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Abstract 

Despite being one of the most commonly used drugs, the molecular mechanism of action of the 

anthelmintic praziquantel remains unknown.  There are some unusual features of this drug.  

Critically, widespread resistance to praziquantel has not developed despite decades of use.  Here we 

set out some challenges in praziquantel research and propose six provocative hypotheses to address 

these.  We suggest that praziquantel may have multiple pharmacologically relevant targets and the 

effects on these may synergise to produce an overall, detrimental effect on the parasite.  

Praziquantel also acts on a number of host proteins and we propose that these actions are 

important in the drug’s overall mechanism.  Although the drug is largely used in the treatment of 

human and domestic animal worm infections, there is a considerable “grey literature” along with 

some academic studies which may have been overlooked.  It appears that praziquantel may be 

effective against Hydra spp.  It may also be effective against some unicellular parasites such as 

Giardia spp.  Further scientific work on these understudied areas may be useful in understanding the 

molecular mechanism in Trematoda.  The lack of widespread resistance suggests that praziquantel 

may act, at least in part, on a protein-protein interaction.  Altered drug metabolism or enhanced 

drug efflux are the most likely ways resistance may arise.  There is a critical need to understand the 

biochemical pharmacology of this drug in order to inform the discovery of the next generation of 

anthelmintic drugs. 

 

Keywords:  Neglected tropical disease, drug mechanism, schistosomiasis, Schistosoma spp., calcium 

homeostasis, praziquantel 
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Introduction 

Praziquantel (PZQ) is one of the world’s most successful drugs and is taken by millions of people 

every year (Figure 1).  It is listed as one of the World Health Organisation’s (WHO) essential 

medicines [1].  The drug is used to treat infections with parasitic worms from the genus Schistosoma 

[2].  However, it can also be used to treat a number of other helminth infections.  It is effective 

against trematodes such as Clonorchis sinensis, Opisthorchis viverrini and Paragonimus westermani 

[3-6].  In addition, some tapeworms, notably Taenia solium, can be eliminated by PZQ [7].  The drug 

is generally considered ineffective against liver flukes from the genus Fasciola [8].  The drugs is 

cheap to manufacture and the cost of a course treatment in the developing world is generally less 

than US$1 per patient [9].  In the absence of a vaccine, PZQ has been used in mass drug 

administration programmes in order to break the cycle of infection and provide protection to 

communities [10].  In most patients, the side-effects are negligible or mild; however, some do suffer 

from abdominal pain, gastrointestinal problems, nausea, joint pains, muscle pains and headaches 

[11, 12].  Some of these may result from the death and lysis of worms within the host, rather than 

from a pharmacological effect of the drug on the patient. 

This remarkable success, however, hides a problem.  PZQ is about the only drug available for the 

treatment of schistosomiasis.  Another drug, oxamniquine (OXA), is less widely used since it is not 

effective against two of the main causes of schistosomiasis, S. japonicum and S. haematobium 

although it is effective against S. mansoni [13].  Prior to the discovery of these two drugs, a range of 

trivalent antimony compounds were used to treat the disease.  These work by targeting the 

glycolytic enzyme phosphofructokinase [14-16].  However, they have a very low therapeutic index, 

and result in severe, debilitating and long-lasting side effects [17].  Resistance has been documented 

to almost all known anti-infective drugs once they have been in clinical use for a number of years. 

The emergence of resistance is an evolutionary near-certainty.  Anti-infectives place severe selective 

pressures on the organisms they target.  Therefore, even genotypes which result in a substantial loss 
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of fitness can be tolerated if they enable the organism to survive the drug.  Poor prescribing 

practices and poor patient compliance can contribute the increased speed of emergence of 

resistance.  To date, there are no definitive reports of resistance to PZQ in a clinical setting.  

However, when it does emerge, there is a significant risk that there will be no alternative drugs 

which can treat the infection as effectively as PZQ. 

There are number of detailed, comprehensive reviews on the unknown mechanism of action of PZQ 

and its use as a therapeutic (e.g. [18-26]).  Our aim here is not to reproduce that work.  Here, we 

raise a number of questions and oddities about PZQ and suggest some hypotheses which may 

explain the observations (Table 1).  The hypotheses are intended to be provocative and we hope 

that they will stimulate further thinking, debate and experimentation.  They are not intended to 

present a comprehensive view of how PZQ works.  However, they are responses to some of the 

unusual features of the biochemical pharmacology of this fascinating and globally important drug. 

 

The mechanism of action of PZQ is unknown 

It has been known since the 1970s that PZQ disrupts calcium homeostasis in schistosomes [27].  

