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Abstract
Simultaneous control of multiple characters has been a research topic that has been extensively pursued for applications in
computer games and computer animations, for applications such as crowd simulation, controlling two characters carrying
objects or fighting with one another and controlling a team of characters playing collective sports. With the advance in deep
learning and reinforcement learning, there is a growing interest in applyingmulti-agent reinforcement learning for intelligently
controlling the characters to produce realistic movements. In this paper we will survey the state-of-the-art MARL techniques
that are applicable for character control. We will then survey papers that make use of MARL for multi-character control and
then discuss about the possible future directions of research.

Keywords Multi-agent reinforcement learning · Character control · Computer animation

1 Introduction

Controlling multiple agents under adversarial and cooper-
ative scenarios has been a research topic that has been
intensively pursued by researchers in artificial intelligence,
computer graphics and robotics in the past few decades.
There are a wide range of applications of which include
autonomous driving [13], swarm robotics control in ware-
houses [10], NPC control in computer games [37,43] and
background character control in films [35,48].

Especially in computer animation, starting from the land-
mark research of the boids model by Reynolds [32] for
animating flocks of birds and schools of fish, extensive
research has been done for crowd animation [7] and close
character interactions [12]. Before the deep learning era,
researchers have focused on designing hand-tuned con-
trollers or optimization-based approaches [21,37]. Although
such methods are forming the foundation of multi-character
controllers, the intelligence of the characters is limited due
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to the simplicity of the rules or the high computational com-
plexity.

Recently, there is growing interest in building more intel-
ligent character control by making use of algorithms such as
reinforcement learning [15,16,25,36,43,47]. Especially with
the introduction of deep reinforcement learning (DRL), the
scale of the learnable systems in terms of generalization and
data size hasmassively grown [33]. The idea ofDRLhas been
applied to terrain running in 2D [26] and 3D [27], tracking
human motion capture data [24], video motion tracking [28]
and synthesizing an optimal series of motions for achieving
a task [29].

Such algorithms are also being applied in the field of
simultaneous multi-agent control, which is categorized in
the area called multi-agent reinforcement learning (MARL).
Amazing results where the agents are intelligently controlled
to play football [18], hide-and-seek [1] and autonomous driv-
ing [13] have been achieved.

In this paper, we review the basics ofMARL, especially in
a scenario for controlling characters in a real-time scenario.
Starting from the basics of RL, we then extend this to cover
MARL in a centralized training and decentralized execution.
We then review recent papers that apply MARL for multi-
character control and related topics. We finally discuss some
future direction of the research.
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2 Reinforcement learning background

The key idea that makes reinforcement learning different
from supervised learning and unsupervised learning is that
it learns from interactions with an environment and approx-
imates some return based on these environment interactions
to help ‘reinforce’ its decisions in that environment. The
entire system can be modelled as a Markov decision pro-
cess with a discrete-time setup (t = 0, 1, 2, 3, ...), where an
agent observes the environment state st at time step t and
takes an action at according to the observation. In the next
time step t +1, when the agent finishes the action, it receives
a numerical reward rt+1 from the environment, and the envi-
ronment state transits from st to st+1. Therefore, a complete
interaction can be represented in a sequence, which is called
a trajectory:

τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, ... (1)

Mathematically, the Markov decision process is written as a
tuple 〈S, A, R, P〉, where S is the set of all possible states,
A is the set of all possible actions, R : S × A × S −→ R is
the reward function with rt = R(st , at , st+1), and P : S ×
S × A −→ [0, 1] is the transition function of the environment
P(s′|s, a) and describes the probability of transition to state
s′ when action a is taken at state s.

