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Abstract: Aligning points of interest (POIs) from heterogeneous geographical data sources is an
important task that helps extend map data with information from different datasets. This task poses
several challenges, including differences in type hierarchies, labels (different formats, languages,
and levels of detail), and deviations in the coordinates. Scalability is another major issue, as global-
scale datasets may have tens or hundreds of millions of entities. In this paper, we propose the
GeographicaL Entities AligNment (GLEAN) system for efficiently matching large geographical
datasets based on spatial partitioning with an adaptable margin. In particular, we introduce a text
similarity measure based on the local-context relevance of tokens used in combination with sentence
embeddings. We then come up with a scalable type embedding model. Finally, we demonstrate
that our proposed system can efficiently handle the alignment of large datasets while improving the
quality of alignments using the proposed entity similarity measure.

Keywords: geographic information systems; data integration; entity alignment; points of interest;
attributes-based matching; heterogeneous large-scale

1. Introduction

In recent years, there have been a large number of points of interest (POIs) incorporated
into geospatial databases [1]. Social networks, such as Facebook, host many businesses’
pages, and posts contain a collection of businesses. Travel companies, such as TripAdvisor,
host a selection of tourist attractions. All of these POIs are associated with specific geograph-
ical locations. Map service providers (such as Google Maps, Tomtom, Here Maps) extend
and enrich their datasets, often with the help of crowdsourcing (e.g., Google’s “Add a miss-
ing place to Google Maps” feature (https://support.google.com/maps/answer/6320846
(accessed on 10 December 2021)). As Wikipedia expands, the number of articles about
geographical entities which embed coordinates also grows. Similarly, Knowledge Graphs
(KGs) such as Wikidata, DBpedia and YAGO also contain an ever-growing number of
geographical entities featuring coordinates [2]. These KGs also contain supplementary
information that may be valuable for maps’ applications.

Aligning geographical entities from different sources contributes to more complete
information about a given geographical entity and updates existing datasets by adding
missing entities. Unfortunately, it is difficult to match the same geographical entity in
different source datasets since there is no global identifier [3,4].

One challenge is that different geographical datasets often have inconsistencies, redun-
dancies, ambiguities, and conflicts [5], including differences in the sets of entity attributes,
their formats, and values. Although geographical entities typically share attributes, such
as label, category (type), address and coordinates, these attributes can have differences across
datasets. More specifically, coordinates may have different levels of precision, addresses can
be stored in different formats, labels can be in different languages and have different levels
of specificity, and there can be inconsistent use of abbreviations and acronyms. For example,
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a given address might be “2 Semple St., Edinburgh, Midlothian, Scotland, UK” in
one dataset and “2 Semple Street, Edinburgh, United Kingdom” in another. A label
may be “Edinburgh Zoo” or simply “Zoo”, as the city information might be already stored
in the address and coordinates. In this context, the token “Edinburgh” is not important
when measuring labels’ similarity. However, when measuring the similarity between “Duke
of Edinburgh Pub” and “Duke of Wellington Pub”, the same token is highly relevant.

Another major source of conflict is the fact that different datasets often use different cat-
egories (types) of geographical entities. These types are often structured in hierarchies that
can be very different, with varying degrees of granularity, hierarchical structures, and types’
names. Matching the type hierarchies of different datasets can be a challenging process, es-
pecially when some of the hierarchies are very large; making manual curation prohibitive.

All of the above-mentioned differences pose major challenges for the geographical
entity alignment problem. Additionally, the entity alignment problem can have offline and
online use cases that pose further challenges of their own. In the offline case, two large
datasets need to be matched against each other on a global scale. A good practical example
of such a case is when a location services provider wants to expand its dataset of POIs by
incorporating a dataset acquired from an external map provider. In this setup, there can
be some overlap between the two datasets, and not all entities of either datasets can be
matched. It is also common that the datasets being aligned are heterogeneous and have
different levels of incompleteness. Some of the main differences between datasets can be in
the their type hierarchies, labels, and address formats and coordinates, or the availability
of geoshapes.

Furthermore, it can be challenging to find matches on a global scale. In this scenario,
datasets may easily have tens or hundreds of millions of entities each, which would lead to
quadrillions of possible matching pairs. Spatial partitioning provides a useful way to tackle
this problem, as the entities can be geographically separated into partitions of manageable
sizes. However, spatial partitioning encounters some challenges, as coordinates might be
absent or not precise, and bounding boxes (bboxes) can be unavailable. Depending on the
type of the entity, the typical distance between the coordinates of matching entities can
range from a few meters (e.g., restaurants) to a few kilometers (e.g., cities). Handling these
scalability challenges while maintaining good precision and recall is one of the problems
that we address in this paper.

Entity alignment is not only needed for offline data enrichment but also for online
matching. In this case, we need to match a new entity against the already existing geo-
graphical entities in a given dataset. A common application for this use case is the addition
of user-generated (e.g., business owner) entities into a dataset, where it is necessary to
check whether the new entity already exists before actually adding it, in order to avoid
duplication. Another application is search of POI-entities where a user may provide infor-
mation covering the four attributes of the searched geographical entity. The latter needs
to be mapped to existing POIs in the search service, in order to fulfil the user’s request.
In both cases, the challenges posed by the differences between user-generated attribute
values and the set of entities being searched are similar to those from the offline alignment
of heterogeneous geographical datasets. However, low latency is a critical requirement in
the online case, as users expect results to be returned in a fraction of a second.

In this paper, we focus on alignment scoring and ensuring scalability on the offline
case. However, the approach can also be adapted to support the online case, as discussed
in Section 5.3. The contributions of this paper are listed as follows.

• We designed a new alignment system GeographicaL Entities AligNment (GLEAN),
which leverages the main attributes of geographical entities: label, category (or type),
address and coordinates. GLEAN first computes individual similarity measures for each
of the attributes, then combines them into a final similarity measure for the checked
entities’ pair. This alignment similarity is then compared to a threshold to make a
decision on the matching.
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• We combined the use of local context relevance of tokens with multilingual sentence
encoders to compute the label component similarity.

• We used unsupervised-type embedding and type demotion approaches for type
component scoring.

• We applied a scalable adaptable-margin partitioning in large-scale geographical enti-
ties datasets in order to improve the scalability of our alignment system.

• We evaluated the impact of our contributions in the alignment similarity score and
the scalability of our offline matching approach.

The remainder of the paper is organised as follows. Section 2 discusses related works.
Section 3 introduces the research problem we seek to solve in this paper. Section 4 details
the components of GLEAN. Section 5 describes the overall architecture of GLEAN that
aggregates its components into a single system. Section 6 provides performance evaluation
results based on ablation runs in regards to our proposed individual components. Finally,
Section 7 wraps up the paper contributions and opens it up to future research directions.

2. Related Work

There are quite a few works on aligning geographical entities from heterogeneous
sources. As described by Deng et al. [6], the geographical entity alignment problem has been
divided into three main areas. The first area focuses on the geometric or geospatial attributes
of data [4]. The second area targets descriptive and other nonspatial attributes [7,8]. The
third area, which this work is part of, combines both spatial and nonspatial attribute
frameworks. In our case, we consider label, address, and category (type) as nonspatial
attributes, and coordinates as spatial attributes.

Safra et al. [9] proposed one of the first approaches that extends existing methods for
location-only matching to combine both spatial and nonspatial attributes. Scheffler et al. [3]
used spatial attributes as a basic filter and subsequently combined entity labels to match
POIs from social network datasets. McKenzie et al. [10] used weighted multi-attribute
models to find entity alignments: the weights are assigned using binomial logistic re-
gression. Liu et al. [11] proposed a top-k spatial-textual similarity to find the most likely
candidate alignment pairs. Novack et al. [12] created a graph with nodes representing POIs
and the edges representing the possible alignments, and devised graph-based matching
strategies to solve the matching problem of POI data conflicts. Purvis et al. [13]’s approach
matched instances using a linear combination of label, type, and coordinate attributes via
information entropy.