While there is some strong evidence that the drug interferes with the action of voltage-gated 

calcium channels, no binding site on one of these proteins has yet been identified.  Furthermore, 

extensive influx of calcium ions and subsequent effects like irreversible contraction of the muscles 

might be an indirect effect of PZQ’s actions on other targets.  To date, the only schistosome protein 

which has a well-characterised PZQ binding site is glutathione S-transferase (GST; Figure 2).  In this 

protein, the drug binds in a groove between the two subunits of this homodimeric enzyme.  

Selectivity for the parasite over mammalian GSTs is achieved through interaction with a tyrosine 

residue (Tyr104 in S. japonicum GST) which is not present in the host enzyme [28].  The biochemical 

effects of PZQ on GST are not known.  To date, no detailed study has been carried out to determine 

whether, or not, the drug acts as an inhibitor of the enzyme.  However, one report suggests that PZQ 
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treatment does not reduce the activity of GST in S. mansoni [29].  Thus, a link between this binding 

event and the pharmacological consequences of the drug has not been made. 

The cytoskeletal protein actin has also been suggested as a target for PZQ, but this hypothesis has 

been largely discounted (Figure 3a) [30, 31].  The drug has also been shown to reduce adenosine 

uptake.  This may be particularly significant since adenosine can modulate calcium channels in 

mammals, and may also do so in schistosomes [32].  A component of the molecular motor protein 

myosin, the regulatory light chain has also been shown to bind to PZQ (Figure 3b).  However, as with 

GST, any link between this biochemical activity and the fatal effects on the worm have yet to be 

established. 

Recently several members of the tegumental allergen (TAL) family of proteins have been shown to 

interact with PZQ (Figure 3c).  These proteins, which appear to be unique to helminths, combine an 

N-terminal EF-hand binding domain with a C-terminal dynein light chain-like domain [33, 34].  The S. 

mansoni proteins SmTAL1, SmTAL4, SmTAL5 and SmTAL8 all interact with PZQ, but the binding site 

has yet to be mapped [35, 36].  The physiological functions of these proteins are currently unknown.  

Of the four which bind PZQ, all except SmTAL5 also interact with calcium ions [35, 36].  It is therefore 

reasonable to speculate that they mostly play a role in calcium signalling processes and the presence 

of the dynein light chain-like domain suggests some possible involvement with cytoskeletal 

processes. 

The most straightforward mechanism of action for PZQ would be the direct antagonism of one or 

more of the worm’s calcium channels or pumps.  This antagonism would result in the uncontrolled 

influx of calcium ions into the cytoplasm of the organism’s cells.  This influx would result in a number 

of deleterious consequences:  inappropriate activation of proteases, uncontrolled muscle 

contraction and the promotion of apoptosis.  This mechanism would require the drug to interact 

directly with the target channels.  Since the drug is not known to dysregulate host calcium 

homeostasis, it would be reasonable to assume that PZQ binds to a calcium transport protein which 
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does not occur in mammals or a protein which contains at least one region of significant difference 

to the mammalian enzyme.  There is nothing in the current scientific literature to disprove this 

hypothesis conclusively.  However, there is also not much significant biochemical data to support it.  

No calcium transport component has been shown to interact with PZQ and there is no clear 

evidence of inhibition of efflux pumps or unregulated opening of influx pumps.  In light of this, we 

propose two hypotheses: 

Hypothesis 1:  PZQ does not work through direct action on a calcium transport protein. 

Hypothesis 2:  PZQ has multiple, pharmacologically relevant targets in schistosomes.  The 

biochemical effects on these targets synergise to produce the overall pharmacological outcome. 

Hypothesis 1 would be hard to address directly.  One of its corollaries is that direct, specific 

interaction with a calcium transport protein is unlikely or, if it did occur, it would not result in a 

pharmacologically relevant outcome.  However, proving absence of interaction is experimentally 

challenging.  This hypothesis would be supported by strong evidence for an alternative mechanism 

involving another molecular target.  There is already some evidence in support of Hypothesis 2.  A 

diverse range of possible targets has been proposed and a few proteins have been identified as 

interaction partners.  However, as noted above few of these have been definitively linked to a 

pharmacologically relevant outcome. 

PZQ exists as two enantiomers, the R(-) isomer which is the pharmacologically active form and the 

S(+) form which is inactive.  The S(+) form is also responsible for the bitter taste of the drug and 

some side effects [37-40].  Therefore any pharmacologically relevant target for PZQ should 

distinguish between the two isomers and respond only to the R(-)-enantiomer.  The simplest way 

that this could be achieved would be by the target only binding to this enantiomer at physiologically 

relevant concentrations of the drug.  It is, however, possible that both isomers might bind, but only 

the R(-)enantiomer elicits the conformational or other changes in the protein to bring about the 

pharmacological effect. 
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PZQ has pharmacological targets in the host 

It is now clear that PZQ also has effects on the mammalian host.  Recent work has established that 

PZQ is a partial agonist of the human serotoninergic 5-hydroxytryptamine2B (5HT2B) receptor [41].  