Reinforcement learning’s main target is to maximize the
discounted sum of rewards it receives after having taken an
action. This is defined as the return:

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · =
∞∑

k=0

γ k Rt+k+1, (2)

where γ ∈ [0, 1] is the discount factor. An agent’s choices on
actions are decided by its policy π , which is a function that
outputs the probability for taking action a at state s, normally
written as π(a|s). In addition to the policy, a value function
is used to estimate the return that will be received given a
state or state and action. The value function for state s under
policy π is:

Vπ (s) = Eπ [Gt |St = s]
= Eπ [Rt+1 + γ Vπ (St+1)|St = s], (3)

The value function for taking action a at state s under policy
π is called a Q function that is defined as:

Qπ (s, a) = Eπ [Gt |St = s, At = a]
= Eπ [Rt+1 + γEa′∼π [Qπ (St+1, a

′)]|St = s, At = a].
(4)

Q-learning [44] is a classic algorithm in reinforcement learn-
ing which learns the Q function by approximating with a

target Q function that always selects the optimal action:

Q(St , At ) ←− Q(St , At )

+ α[Rt+1 + γ max
a

Q(St+1, a) − Q(St , At )],
(5)

where α is the learning rate.
Another kind of algorithm, known as policy gradient or

policy optimization, learns a policy function directly with an
gradient ascent on an empirical estimate of the true policy
gradient. We define J (θ) as the expected return under the
policy parameters θ :

J (θ) =
∑

τ∼πθ

G(τ )πθ (τ ), (6)

where τ is a trajectory (see Eq. (1)), πθ (τ) is the probability
that τ is created by policy τθ parameterized by θ and G(τ ) is
the return (see Eq. (2)) obtained by trajectory τ . So, the goal
is to learn the policy parameters θ that maximize J (θ):

θ ←− θ + η∇ J (θ), (7)

where η is the learning rate and the derivative term can be
derived in a from that can be estimated with sample trajec-
tories:

∇θ J (θ) = Eτ∼πθ [∇θ logπθ (τ)G(τ )]

= Eτ∼πθ [
T∑

t=0

∇θ logπθ (at |st )G(τ )]. (8)

Combining the two key components, value functions and pol-
icy functions, and learning them together is the main idea
behind the most commonly used kind of algorithm nowa-
days, known as Actor-Critic, with a value function acting
as the critic and a policy function acting as the actor. The
critic learns a function that evaluates the trajectory, which
can be the value function V (s), the Q function Q(s, a), the
advantage function V (s) − Q(s, a) or other variations, and
the actor learns a policy function in the direction indicated
by the critic.

With the help of deep learning, reinforcement learning
algorithms can solve problems in applications onmuch larger
scales. Specifically, deep reinforcement learning algorithms
learn value functions and policy functions using neural net-
works. For example, deep Q-learning [23], which is the deep
learning version of Q-learning, calculates a loss

(r + γ max Q(s′, a′; θ−
i )

︸ ︷︷ ︸
target

− Q(s, a; θi )︸ ︷︷ ︸
prediction

)2 (9)
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to update theQ function instead of updating it in a directman-
ner shown inEq. (5). Someother deep reinforcement learning
algorithms, such as proximal policy optimization (PPO) [8,
33], deep deterministic policy gradient (DDPG) [17], and
asynchronous advantage actor-critic (A3C) [22] are good
examples of applying deep learning in actor-critic methods.

3 Multi-agent reinforcement learning

When multiple reinforcement learning agents interact with
the same environment, the environment becomes a multi-
agent system and multi-agent reinforcement learning algo-
rithms are applied. It can be modelled as a Markov game
with the tuple 〈N , S, A, R, P, O〉, where N is the number
of agents, S is the set of the true states, A = {A1, . . . , AN }
is the set of actions for all agents, P : S × S × A −→ [0, 1]
is the transition function P(s′|s, a1, . . . , aN ) describing the
probability of transition to state s′ when actions {a1, . . . , aN }
are taken by the N agents, respectively, at state s, R is the
reward function, and O = {O1, . . . , ON } is the individual
observations for all agents. Now, the goal is to learn policies
for each agent that maximizes their individual returns or the
group return, depending on the environment settings, which
can be cooperative, competitive or mixed.

3.1 MARL setups for character control

We now discuss some factors and setups that we need to
consider when applying MARL to character control.

3.1.1 Non-stationarity

The environment for a single reinforcement learning agent
is assumed to be stationary in default, i.e. the state tran-
sition function and reward function do not change over
time [11]. However, things are different for agents in multi-
agent environments. As all agents are learning concurrently,
their policies change as time changes, and the environment
becomes non-stationary from the agents’ perspectives. An
agent would possibly perceive a different state s′ after taking
the same action a at the same state s with other agents having
some different policies:

P(s′|s, a, π1, . . . , πN ) �= P(s′|s, a, π ′
1, . . . , π

′
N ),∀πi �=π ′

i ,

(10)

since the transition of the true state involves actions from all
agents. This non-stationarity would cause the critic function
to be non-stationary as well and, hence, leads to a poorly
learnt policy, for any single agent.