Low et al. [14] proposed a complete POIs conflation framework, from data catering
to data verification. They also used POIs’ attributes information to match POIs. However,
this framework started first by mapping types’ taxonomies before comparing the POIs.
This is performed under the assumption that types’ taxonomies from different data sources
are consistent and not noisy. In addition, although Low et al. [14] claimed large-scale
application of their conflation framework, the maximum scale of the used dataset does not
exceed 12,000 POIs. The scalability limitation is mainly due to the manual intervention of
human experts in the verification step. Finally, this work did not address the issues with
multilinguality of labels or the local context relevance of tokens.

There have also been efforts on the alignment of geographical entities in the Linked
Data community. SLIPO [15] proposed a data integration workflow, which includes a
fusion component based on an adaptation of Fagi [16] POI-specific similarity functions. The
approach relied on available relational data, but it did not provide details on the alignment
scoring function and did not address the specific challenges of aligning geographical entities
from heterogeneous data sources.

Yu et al. [17] used ontologies in Web Ontology Language 2 (OWL-2) (https://www.w3
.org/TR/owl2-overview/ (accessed on 10 December 2021)) and Description Logic (DL) to
build their data conflation framework. Ontologies were used to represent spatial datasets
and relevant geometries and topologies. DL was used to implement policy rules, which
were either mined from the data and/or supporting documents or curated from experts in

https://www.w3.org/TR/owl2-overview/
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the area. A reasoning mechanism was applied after filtering the POIs based on location
proxy and address similarity. The reasoning stage is the core of this framework and relied
on many sources to build the rules and their order of execution. Although it would
provide automatic data conflation, it heavily depended on different types of knowledge as
follows. The data provenance and its pre-processing provided an idea about its authenticity.
The business rules captured user’s requirements in terms of database design. Statistical
methods were applied to make decisions about the spatial similarity of POIs based solely on
their coordinates. Contextual validation rules made use of geospatial information sources
(satellite imagery, street views, etc.) to validate POIs information. Preference probability
provided an idea about how likely it is that produced results will meet users’ requirements.
All these rules’ categories were run independently by using relevant triples and generating
new ones. This framework is promising as described, however, it was not tested on any
medium-to-large scale datasets. In addition, one of the rule types relied on the availability
of coordinates information to perform certain filtering.

Nahari et al. [18] proposed a similarity measure for spatial entity resolution based
on data granularity model. The granulation was based on administrative divisions or
characteristics of natural geography. Their similarity measure and blocking methods relied
on administrative division relationships and the hierarchical nature of the granularity
model. Our approach, on the other hand, is completely independent from such struc-
tures and can be applied on any dataset, as long as it contains the necessary components
(i.e., coordinates).

PlacERN [19] used a neural approach to compute the similarity between a pair of
geographical entities, which included the same four components covered in this paper.
They used discretization [20] of the distance between a pair or coordinates as geographical
location embedding. To encode the address and label, they used separate word and
character embeddings. To encode the categories, they simply used the category embeddings
with the sum of words’ embeddings forming the category’s name. All encoded embedding
of all components are finally combined using a so-called affinity generator followed by a
multilayer perceptron, which output the similarity score. While this approach presents
interesting solutions in terms of combining the different components together into a single
similarity measure, it requires plenty of annotated pairs of matching and non-matching
entities for training the model. This is a strong limitation in many settings, including ours.
On the other hand, our approach is able to generate alignments with little or no supervision.
In addition, their label and address measures did not take into account the local relevance of
tokens, since the network only took the pairwise distance between entities as geographical
input. Moreover, the use of category name embeddings alone for type similarity cannot
adequately handle highly heterogeneous type hierarchies, especially in cases where two
hierarchies have very different level of granularity requiring many 1-N mappings.

Sehgal et al. [21] proposed a method to resolve geographical entities, which used
label, coordinate and type (but no address) features. These attributes were put together
into a combined similarity measure. The approach for each component is rather simple,
with the use of: (1) Jaccard and Jaro–Winklers similarities for label, (2) inverse distance for
coordinate, and (3) statistics about the co-occurrence of type pairs in a training data for
type. The scores were combined with a classifier (Logistic Regressor, Voted Perceptron, and
SVM) that output a binary value indicating whether the entities match or not. One of the
limitations of this approach is that it requires the existence of training data, which in many
cases are not available and can be very expensive to construct.

More recently, ref. [6] proposed an approach that relies on the same attribute compo-
nents, but additionally supported a measure for the address component. Overall, the label
component made use of a normalized Levenshtein edit distance. The coordinate component
was similar to that of Sehgal et al. [21] but used the inverse of the distance, which was
plugged into an exponential function to ensure it falls into the range between 0 and 1. The
type component relied on an integration of the two type hierarchies; a similarity measure
was devised based on the hierarchy levels of matching nodes. The address component
represented the cosine similarity between the TF-IDF vectors of each address.



ISPRS Int. J. Geo-Inf. 2022, 11, 96 5 of 24

Another recent work [22] also relied on the same four attribute components as [6].
The label, coordinate, and address components’ similarity measures are similar but there
are a few differences. The label component used semantic role labeling (SRL) to filter
out irrelevant tokens before computing the label similarity. Like in [6], the coordinate
component also had special measures for line and area objects. The type component also
relied on a mapping between the two type hierarchies but the scores were based on the min-
imum number of steps traversing both hierarchies to finds a mapping. The more required
steps there were, the lower the similarity was. Another important difference is that [22]
used multiple determination constraints: these were rules in which the conditions are the
conjunction of requirements. These requirements refer to the satisfaction of minimum
thresholds for each of the attribute components.

The main similarity between the above discussed approaches and our work in this
paper is the usage of the same four attribute components. However, none of the previous
works addressed the problem of scaling up the alignment process to a global scale. Neither
did they consider complex type hierarchies, with all approaches relying on preexisting
manually crafted mappings. In our approach, we have a more sophisticated label similarity
measure, which can detect similar labels across different languages, and makes use of local
relevance context of tokens. To refine further the previously computed alignment scores,
our approach also uses a set of post-processing rules at the last step of the alignment. The
post-processing segment follows the same idea of previously mentioned attribute-based
matching approaches ([6,22]), but is different in the considered measures, their decision
conditions, and the final combinations.

To sum up, all these aspects were not considered by the previous works discussed
above. Moreover, we address the problem of matching incomplete entities (missing address
or coordinate data) and use type statistics to tailor coordinate scores to the size of entities.

3. Problem Statement

The research problem we seek to address in this paper is introduced in this section. Let
E1 and E2 be two geographical entities datasets. E1 and E2 are assumed to be large-scale:
each of them has at least tens of millions of entities. Each geographical entity ei ∈ E1 and
ej ∈ E2 is characterized by the following attributes. First, the label attributes li and lj of
entities ei and ej, respectively, are made of a name and/or a set of aliases. These can be
in any language. Second, the type attributes ti and tj of entities ei and ej, respectively,
represent the classification name and level to which respective entities ei and ej belongs to
in E1 and E2 respective type hierarchies. E1 and E2 types hierarchy are noted T1 and T2,
respectively. Third, the address attributes ai and aj contain the full address information of
entities ei and ej, respectively, as a single textual document. However, most of E1 and E2
entities have additional information about their coordinates. The coordinates’ set attributes
ci and cj of entities ei and ej, respectively, are made of a latitude and longitude. They may
optionally include bounding box information.

