to receive CERT/CC attention as a
vulnerability in the first quartile of impact scores (at 2.90). The diminished
impact of CVSS scores likely reflects the fact that CVSS scores are imperfect
measures of vulnerability severity [66].

Finally, companies with more experience handling vulnerabilities are less
likely to have CERT/CC coordination, which validates H10. In 2019, a
vulnerability in the third quartile of mean vendor age (18.5 years) is 43%
as likely to receive CERT/CC coordination as a vulnerability in the first
quartile (7 years).

6 Discussion

This section discusses what has changed over time, the role of cooperation
in cybersecurity, and methodological issues.

Developments The three proxies for the amount of information sharing
are the most reliable longitudinal indicators given they are independent of
CVE issuance or labelling. The strongest trend in these proxies is that cases
are now resolved faster despite involving more emails and recipients (see
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Figure 3), which suggests increased responsiveness among CERT /CC and its
constituents.

Section 4.2 suggests information sharing volume and participation are
heavy tailed, which means the majority of information is shared about a
minority of vulnerabilities. This is unlikely down to intrinsic properties of
the vulnerabilities, such as those captured by CVSS, but rather because of
how the software products are deployed in the world, specifically the winner
takes all dynamics of software markets [67]. Tuverson and Ruffle [68] note
that certain I'T vendors are “systemically important technology entities” for
whom a security bug could impact thousands of businesses.

Indeed this can be seen in comparing the effect of proxies for severity
on information sharing volume (Table 3) with the effect on CERT/CC’s
decision to coordinate (Table 4). While vulnerabilities with higher CVSS
impact scores and publicly available exploit codes are more likely to become
the focus of CERT/CC attention, they do not lead to more information
sharing volume. In contrast, upstream supply chain vulnerabilities do seem
more difficult to coordinate. Communications about these bugs appear to
be more protracted than communications about other vulnerabilities, ceteris
paribus, because it takes longer to understand their full scope and all of the
end-users they afflict. Indeed, this is consistent with multiple noted supply
chain attacks.

For instance, vulnerability coordinators had to scour the LinkedIn profiles
of software engineers to figure out which companies may have been impacted
by the Treck IP Ripple20 vulnerability; many security engineers stated on
their resumes that they had experience “integrating” the open source li-
brary with their company’s product [69]. But such ad-hoc methods are very
inefficient, particularly for widespread supply chain vulnerabilities. Some
open-source security flaws, such as the Amnesia:33 vulnerabilities, impact
millions of devices. A software bill of materials (SBOM) [70] that clearly
states the open source libraries and third-party vendors that are included in
a product would reduce vulnerability managers’ reliance on ad-hoc coordi-
nation methods and expedite the coordination and remediation process for
upstream vulnerabilities. The Biden administration’s recent executive order,
which requires all federal software vendors to maintain publicly available
SBOMs, is a step in the right direction.

Turning to the NVD, the increasing number of CVE IDs over time seen in
Figure 2 creates significant work in terms of validating and processing new
vulnerabilities. MITRE delegated some of this work to CVE Numbering
Authorities (CNAs) who are authorised to issue CVE IDs. The number of
CNAs grew from 22 in 2016 to over 100 in 2019. However, this does not
explain how so many more new vulnerabilities are being discovered. Figure 5
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shows an increasing share of CVE IDs now impact the largest vendors. This
could be due to bug bounties offered by dominant vendors [7, 8].

This raises the question of how institutions tasked with coordinating infor-
mation sharing should respond. We suggest three approaches: prioritisation,
delegation, and automation. Delegation involves supporting external coor-
dination capacity and transferring responsibility, which H10 suggests has
been successful. This is most appropriate for those vulnerabilities affecting
dominant vendors who have the resources to establish PSIRTs. Automation
is more appropriate when the lack of a single dominant actor means the same
misconfiguration is made by many developers, such as when thousands of An-
droid applications misconfigured SSL certificates in VU#582497. Automa-
tion allowed CERT/CC to coordinate a case involving over 27000 emails.
Prioritisation is necessary when the number of vulnerabilities remaining af-
ter automation and delegation exceeds the coordinator’s resources. Targeting
resources in light of this reality remains an open problem [47].