3.1.2 Centralized training and decentralized execution

Centralized training and decentralized execution (CTDE)
setup is an effective solution in dealing with the non-
stationary problem, especially in multi-agent cooperative
environments. The decentralized execution part stays the
same as the normal setup, where the agents’ policies out-
put actions based on their partial observations respectively.
The centralized training part “cheats” a little bit, where the
critics have access to extra information, for example, the true
state of the environment and actions of all agents, which can
make the environment stationary, since:

P(s′|s, a1, . . . , aN , π1, . . . , πN )

= P(s′|s, a1, . . . , aN )

= P(s′|s, a1, . . . , aN , π ′
1, . . . , π

′
N ),∀πi �= π ′

i , (11)

Extra information is usually accessible in computer graphics
applications, which is an advantage compared to other appli-
cations, such as autonomous driving, where simulating the
real world is a very difficult task. Hence, we will introduce
some multi-agent reinforcement learning algorithms that use
the CTDE setup.

3.1.3 Self-play

Self-play is a method frequently used in multi-agent com-
petition environments, such as tennis and chess. Instead of
training against an agent with some other policies, the agent
learns by competingwith itself, i.e. its current best policy or a
randomly chosen previous policy. The main idea behind it is
tomimic howhumans structure competitions. For example, it
is more reasonable and efficient for a beginner tennis player
to practise against other beginners than practising a world
champion or a small child struggling to pick hold the racket.
Multi-agent self-play environments can use single-agent RL
methods, and some interesting works will be discussed later.

3.2 Algorithms for MARL

We now describe four MARL algorithms that are considered
state-of-the-art and suitable for applications in character con-
trol.

3.2.1 Value-decomposition networks

VDN [40] is an MARL algorithm that can make agents learn
their individual Q value functions when there is only a group
reward available. VDN assumes that the joint action-value
function for all agents can be decomposed into individual
action-value functions for each agent:
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Qtot(s, a) =
∑

Qi (si , ai ), (12)

where the individual action-value functions depend on the
local observations of each agent. As for the centralized train-
ing, Qtot is trained with the deep Q-learning method, using
the joint reward to back-propagates gradients into the net-
works, so the individual Qi does not need to learn from
specifically assigned rewards. And as for the decentralized
execution, each agent acts greedily by taking the maximum
Qi value given its local observations. In this scenario, it
is equivalent to selecting the joint action greedily, which
ensures that the centralized policy and decentralized policy
are consistent.

3.2.2 QMIX

QMIX [31] removes the constraint (Eq. (12)) in VDN by
introducing a new Qtot function. Instead of just taking the
sum of all individual Qi s as Qtot, QMIX uses a mixing
network that takes all Qi s and the global state as input to
approximate the value of Qtot, which both increase the vari-
ety of relation representation between Qtot and individual
Qi s, and make better use of the centralized training by con-
sidering the global state.More specifically, as shown inFig. 1,
the hyper-networks inside take the global state information
as input to generate theweights and biases for themixing net-
work that computes Qtot using the individual Qi s as inputs.
To have the same greedy policy as VDN, QMIX states that
the actions which would maximize the Qtot value is just the
combination of the actionswhichwouldmaximize individual
Qi values:

argmax
a

Qtot(s, a) =
⎛

⎜⎝
argmaxa1 Q1(s1, a1)

...

argmaxaN QN (sN , aN )

⎞

⎟⎠ (13)

and this can be ensured by setting up a constraint:

∂Qtot

∂Qi
≥ 0,∀i ∈ [1, N ], (14)

i.e. Qtot is monotonically increasing with respect to each Qi .
This is achieved by using absolute activation functions for the
hyper-networks so that they can output nonnegative weights
for the mixing network.