We assume that E1 and E2 are heterogeneous. This means that for any ei ∈ E1 and
ej ∈ E2:

• li and lj may have different structures (i.e., the labels may be written in different
ways, potentially containing more general parts, and the parts may be ordered differ-
ently). li and lj may also be available in different languages (sometimes, there are no
overlapping languages).

• T1 and T2 may have different degrees of granularity, hierarchical structures and
types’ names.

• ai and aj may have different formats and come with different levels of incompleteness.
Additionally, they may contain more/less relevant information.

• ci and cj may be some distance away from each other, and one of them might also
not be available. Few of the entities that have ci/cj available include bounding
box information.
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To sum up our research problem, given two entities ei ∈ E1 and ej ∈ E2, we intend
to ascertain whether they represent the same real-world geographical entity: ei ≡ ej. To
address this problem, we derive individual similarity scores that employ the available
information per attribute. Then we combine the obtained scores into a weighted alignment
score, which is compared to a threshold to decide if ei and ej match. Section 4 provides the
detailed methods/mechanisms in deriving individual components scores, while Section 5
aggregates all these components into the unified system GLEAN, applied in the scenario of
offline alignment.

4. Components of GLEAN

In this section, we describe in detail the components of GLEAN. We first present the
local context token relevance measure in Section 4.1. This is because we use this measure
in both labels and address components’ similarities’ computation. We then describe the
overall POI similarity score and its composing scores in Section 4.2. In Section 4.3, we
discuss the post-processing rules used for refining edge pairs’ scores.

4.1. Local Context Token Relevance

In our alignment approach, the local context relevance is very important when comput-
ing label similarities as the same tokens might have different levels of relevance on different
geographical contexts. A geographical context is defined by a given geographical area and
includes the entities contained in the area. This is done by considering the concatenation of
a considered entity textual attributes (e.g., label/aliases or addresses) as a single document
d ∈ D, where D is the set of documents (entities) contained in a geographical context.

We then define the local relevance of a token as its inverse document frequency (IDF)
in the local context as defined in Equation (1).

IDF(t, D) = log

(
|D|

|d ∈ D : t ∈ d|

)
(1)

These local relevance values can then be used to compute the similarities between
text attributes. In our approach, we adopt two local relevance measures: (1) the local
IDF-weighted Jaccard (LIDFJ) similarity (c.f. Equation (2)) and (2) the IDF-weighted
word embedding average (c.f. Equation (3)). A and B represent two sets of preprocessed
tokens from a given text attribute (e.g., label, address) belonging to the two compared
entities, respectively.

JD(A, B) =

(
∑t∈A∩B IDF(t, D)

∑t∈A∪B IDF(t, D)

)ψ

(2)

ED(A, B) =
∑t∈A e(t)IDF(t, D)

∑t∈A IDF(t, D)
× ∑t∈B e(t)IDF(t, D)

∑t∈B IDF(t, D)
(3)

As noted in Equation (2), we add a constant ψ that adjusts the final score in the
LIDFJ measure. In practice, the raw LIDFJ score distribution is typically lower than that
of embedding approaches, so it might be necessary to use some 0 < ψ < 1 to increase
the scores.

Figure 1 illustrates how the same “Synagogue” token can have different relevance
depending on its geographical context. In areas having roughly the same size, Edinburgh
(right image) has much fewer entities with the token “Synagogue” when compared with
West Jerusalem. This means that this token when present in the textual attribute(s), is
more relevant for entities located in Edinburgh than for the ones located in West Jerusalem.
Hence, this lower frequency means higher LIDF and higher relevance. In other words, if
two entities in Edinburgh share the token “Synagogue”, it is much more likely that they are
an actual match than if the same happens in West Jerusalem.
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Figure 1. Frequency of “Synagogue” on the geographical contexts of West Jerusalem (left) and
Edinburgh (right).

4.2. Alignment Scores

The alignment score φ of a pair of entities ei ∈ E1 and ej ∈ E2, is composed of four
components: label (λ), type (θ), address (α) and geographical distance (γ). The final score is
computed as a weighted sum of each of the components’ similarity scores. For a given pair
of entities ei and ej, its final score is defined in Equation (4).

φ(ei, ej) = wλλ(ei, ej) + wθθ(ei, ej) + wαα(ei, ej) + wγγ(ei, ej) + b (4)

The weights wλ, wθ , wα, wγ and bias b can be learned with linear regression if enough
labeled data are provided. Alternatively, other more sophisticated regression methods
could also be used. In our problem setting, labeled data are not available and more complex
machine learning approaches are not feasible. Therefore, in this paper, we do not address
the problem of optimally combining the components scores, and instead focus on the
component similarity measures themselves. These component similarity scoring functions
λ, θ, α and γ are presented in Sections 4.2.1–4.2.4.

4.2.1. Label Component

The label component relies on two different parts that complement each other. One
is the multilingual sentence encoder, which is able to perform cross-lingual matching. As
a sequence model, it can account for semantical differences originating from different
sequences. The other part is the local IDF-Jaccard similarity which can make use of the
relevance of tokens in a specific geographical context.

The final score returned for the label component is the maximum of its two sub-
components. The details of how both scores are computed are described in Sections 4.2.1.3
and 4.2.1.4. Before computing these scores, we first perform label preprocessing and label
parts ordering in Sections 4.2.1.1 and 4.2.1.2, respectively.

4.2.1.1. Label Preprocessing

All labels and aliases go through standard preprocessing techniques, which include
lowering characters and removing punctuation. Lowering the characters is important
because different data sources might use different casing for some words. However,
sentence encoders such as MUSE are case sensitive and the similarity scores between pairs
of case-lowered sentences can be less nuanced, as sometimes words in different cases might
have different semantics. Therefore, for some pairs of labels (e.g., the main labels and the
main English labels, in case it is not the main language), we choose to additionally compute
the similarity between the labels with original casing.

We also have a maximum number of aliases to be considered (η), in order to ensure the
computation of label similarity scores does not take too long. Moreover, in order to avoid
the quadratic complexity when computing the similarity, we do not compute the similarity
between all pairs of aliases from two entities. Instead, we have a main label (generally in
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the local language) for each entity, and we only compute the similarity of aliases with the
other entity’s main label. Exceptionally, we additionally compute inter-alias similarities
for English labels (if English is not the original language). It is worth mentioning that in
our case, the main labels are already defined in HuaweiPD, and on Wikipedia the first
rdfs:label of an entity in the country’s native language (or one of its native languages) is
used as main label.

Additionally, some labels contain not only the name of the entity but also extra
information about its localization. This information is often added after a comma (“,”), a
dash (i.e., “-”) or between parentheses at the end of the label. This can make it very difficult
to measure the similarity between the labels shown below.

“Ross Fountain, West Princes Street Gardens, Edinburgh”→ “Ross Fountain”
“Ross Fountain (Edinburgh)”→ “Ross Fountain”

To account for this trade-off when preprocessing the labels, we keep the original label
but also add a stripped-down string, where we remove the more general parts identified
by the special characters described earlier. The label preprocessing step is integrated in
GLEAN as the function tokenset when the inputs are labels, and as the function tokenize
when they are addresses. When compared to tokenset, tokenize may include address specific
preprocessing, such as the handling of abbreviations. For an entity label li, tokenset function
outputs the set of composing tokens.

One of the problems in this approach is that it assumes that the more specific parts
of the label come before the more general. This is not always true, and we need a way to
identify those cases and reorder the label parts to ensure that they are always consistent.
This is what we explain in the following paragraph (i.e., Section 4.2.1.2).

4.2.1.2. Label Parts Ordering

Ordering the parts of the label consistently is very important to ensure we are not
erroneously computing the similarity for the more general parts of the label. We define
the parts of a label as the substrings that can be obtained by splitting the label by “,” or
“-” (including space before and after the “-” to avoid splitting hyphenated words). In the
example below, the label parts are ordered from less to more specific. If we apply the
strip down method described previously, we end up wrongly converting it to “Edinburgh”
instead of “George Buchanan’s Monument”. That is why the example below needs to be
rearranged into a standard representation, which in our case is from most to least specific.