Competition vs cooperation Evidence of increased information sharing
associated with multi-vendor vulnerabilities (H3) opens up the question of
whether competition or coordination drives the faster patch release times ob-
served by Temizkan et al. [49]. Their attribution of this observation to com-
petition may be premature given the research designs only observes outcomes
(patch release timing) and not the mechanisms driving it. Equally, we should
not place too much emphasis on our own evidence given we do not know the
content of this information. However, the mechanism of Temizkan et al. [49]
relies on consumer-driven incentives for vendors to produce timely patches.
Such a mechanism is inconsistent with consumer practices in which patches
are inconsistently applied even when they are available [35, 36, 38, 71] and
would also represent a rare instance in which markets reward security [72].
More broadly, the present case-study shows that cooperative cyberse-
curity information sharing is a viable alternative to market incentives, at
least under certain circumstances. This observation is consistent with some
older models of the vulnerability ecosystem [26]. Deriving generalised suc-
cess factors is difficult, but it is worth emphasising one finding—establishing
a publicly funded cybersecurity institution (CERT') did not crowd out private
institutions in the long term. This can be seen in the evidence in support
of H10, which suggests CERT prioritises younger vendors, and also the es-
tablishment of PSIRTs by companies like Microsoft and Apple. Qualitative
work emphasises how CERT scaled internationally by building trusted in-
frastructure [27] and human capital in other countries [73]. This casts doubt
over tropes like public services breeding dependency and foreign nations free-
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riding on the investments of the United States, rather initial public invest-
ments can bootstrap norms that lead to self-perpetuating positive outcomes.

Limitations Analysing email meta-data provides aggregate insights at the
cost of nuance. We have no way of identifying which purpose a given email
serves, which leads to the simplifying assumption that all emails contain an
equal amount of information. In actuality, emails are highly heterogeneous:
some contain novel findings like the existence of a vulnerability while others
are mere formalities or pleasantries. We grouped messages by vulnerability
and assumed the distribution of information content is relatively constant.

A separate issue is data quality. The meta-data is based on reliable
information about when and to whom emails were sent. In contrast, CVE
information is based on assessments that depend on the “assessor’s knowledge
and skills” [74]. Other researchers have demonstrated inaccuracies in the
National Vulnerability Database [75]. We are exposed to all such issues
because we did not independently validate information pulled from the NVD.

A third problem results from conducting longitudinal research [76]. Fig-
ures 2-5 all display flux but its difficult to disentangle changes in the world
(e.g. the proliferation of bug bounties or IoT products) from changes in re-
porting procedures (e.g. the proliferation of CNAs or changes in CERT/CC
policy). Statistical designs can help mitigate this, such as including time-
based fixed effects in Section 5.1 or running a separate regression for each
year in Section 5.2. However, the residual distortions will be reflected in our
results. For example, the coefficients in Table 4 are partly determined by
CERT/CC decisions but also by differences in the population of published
CVE IDs across years. We could have more confidence in research results if
a statistical agency aimed to control for these differences, as the US’s Cyber
Solarium Commission proposes.

7 Conclusion

CERT/CC represent a case-study demonstrating that voluntary cybersecu-
rity information sharing is possible. Our longitudinal case-study of 430K
emails sent across nearly 30 years show: (i) the number of vulnerabilities ex-
ceeds the number of emails in some months (Figure 2); (ii) the information
sharing window per vulnerability has fallen from a mean of nearly a year
in the 1990s to less than 50 days (Figure 3); and (iii) the most information
is shared about vulnerabilities affecting application products and the most
popular vendors (Figure 4 and 5). Further, the distribution of information
sharing volume and recipients is heavy-tailed (Figure 6).
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In exploring the factors associated with information sharing volume, we
discovered that more information is shared via email about vulnerabilities for
which multiple vendors are affected (H3) and when communications begin
before the vulnerability is made public (H5). Finally, we analysed which
vulnerabilities CERT/CC focus coordination efforts on in the years following
2012. We find that CERT/CC is more likely to coordinate vulnerabilities
that affect more vendors (H7), affect less established vendors (H10), and
have public exploits available (H9).
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Table 5: Robustness Test: Volume of emails for years 2012-2019 with an
exploit variable

Model 1
impact —0.02*
(0.00)
exploit —0.04
(0.02)
vendors —0.13"
(0.00)
prior 0.04**
(0.01)
0s 0.23**
(0.04)
mix 1.89***
(0.07)
hardware —0.24**
(0.07)
ageven 0.01**
(0.00)
osage —0.02**
(0.00)
mixage —0.16™
(0.01)
vulnage —0.20"
(0.00)
hardwareage 0.02*
(0.01)
Irecp 0.27***
(0.00)

**xp < 0.001; **p < 0.01; *p < 0.05
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Table 6: Robustness check: Removing Right Vendor Outliers

Year: 2015
exploit 2.61**
(0.88)
mean_age 0.94%
(0.02)
impact 1.07*
(0.04)
n_vendors 0.55*
(0.17)
Num. obs. 6470
Log Likelihood —1127.04
Deviance 2254.08
AIC 2266.08
BIC 2305.50

***p < 0.001; **p < 0.01; *p < 0.05
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Fixed effects

Figure 7: Time fixed effects.

Fixed Effects Over Time

=]
]
[+]

o )

< o
g O

T T T T
5 10 15 20

Year

39

25