3.2.3 Counterfactual multi-agent policy gradients

When a group of cooperative agents receives a group reward,
it is challenging for the individual agents to know their exact
contribution. This is known as the multi-agent credit assign-
ment problem and COMA [6] is an Actor-Critic method

Fig. 1 Network structure for QMIX, graph adapted from [31]

that focuses on it by using a counterfactual baseline. It was
inspired by the idea of difference reward [46]:

Di = r(s, a) − r(s, (a−i , ci )), (15)

where a−i is the joint action of all agents except for the i th

agent, and ci is the default action for the i th agent. This is
just the difference of reward when the action taken by the
i th agent is replaced by its default action. An action that can
make the value of Di larger would also make the value of
r(s, a) larger. However, it is hard to handpick the default
action ci in most scenarios, COMA designed an advantage
function to avoid the problem:

Ai (s, a) = Q(s, a) −
∑

a′
i

πi (a
′
i |τi )Q(s, (a−i , a′

i )), (16)

where a′
i is an action different from ai for the i th agent, and

the second term on the right-hand side is the expected Q-
value when the agent’s current action ai is marginalized out.
This advantage function indicates howgood an agent’s action
is to the whole team compared to its other actions.

3.2.4 Multi-agent deep deterministic policy gradient

MADDPG [20] is the multi-agent version for the algorithm
DDPG. It proposes an exceptional CTDE structure, which
is widely used nowadays. Unlike the three algorithms men-
tioned above, where there is only a single value function
Qtot or a central critic that considers the joint actions and
joint observations or states, MADDPG allocates critics that
consider extra information, such as observations and actions
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Multi-agent reinforcement learning for character control 3119

Fig. 2 Network structure for MADDPG, graph adapted from [20]

from other agents, to every single agent, as shown in Fig. 2.
Also, each agent has its own policy that only takes its local
observations as inputs and generate actions in a deterministic
way,whichmake it capable of dealingwith continuous action
spaces. Moreover, since each agent learns by maximizing
individual return, the environment can be cooperative, com-
petitive or both for MADDPG, which makes it an algorithm
with wider range of application.

4 MARL in computer graphics

In this section we review some important research appli-
cations for multi-agent reinforcement learning in graphics.
Despite being a popular theoretical field for reinforcement
learning researchers, we find that MARL is still in its infancy
in the graphics community, perhaps due to a lack of clear
applications of the framework.

The applications that MARL can be considered most
applicable to are crowd simulation, strategy games such as
Starcraft II, two-player competitions such as martial arts or
fighting, and collective sports such as football. We briefly
review how characters have been controlled in such domains
and someworkwhere RL/MARL have been applied for solv-
ing these problems.

4.1 Crowd simulation

Crowd simulation has been applied to problems such as sim-
ulating fire escape scenarios for safety testing [9], large fight
simulations for wars in movies [45], simulating the move-
ments of citizens within a city [30] and finding bottlenecks
for flow in architecture design [34]. All of these approaches
have made use of some interesting heuristics-based naviga-

tion that combines local information of an agent’s nearby
interactions with some global goal information, for exam-
ple, an agent making it through a target building’s exit while
avoiding collidingwith nearby agents. The results are impres-
sive at scale [45] when a large number of interacting agents
result in interesting, emergent behaviours. But the scale of
these approaches can hide the fact that these agents are not
acting naturally, nor ‘intelligently’, and any increase in the
resolution of the simulation usually shows individual agent
movement artefacts.

Chen et al. [4] train a joint collision avoidance model
using DRL. The model is trained in a decentralized man-
ner using trajectories produced by ORCA [41]. The model
runs much faster than ORCA and runs without any com-
munication between the agents. Their approach assumes the
agents have full information about the nearby agents, which
is not realistic in real-world applications. To cope with this
problem, Fan et al. [5] directly use the sensor information
as the state to control mobile robots without colliding with
other agents in various complex environments. The system is
trainedwith policy-gradient-based deep reinforcement learn-
ing using training data with many agents. Haworth et al. [7]
propose a hierarchical controller where the higher level con-
troller plans the footstep patterns towards the goal while
the lower level controller computes the PD targets for the
full-body character to follow the planned footsteps as accu-
rately as possible. The lower level controller is a task agnostic
controller that is trained in a centralized fashion. The inno-
vation of this research is that the characters are controlled by
physical simulation based on DeepLoco [27] at the lowest
level. Further development can potentially produce interest-
ing effects, such as fighting at the frontlines at war scenes,
or physical interactions at bottlenecks such as corridors.