Original label : “Edinburgh, Candlemaker Row, Greyfriars Church, George
Buchanan’s Monument”
Reordered label: “George Buchanan’s Monument, Greyfriars Church, Candlemaker
Row, Edinburgh”

One way of identifying how specific different parts of the label are is by checking
them against the entity’s address. The more general parts are more likely to appear in
the address than the more specific part. For our previous example, the address “26A Can-
dlemaker Row, Edinburgh EH1 2QQ, United Kingdom” suggests that “Edinburgh” and
“Candlemaker Row” are the more general parts. Since these are at the beginning of the label,
we can invert the ordering to ensure the required consistency. This is performed as the first
step of the label reordering. If no label parts are contained in the address or there is more
than one part not contained in the address, then statistical label reordering is applied.

Statistical label reordering extracts the frequencies of label parts in a given geographical
context, such as partition, and uses those frequencies to advise on the part’s specificity.
Less frequent parts are more likely to be more specific. In our example, we can find other
POIs with labels containing “Greyfriars Church”, such as the examples below, but no
other POIs with “George Buchanan’s Monument”.

“Edinburgh, Candlemaker Row, Greyfriars Church”
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“Edinburgh, Candlemaker Row, Greyfriars Church, Covenanters’ Prison”
“Edinburgh, Candlemaker Row, Greyfriars Church, Lodge Furthermore, Gate

Piers”

Each part of the label is then assigned a local inverse part frequency (LIPF) value. This
idea is somewhat similar to that of local relevance of tokens discussed in Section 4.1, where
a geographical area is defined. However, in this case, the frequencies are computed for
entire label parts instead of individual tokens.

If a label starts with more specific parts, it is expected that the LIPF of the parts is
in decreasing order. This means if a label happens to have increasing LIPF values for its
parts, then it is likely to be in the reverse order. A minimum LIPF increase rate threshold is
used in order to ensure that the increase in LIPF is significant and did not occur by chance.
The label is reversed only if the label parts have monotonically increasing LIPF values
which satisfy the increase rate threshold. A higher LIPF increase rate threshold is more
conservative and can reduce the number of labels wrongly reordered, but it also increases
the number of reversed labels that are missed.

4.2.1.3. Multilingual Sentence Encoders

Aligning geographical entities on a global scale poses challenges not only because of
the potentially large size of datasets but also because of the various languages being used.
Many countries have multiple official languages and different datasets may not always
contain labels in the same language. Using similarity measures that can identify similarities
across different languages is therefore important. That is why our system leverages the
power of pre-trained multilingual sentence encoders.

In our system, we use the Google’s Universal Sentence Encoder as it is highly scalable
and performs very well on the text similarity task. It has multilingual version (MUSE) [23,24],
which currently supports 16 languages (https://tfhub.dev/google/universal-sentence-
encoder-multilingual/3 (accessed on 6 October 2021)). This is not nearly as many languages
as we have in our datasets (c.f. Table 1), but it covers some of the most common languages.
We also tried to use LaBSE [25], which supports a lot more languages (109 (https://tfhub.
dev/google/LaBSE/1 (accessed on 6 October 2021))). However, it is substantially slower than
MUSE and does not perform as well on the Semantic Textual Similarity benchmark [25]
(having around 10% lower Pearson’s ρ on the task).

Table 1. Dataset statistics.

Dataset HuaweiPD Wikidata

Entities 105.5 M 8.1 M
Coordinates 105.5 M 7.7 M

BoundingBoxes 1.1 M 8.8 K
Labels/Aliases 114.6 M 37.1 M

Languages 237 441
Types 744 2.4 M

SubClassOf 731 2.9 M

We preprocess each of the labels/aliases of each entity from the two data sources to be
aligned and use MUSE to encode their sentence embeddings generating two embedding
matrices. The pairwise entity similarities between entities of the two datasets are computed
by performing a matrix multiplication between the two embedding matrices. This is much
less expensive to compute than other parts of the alignment score and is used together with
type embedding similarity to early filter the number of candidates. This is discussed in
Section 5.

https://tfhub.dev/google/universal-sentence-encoder-multilingual/3
https://tfhub.dev/google/universal-sentence-encoder-multilingual/3
https://tfhub.dev/google/LaBSE/1
https://tfhub.dev/google/LaBSE/1
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We define the label sentence embeddings similarity λemb(ei, ej) between entities ei
and ej and the denote the MUSE sentence embedding of the entity ei label li as eMUSE(li)
(c.f. Equation (5)).

λemb(ei, ej) = eMUSE(li) · eMUSE(lj) (5)

4.2.1.4. Local IDF Weighted Similarity

Although the use of pre-trained models allows us to benefit from the large corpus and
computing resources used to train them, they lack awareness of the local relevance of words.
It is very important to take the local relevance of a given word in the geographical context.
This local relevance might vary dramatically. For instance, the word “Edinburgh” might be
very relevant in the context of London when matching “The Duke of Edinburgh Pub” as
it is a rare word, while in the context of the city of Edinburgh, the token “Edinburgh” will
appear very often and should have low relevance when matching “Scottish National
Gallery Edinburgh”.

For instance, if we compute the LIDFJ similarity between “National Gallery” and
“Scottish National Gallery Edinburgh” in the context of central Edinburgh, the simi-
larity is high (0.917) as “Scottish” and “Edinburgh” have low local relevance. However,
if we use sentence encoders, which are trained on a broad general context, the similarity
would be very low (on MUSE it is 0.539).

Therefore, in our approach, we use LIDFJ to complement the sentence embeddings
similarity by also adopting a similarity measure based on the local context relevance
approach described in Section 4.1. The final label score λ(ei, ej) is obtained by considering
the sentence embedding score (λemb) and the LIDFJ score (λLIDFJ). In this work, we chose
to simply use the maximum between the two as shown in Equation (6):

λ(ei, ej) = max(λemb(ei, ej), λLIDFJ(ei, ej)), (6)

where the label LIDFJ score component is defined in Equation (7):

λLIDFJ(ei, ej) = JD(tokenset(li), tokenset(lj)). (7)

We recall that the tokenset function preprocesses the labels as described in Section 4.2.1.1
and outputs the set of its composing tokens.

4.2.2. Type Component

For a pair of entities ei and ej, the type component score θ(ei, ej) is calculated by
combining a type embedding score θemb(ei, ej) and a type demotion component θtd(ei, ej)
as defined in Equation (8). The type component score θ is the type component score θemb
minus the type demotion score θtd.

θ(ei, ej) = θemb(ei, ej)− θtd(ei, ej) (8)

θemb(ei, ej) is learned without supervision and is able to compute nuanced similarity
scores. While θtd is used to mitigate the shortcoming from the embedding measure with
the creation of high level disjointness pairs. These two similarity scores are discussed in
Sections 4.2.2.1 and 4.2.2.2, respectively.

4.2.2.1. Type Embeddings

Creating maps for two highly different and potentially complex and noisy type hierar-
chies can be a very challenging task. In many cases, such as in the datasets described in
Table 1, finding alignments manually can be unfeasible as there are numerous classes and
types from one source that can be mapped to multiple other types in different parts of the
other source’s hierarchy. Moreover, in a lot of cases, the different mappings may not have
the same level of confidence, and generating them manually is extremely difficult.
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Therefore, in our approach, we propose an unsupervised method for learning type
embeddings. The advantages of representing types as embeddings are numerous. Firstly,
computing the similarities between types can be easily done with dot product, and when
comparing M1 ×M2 types from different sources the similarity between every possible
pair of types can be easily computed with matrix multiplication. Additionally, embeddings
can represent different confidence levels in the mappings as similarities are encoded as
proximity between the representations of types in the embedding space. This also allows
the computation of similarity between unseen pairs of types.