4.2 Self-play in games

Competitive games such as Go, chess, shogi or computer
games such as Starcraft have been test-beds for AI systems.
One of the keys in such research nowadays is self-play (see
Sect. 3.1.3), a scheme to let agents play the game between
themselves to improve their skills through exploration. Alp-
haZero [38] use deep neural networks with Monte Carlo
search trees to build an agent and trained it by self-play.
Though it consumed tremendous computing resources, the
performance was extraordinary on Go, chess and shogi, and
it defeated the previous state-of-the-art Stockfish, in chess,
and Elmo, in shogi. The success shows great potential in
applications of deep reinforcement learning.

Starcraft II, a science fiction real-time strategy video
game, is the new milestone for deep reinforcement learning
in game playing, due to its large, partially-observable obser-
vation space and large action space. Both Sun et al. [39] and
Lee et al. [14] demonstrate results in beating the built-in AI
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in some maps from Starcraft II. Sun et al. use self-play with
DDQN and PPO to train the agent policies, while Lee et al.
use A3C. They both reduce the action space by using macro
actions,which are sequences of unit actions.Also, to decrease
the learning complexity for the agent, they both divide the
policy into different modules, each handling a category of
actions, but with different designs. Vinyals et al. [42] man-
aged to go further, their AlphaStar reached a Grandmaster
level, which can beat 99.8% of the human players, includ-
ing some professional players. They use prioritized fictitious
self-play (PFSP)with anRL algorithm similar toA3C,where
PFSP picks opponents with probabilities proportional to the
win rate against the agent, allowing the agent to competewith
the problematic opponents more frequently. Results show
that computers have a significant advantage in microman-
agement, but they are still inferior to the best professional
players in strategies. This gap indicates that there is still a
tremendous space for improvement in complicated applica-
tions using reinforcement learning.

4.3 Competitive games

For competitive games between two agents, techniques based
on game tree expansion [35,37] and reinforcement learn-
ing [43] have been proposed. This stream is taken over by
DRL-based controllers.

Researchers in OpenAI simulate competitions such as
sumo [2] and hide-and-seek [1]; they extend the idea of com-
petitive self-play (see Sect. 4.2) to the domain of continuous
control inmulti-character games. Bansal et al. [2] design four
1v1 competitive environments with agents using continuous
control and use PPO as the reinforcement learning algorithm.
When the reward is sparse in a complicated environment, it
is hard for the agent to receive the reward; for example as
in sumo, if the agent gets a reward only when its opponent
is knocked to the ground or pushed out of the ring, the sys-
tem is hard to train as the agents need to go through a long
competition before finding out some actions are useful. To
solve this problem, they use an exploration curriculum. In
the beginning, the agents would be rewarded for complet-
ing relatively simple tasks, such as standing or moving, then
gradually reduce the reward for these tasks and focus on the
target reward as training goes on. Since self-play is used, it
is usual to have two agents have different skill levels dur-
ing training. To mitigate the effect this would bring, they use
opponent sampling. When an agent is training, instead of
taking the latest policy as its opponent, it randomly chooses
older versions. Experiment results show the importance of
the curriculum setup and the choice of sampling strategy,
especially for more complex environments.

Baker et al. [1] set up a hide-and-seek environment with
two hiders and two seekers, together with some boxes and
ramps as tools. They use self-play to train agents with oppo-

nents that are at an appropriate level and the CTDE setup
with PPO to optimize the policies. Experiment results show
that, after millions of steps of training, the agents formed
an auto-curricula: the agents move randomly→ the seekers
catch the hiders→ the hiders hide using boxes→ the seek-
ers use ramps to climb up→ the hiders lock up the ramps→
the seekers climb up the boxes and surf them. Agents have
possibilities in learning reasonable actions beyond common
knowledge.

4.4 Competitive sports

Competitive sports are a good representation of the com-
plexity of human cooperative and competitive multi-agent
coordination. A deep hierarchy of cognition is required
to play in a sport, such as low-level subconscious muscle
responses all the way up to high-level team planning and
coordination. Video game AI in sports requires a large net-
work of state machines [3] that cover the breadth of possible
plays, yet the limitation of the system is constrained to how
much knowledge of the game the designer puts into the AI.
Alternatively, self-learningAI systems for sports could trans-
form the scripted or unnatural sports AI we have in games
now into intelligent, surprising and adaptive agents that are as
creative to play against as human players. So far, the existing
research in the application of MARL to competitive sports
games is small but the results are impressive.

Liu et al. [18] demonstrate a self-playing multi-agent sys-
tem in the game of soccer. They utilize standard actor-critic
policy gradients methods and pit agents in 2v2 matches. The
selection of agents is from a pool of 32 agents in a population,
and agents are randomly sampled from this pool and play a
game of soccer to collect experience. They extend beyond
the usually population-based sampling for competitivemulti-
agent environments and also adapt the hyper-parameters of
the individual agents, such as the reward coefficients, the
discounted return scale and the learning rates, via evolution-
ary perturbation. They demonstrate some interesting results
showing the dynamics of how important various reward com-
ponents are to the agent over time. Because the agents do not
have information about the internal state of other agents in
the game, they utilize an recurrent architecture for both actor
and critic so that behaviours of opponents and teammates can
be incorporated into the decision making. This is one of the
first works that presents the idea that MARL algorithms can
be used for cooperative and competitive AI for games and
simulations.

This work is then extended to a much more difficult sce-
nario where the agents were involved in a physically-based
soccer simulation and had to actuate in the environment as
a humanoid in order to play the game [19]. The players are
first trained to imitate motion capture skills of running and
turning. Then, they are trained by RL through mid-level drill
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training to be able to learn skills such as dribbling, kicking
and shooting. Finally, the teams of 2x2 are trained to coor-
dinate by MARL. Results are very impressive as the agents
have clear sign of learning simple real-world tactics, both
in attack and defence. This work can be extended to a large
scale in the future, for example, making the competitions
eleven-a-side, or having more modern football rules, such as
offside.

5 Discussion

Below, we now provide some discussion on MARL applica-
tions that haven’t had the attention in the graphics community
we believe they should have.

5.1 Variable number of agents

One interesting scenario in multi-agent environments that
has not been explored too deeply yet is the variable number
of agents. Agents joining or leaving the environment will
make other agents’ rewards and transition states different
after taking the same actions at the same previous state and
therefore consequently affect their policies. This canbe easily
found in training non-playable characters (NPCs)withmulti-
agent reinforcement learning. For example, in first-person
shooting games, NPCs can be killed by the players and re-
spawned by the system.

5.2 Heterogeneous versus homogeneous agents

Another interesting topic is heterogeneous agents in multi-
agent competitive environments. Homogeneous agents are
basically identical, while heterogeneous agents may have
different observation ranges, action spaces and learning algo-
rithms. For cooperative environments, theCTDEsetup canbe
used, since it does not require the agents to be homogeneous
in theory. However, for competitive environments, self-play
would not work since the agents cannot train against them-
selves. A possible way is to build up a metric system that
could evaluate current levels for different agents, to help the
agents train against opponents at appropriate levels.

5.3 Future application to computer graphics

Other than all the fascinating applications introduced in the
previous section, we suggest another possible MARL appli-
cation that covers all the elements we discussed: a large-scale
war scene. Multiple kinds of soldiers are available for each
troop, and they can be immobilized during the war. Agents
need to learn to cooperate in order to win the battles. Also,
difficulty can be increased by having multiple troops repre-
senting different tribes, and the relationship between these

tribes can be allies, neutral or rivals. In this scenario, agents
need to learn strategies to maximize the interest of their
own tribe. Finally, collective sports with a lot of teammates
competing with the other team involves a lot of tactics and
allocation of players to different locations. Learning such
tactics considering the speciality of the players is a very high
dimensional and complex problem; handling such problems
will not only benefit the game industry but also the sports
industries for strategy making.

6 Conclusion

In this paper, we discussed some key ideas in RL andMARL
and reviewed some significant algorithms in MARL with
CTDE architecture, which are suitable for graphics applica-
tions. We also reviewed several exciting MARL applications
in the field of computer graphics. MARL is a difficult prob-
lem and there is still much research needed to tackle general,
real-world problems. This also applies to computer graphics
problems as such applications usually have higher com-
plexity. In the foreseeable future, we would like to see
more breakthroughs in computer graphics applications with
MARL.
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