To learn the embeddings, we need training data. Generating high-quality data would
probably require some human supervision, and this can be very costly. In our approach,
we propose the usage of high confidence alignment pairs from a previous alignment run,
in which the type component is switched off. The type pairs from those high confidence
alignments are then used as positive examples and negative examples are generated by
corrupting the positives.

We define the set of positive examples as D+ and negative ones as D−. The training
data are then defined as D = {(1, (t1, t2))|t1, t2 ∈ D+} ∪ {(0, (t1, t2))|t1, t2 ∈ D−}, where
the positives have a label y = 1 and negatives y = 0.

The type embedding model is equivalent to DistMult [26] without relation embeddings.
The type embedding score θemb (c.f. Equation (9)) is the dot product of the type embeddings’
vectors e(ti) and e(tj), where ti and tj are the types of entities ei and ej, respectively.

θemb(ei, ej) = e(ti) · e(tj) (9)

The model is trained to maximize the score for positive examples and minimize it for
negative ones. This is done by minimizing the loss function L (c.f. Equation (10)) which
uses binary cross-entropy. As constraint, the embeddings vectors are L2-normalized, i.e.,
|e(t)|2 = 1, ∀t ∈ T1 ∪ T2.

L(D) = ∑
y,(t1,t2)inD

y log(s(t1, t2)) + (1− y) log(1− s(t1, t2)) (10)

This unsupervised method for generating training data can easily create a large number
of positive examples with relatively high quality. There can be false positives, as in most
datasets there can be entities of different types that should not be aligned, but because they
are located very near to each other and have similar labels and addresses, they end up
falling onto the high confidence alignments.

Examples of such cases are Bus Stop and Street, City and Railway Station. Bus
stops are often named after streets and have a very similar location with the only thing
hinting they should not match being the types. Given that the training data generation
process ignores types and this kind of false positive is recurrent, the type embedding model
will end up learning to assign high similarity between them.

To address this problem, we include a type demotion mechanism, which aims at
reducing the type score for those cases.

4.2.2.2. Type Demotion

The type demotion relies on a list of disjointness pairs, containing types from the
two sources’ hierarchies and subsumption reasoning over the hierarchies. The reasoning
allows the use of disjointness between pairs of high-level types, from which the pairwise
disjointness of all their ancestors can be deduced. This simplifies the process of creation
of high-level demotion pairs Pdem and makes them more understandable and easier to
manage. With them, we can derive P+

dem containing Pdem plus all of the disjointness axioms
inferred based on the hierarchies.

One problem with this kind of approach is that it cannot be used on erroneous hi-
erarchies. This can be an issue when aligning datasets with wrong subClassOf axioms,
such as Wikidata. The example from Figure 2 illustrates the issues that this may cause.
The Park v ArchitecturalStructure axiom is wrong and will lead to wrong inferences
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if a disjointness ArchitecturalStructure ∩ AdministrativeRegion = ∅ pair is added. In
that case, the descendants of both classes will also be disjointed, which would include the
incorrect axioms Park ∩ NationalPark = ∅ and NationalPark ∩ NationalPark = ∅.

To account for such a problem, and still allow the simplification provided by the use of
reasoning, we include the possibility of adding high-level promotion pairs Ppro (from which
the inferred set of pairs P+

pro can be derived) that undo the demotions. In addition to that,
we also use sentence encoders to compute type label similarity and undo the demotion of
pairs with similarity above a given threshold tλ.

Whenever an entity pair with types ti, tj contains any inferred types disjointness pairs
and does not contain any inferred types promotion pairs (i.e., (ti, tj) ∈ P+

dem − P+
pro) then its

type similarity score is reduced by ρ. The type demotion function θtd(ei, ej) is defined in
Equation (11).

θtd(ei, ej) =

{
ρ if (ti, tj) ∈ P+

dem − P+
pro

0, otherwise.
(11)

Figure 2. Example of erroneous subClassOf axiom in a hierarchy resulting in wrong reasoning.

4.2.3. Address Component

One of the main challenges when matching addresses is the various different formats
they might come in. Moreover, some addresses may be more complete than others, with
some lacking parts such as province and postcode, as in the examples below.

“2 Semple St., EH3 8BL, Edinburgh, Midlothian, Scotland, UK”
“2 Semple Street, EH3 8BL Edinburgh, United Kingdom”
In our approach, we use local IDF-weighted Jaccard (LIDFJ) similarity to match

addresses. The advantage of LIDFJ is that it can take into account the relevance of dif-
ferent parts of the address. For example, it allows the alignment system to identify that
“Midlothian”, “Scotland”, “UK”, “United Kingdom”, “Street” and “St” are not very rele-
vant tokens in the local context as they occur very often. The postcode and street name,
on the other hand, are much more important. Consequently, as long as these less frequent
parts match, the similarity score will remain high. The address component score α(ei, ej) is
defined in Equation (12), such that ai and aj are the address of entities ei and ej, respectively.
α(ei, ej) is similar to λLIDFJ but it uses a different function for obtaining the tokens set. In
particular, the tokenize function may include address specific preprocessing, such as the
handling of abbreviations, compared to the function tokenset.

α(ei, ej) = JD(tokenize(ai), tokenize(aj)) (12)

The limitation of this approach is that it relies on entities having coordinates so that
the alignment system can identify that they belong to the same geographical context. If
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the entities are not known to be in the same geographical context, this approach cannot
be used.

4.2.4. Geographical Distance Component

The goal of the geographical distance component is to transform the real-world dis-
tance between entities into a similarity measure γ ∈ [0, 1]. The γ score should reflect how
relatively close a pair of entities is, given their type. For instance, airports with a distance of
1km should have a high score, while restaurants 1 km away from each other should have
a low score. In a geographical alignment system that includes all kinds of geographical
entities (from bus stops to countries), the acceptable distance between matching entities
can vary from only a few meters to hundreds of kilometres.

This means that we cannot treat equally all entities with different geographical sizes
and that we need to adapt the distance score according to entities’ characteristics. Bounding
boxes provide exactly the kind of information we need. The larger the entity (hence its
bounding box), the larger the distance tolerance should be. The problem, as described in
Section 5, is that many entities lack bounding box information. Therefore, we again rely on
bounding box size statistics to guess the size of an entity based on its type. The distance
score γ is then computed as described in Equation (13), where d(ci, cj) is the geodesic
distance between the coordinates ci and cj of entities ei and ej, respectively. ∆bbox

i is the size
of the bounding box diagonal from ei. The parameter m is the maximum distance for which
γ can have a non-zero value. The p parameter defines how strict the γ measure should be:
a larger p results on a faster convergence of γ to zero. In our experiments, we use m = 100
and p = 25.

γ(ei, ej) =

(
1−

d(ci, cj)

m∆bbox
i

)p

(13)

4.3. Postprocessing Rules

A set of refinement rules might be used at the final stage of the alignment in order
to improve the overall performance of the alignments. This is to address edge cases that
can be difficult to resolve and is performed by adjusting the alignment scores. The idea
is to create rules with a set of logical conditions that can demote the score of edge false
positives and promote the score of false negatives. This is performed by applying a set of
checks on the three attributes (i.e., label, type and distance) of a pair. The post-processing
step is performed after receiving the combined alignments scores from the Fallback and
Partition-based components and decides whether an alignment score is demoted, promoted,
or retained as it is.

If labelled misclassified edge cases are available, a classifier can be trained on features
such as attribute scores or custom measures. However, in our case, such data was not avail-
able and we decided to use manually crafted rules conditions to independently evaluate
label, type, and geographical distance attributes. The rules can reuse the component scores
and attribute specific thresholds or create custom measures to capture aspects not covered
by the alignment scores.

The label condition checks whether the token-based Jaccard similarity of the two
entities satisfies a given minimum threshold. The type condition checks whether the
hierarchy deepest level in which the types from the two entities pair satisfies its minimum
depth threshold. The geographical distance condition checks whether the geodesic distance
between them satisfies a minimum distance threshold.

In case none of these conditions are met, the alignment score is demoted by subtracting
a given value. On the contrary, if all conditions are met, then the score is promoted by
recomputing then replacing the pair alignment score. The three attributes’ thresholds, as
well as demotion value, are tweaked in order to best complement potential weaknesses of
the alignment score measure and maximize performance improvement.

Practically, we test values that are more likely to increase the overall performance
of GLEAN on our gold standard. The labels’ threshold is tweaked in the range of 0.5 to
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1 by a step of 0.1. The distance threshold is selected within this set {0.1, 0.2, 0.5, 1.0, 2.0},
which are measured in km. The type attribute matching is Boolean and considers a type
matching only if types match at the deepest or second deepest level of the shallowest type
hierarchy between the sources. The type matching scores are however different: 1. for
deepest level matching and 2/3 for second deepest level matching. The type demotion
value is chosen in the set {0.001, 0.005, 0.01, 0.02, 0.05, 0.1}. We test all possible combinations
of these thresholds and choose the combination that provides the best trade-off in terms of
precision and recall. The performance is tested on the gold standard data (Please refer to
Section 6 for more details about performance evaluation).

5. Architecture of GeographicaL Entities AligNment (GLEAN) System

The goal of GLEAN is to align two large datasets as efficiently as possible. Since
datasets may lack coordinate information, we devise two main approaches, one to handle
entities with coordinates and the other to handle entities without. We discuss both in
more detail in Sections 5.1 and 5.2, respectively. The general architecture of GLEAN offline
workflow is shown in Figure 3.

Figure 3. Architecture of GLEAN in offline matching scenario.

5.1. Partition-Based Matching

The partition-based matching approach uses entities’ coordinates to batch them into
geographical partitions which contain up to a maximum number of entities. The idea is that
the entities to be matched should be located in the same partition. In addition, matching
entities from the two sources against each other by batches on separate partitions is a lot
more efficient than matching the entire set of entities at once.
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The partitioning can be achieved by using any state-of-the-art spatial partitioning
method. In our case, we use quadtrees’ structure. Let P1 and P2 be the sets of entities
from E1 and E2 contained in the partition, respectively: P1 ⊂ E1 and P2 ⊂ E2. We limit
the number of entities in each partition to NW , such as |P1| × |P2| <= NW . Partitions are
recursively split until all partitions satisfy this condition.

We modify the classical quadtree partitioning method to include an adaptable margin
m to ensure that pairs of matching entities are not located in different partitions. There
is a trade-off when selecting the margin m as small margins might result in more missed
matching pairs, but a larger m creates a large overlap between partitions slowing down
the alignment process. The existence of large entities (e.g., countries, cities) where the
coordinate position might vary a lot requires large m (reaching tens or hundreds of kilome-
tres). Such large margins are unfeasible, especially in dense areas (e.g., Manhattan) as there
can be too many entities in such a large margin. Because of this, our partitioning method
allows larger margins on sparser regions, while progressively reducing it by a rate Rm < 1
on denser regions, in order to ensure the threshold on the maximum number of entities
can be met. Margin reduction is triggered when the maximum number of entities require-
ment NW cannot be met and the ratio between margin and partition diagonal exceeds a
certain threshold.

Another way of minimizing the issue discussed above is to perform a separate par-
titioning for large entities that require larger margins. Since these entities are also rarer
(generally there are much fewer administrative regions than POIs), it is easier to ensure
|P1| × |P2| ≤ NW if we restrict the entities to administrative regions only.

Once the partitioning is done, the matching for each partition is performed separately.
Since there can be overlaps between them, we need an extra step at the end to merge the
results from different partitions into a single consistent alignment output. The selection of
candidates for the matching process in each partition is performed as shown in Figure 4.
Any entities with point coordinates located in or bounding box intersecting the partition
area (including margin) are selected.

m
ar
gi
n

bbox

bbox

bbox

bbox

bbox

Figure 4. Example of a selection of candidate entities for partition-based matching.

Once the sets of candidate entities from P1 and P2 are selected, the matching between
the entities of the two sources starts, following the process depicted in Figure 5. The idea
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is to perform a pre-filtering of the candidate entities. First, the type embedding and label
embedding similarities are computed as they are relatively inexpensive. These scores
are then used to filter out low scoring pairs and keep only the top-k candidate entities
of P2 for each entity of P1. Subsequently, the remaining parts of the other component
scores can be computed for the |P1| × k candidate entity pairs. This ensures that more
expensive computations, such as LIDFJ, are only performed |P1| × k instead of |P1| × |P2|.
This substantially speeds up the scoring process as typically |P2| � k.

Once the final score is computed, the top-k P2 candidates for each P1 entity are reranked
and pairs with final alignment score φ > tφ are returned; where tφ is an alignment threshold.

𝑳𝑬𝟏: Source1 label 
embeddings

𝑳𝑬𝟐: Source2 label 
embeddings

𝑻𝑬𝟏: Source1 type 
embeddings

𝑻𝑬𝟐: Source2 type 
embeddings

Sort rows DESC and take top-k (k=3)

Compute similarity scores and rerank top-k (for all 
components and reuse embedding results)

Top-3 similarity scores Top-3  Source2 IDs

Top-3 final scores Reranked Top-3 Source2 IDs

4 entities of Source1 9 entities of Source2

Retrieve label and type  embeddings

𝑻𝑬𝟏𝑻𝑬𝟐
𝑻: Pairwise type similarities𝑳𝑬𝟏𝑳𝑬𝟐

𝑻: Pairwise label similarities

𝒘𝝀𝑳𝑬𝟏𝑳𝑬𝟐
𝑻+𝒘𝜽 𝑻𝑬𝟏𝑻𝑬𝟐

𝑻

Similarity scores

𝑳𝑬𝟏: Source1 label 
embeddings

Figure 5. Scoring process with use of label and type embeddings for early pruning of alignment
candidates.
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5.2. Fallback Matching

The partition-based matching only addresses the alignment of entities that contain
geographical coordinates. The fallback matching approach takes care of those entities with-
out any kind of coordinates’ information. This approach mainly relies on label and address
information in order to retrieve the candidates and ignores the coordinate components
when computing the final score (wγ = 0).

The candidates’ retrieval consists of a progressively restrictive fuzzy retrieval on
both address and label fields. The search terms for label and address attributes consist
of the union of all available labels and aliases and the union of all different addresses,
respectively. The strictness of the matching is defined by the minimum percentage of search
tokens that need to be matched by a geographical entity. It is important to start with strict
matching requirements to ensure the number of candidates remains small. If no candidates
are returned, the fuzzy matching requirements are progressively loosened until enough
candidates are returned.

5.3. Discussion of the Online Alignment Scenario

Our system could also be adapted for the online case, where there is an additional
requirement related to service latency. To satisfy low latency requirements, there are a few
steps that can be precomputed and some filters can be introduced to prune candidates early.
Coordinates of candidate entities can be required to be contained in the requested entity’s
bounding box (or its type’s average bounding box size when the entity does not have
one) plus a margin increase tolerance. LIDF weights can be precomputed for predefined
partitions and the number of candidate pairs can be restricted by using type and coordinate
constraints. Type scores between all possible pairs of types can be precomputed and a
dictionary containing lists of possibly matching types with type alignment score above a
certain threshold can store in memory and used to early filter candidate entities.

6. Experiments

In our experiments, we perform an ablation study to analyze the impact of various
alignment score components proposed in this paper. We also run experiments on the
runtime offline in our heterogeneous datasets’ alignment application.

6.1. Datasets

In our experiments, we use two datasets for an alignment process: a Huawei privately
owned dataset (i.e., HuaweiPD) and Wikidata. Their respective statistics are described
in Table 1. Both datasets are very large with the total number of entities in the order
of hundreds and dozens of millions, respectively. The hierarchies are highly different.
HuaweiPD has only 744 types organized in a tree while Wikidata has a much more complex
and fine-grained crowdsourced Directed Acyclic Graph (DAG) hierarchy with over two
million types. In this specific setting, there can be 1:N and N:M mappings between the
two hierarchies with a type in one hierarchy often being mapped to multiple types in
different parts of the other hierarchy. Originally, the Wikidata entities do not have address
information, but an address can be dynamically constructed based on the relations P281
(postcode), P131 (location) and P17 (country). However, these properties are highly
incomplete and the quality of the constructed addresses is low. Therefore, for the Wikidata-
HuaweiPD alignments, we opted to not use the address component.

Very few have bounding box information: 1.0402% in HuaweiPD and 0.1084% in
Wikidata. In both datasets, most of the entities have point coordinates: 100% of HuaweiPD
and 95.338% of Wikidata. The absence of coordinate information for almost 5% of Wikidata
entities reveals the importance of our proposed fallback strategy.

We use an annotated gold standard to retrieve performance results. We randomly
selected a set of 1942 from Wikidata and manually annotated each entity with 0 to N
possible matching HuaweiPD entities. We compute accuracy, precision, recall, and F1-score
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for each set and combine the results according to their proportion with respect to the
original dataset.

6.2. Results and Discussions
6.2.1. Ablation Study

Two of most related geographical entity alignment systems [6,22] do not publicly share
their implementations nor their datasets. Therefore a direct comparison cannot be done
with them. However, as discussed in the related work (i.e., Section 2), our approach has a
much more sophisticated label similarity measure, which can handle multilingual labels as
well as take into account the local relevance of tokens. Moreover, previous approaches rely
on manual mappings between type hierarchies, which are not available in our case and
unfeasible to create, given the size of the hierarchies (c.f. Table 1). Low et al., 2021 [14] has
the code available, but it would require the adoption of some of the features proposed in our
paper in order to run it on our datasets (which are much larger than the datasets containing
a few thousands entities used in their work). Additionally, the three related works also
do not address the main issues covered by our work, i.e., the scalability problem and the
use local relevance of tokens to improve text similarity measures, and the multilinguality
of labels. Therefore, we chose to perform an ablation study, where the impact of each
proposed feature can be individually measured by running different versions of the system
with removed features and comparing the results. Table 2 show the results of the ablation
study and description of the evaluated versions and ablated parts is shown below:

• GLEAN: complete system with no ablated parts.
• LIDFJ: the local-IDF Jaccard similarity is removed with label score relying exclusively

on multilingual sentence encoder.
• MLSE: the multilingual sentence encoder is removed with only LIDFJ being used as

label score.
• TypeComp: the entire type score component is removed (both embedding and demo-

tion components). This means the resulting alignment completely ignores the types.
• TypeDem: the type demotion is removed with type scores relying on embeddings exclusively.
• TypeGD: the type-based geographical distance score is removed with component

scores no longer being type dependent.

Table 2. Ablation experiment results.

Ablated F1-Score Precision Recall Accuracy

GLEAN 0.913 0.973 0.860 0.953
LIDFJ 0.888 0.984 0.810 0.940
MLSE 0.792 0.973 0.668 0.897

TypeComp 0.886 0.936 0.842 0.943
TypeDem 0.820 0.894 0.757 0.907
TypeGD 0.857 0.949 0.781 0.928

It is worth noting that when ablating MLSE, the score drops to the lowest. One of the
reasons for this is that LIDFJ can be quite restrictive as it requires tokens to have a perfect
match. Another important reason is that along with the type embedding similarity, it is
the only measure computed for all possible matching pairs, and removing it means that
the reranking k may not contain many of the most promising matches. In the results, we
can also see that the introduction of LIDFJ substantially improves recall. This makes the
system capable of matching entities whose labels only partially match, while only slightly
reducing precision.

We can also observe the importance of the type demotion component. The type
embeddings component on its own does not improve the results in comparison to not using
type scores at all, but in combination with type demotion, it is able to substantially improve
both precision and recall.
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The runtime for GLEAN as reported in the first row of Table 2 was around a day (23 h),
with the partition-based alignment process running for a total of 403,453 partitions and
produced a total of 3,979,183 alignments. The system was implemented in Python and was
run on a 72-core Intel Xeon Gold 6154 3.00 GHz machine with 128 GB RAM.

6.2.2. Examples of GLEAN’s Alignment

Figure 6 shows two examples for matching and non-matching pairs of POIs, as an
output of GLEAN alignment, along with their corresponding label, type, and coordinates
scores. The pairs are from Wikidata and HuaweiPD, respectively. Since Wikidata entities do
not have detailed address information, the address attribute similarity is not considered in
the alignment of the pairs. The left side example depicts a Wikidata POI and a HuaweiPD
POI that represent the same geographical entity. The final alignment score expresses the
high confidence of GLEAN regarding the similarity of “Q1427870” and “HuaweiID-X”.
The label similarity component has captured the labels similarity, even if they do not
match 100%. In particular, it is difficult to match the “Stadtbibliothek Leverkusen” and
“Stadtbibliothek” labels as the former has an extra token “Leverkusen”, which represents
the city in which this POI is located. The multilingual sentence encoder outputs 0.714 as
label similarity. The LIDFJ component, on the other hand, assigns a low weight to the token
“Leverkusen” and a higher weight to “Stadtbibliothek” leading to higher label score. In
addition, the POI “HuaweiID-X” is a “library” but HuaweiPD type taxonomy specifies
its types as Business, Company, Business Services. Although HuaweiPD type taxonomy
is confusing, the type embedding similarity is high 0.9862. This means that GLEAN is
able to detect type matching despite the type labels being very different, thanks to the
unsupervised type embedding approach.

Q1427870

Labels:
Stadtbibliothek Leverkusen

Types: 
municipal library (Q2326815) 

Coordinates: 
6.98848, 51.0331

HuaweiID-X

Labels: 
Stadtbibliothek

Types: 
Business, Company, Business Services

Coordinates: 
6.9885, 51.033

0.9556

0.9862

0.9999

Final Alignment score: 0.9679 > Threshold (i.e. 0.9399)

Combined Alignment score: 0.9679 > Threshold (i.e. 0.9399)

-0.0Type demotion = 0

Q1000037

Labels:
Castelo de Vide

Types: 
municipality of Portugal (Q13217644)

town of Portugal (Q19833170) 

Coordinates: 
-7.45, 39.416667

HuaweiID-Y

Labels: 
Castelo de Vide

Types: 
Transport, Railway Station, Suburban Or 

Urban

Coordinates: 
-7.4895602, 39.4226703

0.9999

0.6038

0.9983

Final Alignment score: 0.9347 < Threshold (i.e. 0.9399)

Combined Alignment score: 0.9847 > Threshold (i.e. 0.9399)

-0.05Type demotion = 1

Figure 6. Examples of matching (left) and non-matching (right) POIs’ pairs as obtained from
running GLEAN.

The right hand side example in Figure 6 illustrates a Wikidata POI and a HuaweiPD
POI which look similar (taking into account their labels and distance), but refer to dif-
ferent real-world geographical entities. Even though GLEAN’s alignment score for this
pair is high (due to the contribution of label and distance scores), it is still lower than
the threshold. The type embedding of GLEAN allows assigning lower scores for the un-
matching types: municipality of Portugal, town of Portugal and Transport, Railway
Station, Suburban Or Urban. Moreover, the type demotion is activated and the pair
alignment score is reduced (by 0.05) to lower the overall similarity. The demotion is acti-
vated because of the high-level disjointness pair between Transport and administrative
territorial entity (Q56061) (subsumed by both municipality of Portugal, town of
Portugal). This examples illustrates the benefit of type demotion and type embedding
approach.

6.2.3. Scalability of GLEAN

In the scalability experiments, we evaluate the impact of system parameters (i.e.,
rerank k, the number of aliases η, maximum number of Wikidata entities per partition NW ,
and partition margin m) on the alignment runtime. We also measure the impact of these
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parameters on the number of alignments with similarity greater or equal to 0.950, which we
call “potentially good alignments”. The number of “potentially good alignments” is used to
estimate the number of actually good alignments, since it would be laborious to manually
annotate all the generated alignments, and it serves to show the trade-off between runtime
and coverage of the alignments.

We recall that k is the number of pre-filtered candidate entities after applying inexpen-
sive label and type embedding similarities (c.f. Figure 5). The parameter η is the maximum
number of entity label aliases considered in the alignment process. The partition margin
m (c.f. Figure 4) is the margin in meters which creates an overlap between partitions. For
these experiments, we define a new parameter NW , which refers to the maximum number
of Wikidata entities in a given partition. This directly impacts the number of partitions
generated, with larger NW resulting in fewer larger partitions.

It is not feasible to run the system with numerous parameter settings on the whole
dataset as this would take too long. Therefore, we evaluate the impact of the parameters
k, η, m, and NW on scalability for subsets of our dataset. We run the experiments on the
bounding box defined by southwest and northeast coordinates (54,−1) (58,7) for k, η and
m, which contains 6509 Wikidata and 21,451 HuaweiPD entities. For the number of entities
per partition (NW) experiment, a larger subset of the data is needed, and the bounding box
(53,−3) (59,9) containing 233,300 Wikidata and 1,471,205 HuaweiPD entities is used.

Figure 7 illustrates the impact of the four parameters k, η, m and NW on the alignment
runtime. The plots show that having high values for k and NW can be very expensive. The
rerank k plot (top-left) illustrates the importance of the scoring process shown in Figure 5
in reducing the number of candidate pairs for each of the more expensive components of
the alignment score (such as LIDFJ). This plays an important role in improving the overall
scalability of the system. Similarly, the number of entities per partition (bottom-right) is
crucial in ensuring that the overall alignments process can run in a reasonable amount of
time by capping the number of entities being matched against each other at a given time.

The number of aliases plot shows that the η constraint is also important to control
the runtime. However, its impact on runtime is not as severe as k and NW since the vast
majority of entities do not have multiple aliases (HuaweiPD averages 0.086 aliases per
entity and Wikidata 4). This allows the use of larger η values, which can be particularly
important in cases where datasets have many labels and aliases in multiple languages as
seen in Table 1.

The partition margin m plot (bottom-left) has a moderate impact on runtime as long
as it does not add much to the overall area of the partition. This can be controlled by the
margin reduction step described in Section 5.1. In this experiment, the maximum ratio
between margin and partition diagonal was set to infinity in order to ensure the selected
margin values were not reduced in the partitioning process.

Figure 8 shows the impact of the same four variables in the number of “poten-
tially good alignments” detected. It is noticeable that even for small rerank k values,
the number of alignment pairs is not much lower than for higher values. Increasing k
from 5 to 640 increases the number of pairs by around 6.9%, while the runtime is about
8 times longer.

The number of aliases plot (top-right) shows that the benefits of increasing η are
diminished for larger η values. This is because the amount of entities with a large number
of aliases is rather small, with most of them being popular tourist attractions or high level
administrative regions such as cities and countries. The partition margin plot (bottom-left)
shows the importance of adding a margin to the partition. The number of “potentially
good alignments” initially grows as margin starts to include entities located in neighbor-
ing partitions, but it starts to plateau before the margin reaches 10 km. This shows the
importance of adding a margin in order to not miss pairs of matching entities that are
located at opposing sides of partition borders, but the benefits of very large margins are
reduced as very few pairs of matching entities can be very far from each other. Changing
the margin from 100 to 3200 results is an increase of over 13% in the number of “potentially
good alignment” pairs with and increase of 38% in runtime. On the other hand, when
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changing the margin from 3200 to 12,800, the runtime increases 154% while the number of
alignments is only 3.4% larger.

101 102 103
0

500

1,000

Rerank (k)

ru
nt

im
e(

s)

100 101
0

50

100

Number of aliases (η)

ru
nt

im
e(

s)
102 103 104

0

200

400

600

800

Partition margin (m)

ru
nt

im
e(

s)

103 104 105
0

2

4

·104

Maximum number of entities per partition (NW)

ru
nt

im
e(

s)

Figure 7. Evaluation of the impact of variables rerank k (top-left), number of aliases η (top-right), the
partition margin m (bottom-left) and maximum number of entities per partition NW (bottom-right)
on the alignment runtime.
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Figure 8. Evaluation of the impact of rerank k (top-left), number of aliases η (top-right), the parti-
tion margin m (bottom-left) and maximum number of entities per partition NW (bottom-right) on
alignments quality.

The number of entities per partition plot (bottom-right) shows that increasing the
number of partitions (reducing NW) has a substantial impact in increasing the number of
“potentially good alignments” generated. This is because with more partitions, the total
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border length is increased and therefore, the number of matching pairs located in different
partitions also increases. Moreover, in dense regions, the margin needs to be reduced, which
also increases the number of missed alignments. When reducing NW from 65,536 to 512,
the number of alignments generated drops by 18%. However, the same reduction in NW
cuts the runtime to around 10% of the original runtime.

Overall, these experiments results show that GLEAN can dramatically improve scal-
ability, enabling the alignments of large datasets on a global scale. This, however, comes
at the cost of recall, with the system missing more alignment pairs as the parameters are
changed to reduce runtime. However, as previously discussed, the loss of recall is minor
when compared with runtime improvements. GLEAN still provide an attractive trade-off
between performance and scalability.

7. Conclusions

In this paper, we proposed GLEAN, a scalable approach to aligning geographical
entities (i.e., POIs) from different sources based on four attributes (label, coordinate, type,
and address). Our approach is able to handle incomplete sources and complex type
hierarchies, and to leverage local context relevance of tokens and multilingual labels. The
offline method makes use of adaptive-margin partitioning to enable the scalable alignments
of large datasets at a global scale.

Our ablation study shows the crucial role of a multilingual sentence encoder in en-
hancing the alignment quality, especially recall. The study has also shown the importance
of local-IDF Jaccard similarity (LIDFJ) in improving the recall of GLEAN. Through this
study, we also identified the benefit of type embeddings and type demotion in improving
both precision and recall.

In addition, we evaluated the scalability of GLEAN, in terms of alignment runtime. The
results show that partitioning is crucial for improving scalability and enabling alignment
at global scale, with the addition of partition margin allowing reducing the number of
missed alignments with minor impact on runtime. The use of type embedding and label
embedding similarities to early prune alignment candidates was shown to be highly
effective at reducing runtime. Our proposed system for the alignment of geographical
entities from large-scale heterogeneous sources was successfully used in practice to align
data used in production.

One potential future work direction is to apply the concept of local context token
relevance into a transformer network for encoding text (e.g., labels and addresses) in combi-
nation with coordinates from geographical entities. This will allow the token representation
to also give attention to encoded coordinates. Another interesting research direction is
unsupervised or weakly supervised learning of embedding representation of geographical
entities. The idea is to be able to learn a model capable of encoding available label, type,
address, and coordinate information, without requiring vast amounts of labeled data.
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