This agonism, which occurs at therapeutically relevant concentrations is sufficient to elicit 

physiological responses.  Activation of the 5HT2B receptor by PZQ results in calcium ion release from 

intracellular stores.  This, in turn, causes constriction of the mesenteric vasculature of the host.  The 

constriction of these muscles may assist in the displacement of the worms from the blood vessels to 

the liver [41].  PZQ can also induce vasodilation through activation of several members of the 

mammalian transient receptor potential (TRP) channels, including TRPA1, TRPC3, TRPC7 and TRPM8 

[42, 43].  Interestingly, TRPA1 is also a pharmacologically relevant target of the mild analgesic 

paracetamol (acetaminophen) and TRPM8 is a likely target in menthol’s action as an analgesic [44]. 

Hypothesis 3:  The effects of PZQ on host proteins and systems are important in its activity as an 

anthelminthic. 

A 5HT2B receptor knock-out mouse is viable, albeit with significant abnormalities of cardiac function 

[45].  In theory this would provide a model in which the ability of PZQ to clear schistosome infections 

could be compared.  However, there would be difficulties in comparing the results since the knock-

out mice suffer from a number of serious abnormalities and may, thus, be more susceptible to 

infections.  A TRPM8 knockout mouse is also available.  The phenotype appears to be less severe 

than the 5HT2B receptor knock-out [46].  However, the existence of multiple TRP channel targets of 

PZQ may complicate any analysis.  Antagonists of the 5HT2B receptor might be expected to reduce 

the efficacy of PZQ in a wild-type animal model since they would compete for access to the receptor 

without inducing the physiological response. 
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There is a considerable “grey literature” on PZQ 

In most countries, PZQ is only available for human use on prescription or through clinics and 

hospitals.  However, there is widespread and less strictly regulated use of the drug in veterinary 

medicine.  The broad spectrum of PZQ’s anthelmintic activity beyond Schistosoma spp. means that 

the drug is useful in treating helminth infections in companion animals and livestock.  PZQ is 

included in a number of combination therapies sold to farmers to treat helminth infections or as 

prophylactics.  In addition, PZQ is commonly used to treat tanks used for fish and other aquatic 

animals, such as shrimps.  The drug appears to be effective at killing planarian flatworms.  This is 

reasonably well-documented in the scientific literature [18].  However, some other uses of PZQ have 

not been well-studied under controlled, scientific conditions.  A considerable “grey literature” has 

been developed in magazines, internet discussion forums and blogs etc which cater for aquarium 

hobbyists and there is also some anecdotal evidence of the efficacy of the drug on internet message 

boards run by amateur and professional shrimp farmers.  Considerable care needs to be taken when 

assessing these data.  Often the formulations recommended in these forums include other anti-

parasitics commonly benzimidazoles such as fenbendazole.  In general, these users are obtaining 

drugs intended for use in companion animals and then diluting tablets or liquid formulations into 

aquariums.  So it is not always possible to be certain that the reported effects are solely due to PZQ.  

Rigorous scientific method is rarely applied to these studies.  Consequently, the users are not 

necessarily reporting other changes made to the tanks at the time of administration.  However, 

there is some consistency in the findings reported in these sources suggesting that it is likely that the 

phenomena reported are worthy of further, more rigorous investigation. 

Nevertheless, if approached cautiously, this grey literature provides some information about the 

species in which PZQ is effective (Table 2).  There is a strong consensus that PZQ kills most 

flatworms.  It also appears to be effective against hydra.  Given its widespread use in fish and shrimp 

tanks without reported side-effects, it might be assumed that there are no immediately obvious 
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effects on these organisms.  However, some forums report that PZQ kills shrimp (Table 2).  The drug 

does not appear to cause significant harm to mammals, birds, fish, amphibians and reptiles [47-50].  

In addition there is no evidence of any antibacterial or antifungal activities; however, there are few 

detailed studies on this and the majority of experiments in which microbes have been exposed to 

PZQ had the aim of measuring any mutagenic effects of the drug (e.g. [51]).  Plants do not appear to 

be affected, but detailed studies have not been carried out on most plant phyla.  Interestingly, the 

single-celled parasite Giardia lamblia can be effectively treated by PZQ [52, 53].  However, these 

findings do not appear to have followed up. 

Hypothesis 4:  PZQ’s molecular mechanism of action in hydra is broadly similar to that in parasitic 

helminths. 

No detailed studies have been carried out on the mechanisms of PZQ toxicity in hydra or other non-

helminth invertebrates.  Assuming that the drug causes death through similar mechanisms, it seems 

probable that there would be common molecular targets in these other groups of animals.  

Therefore, any molecular target proposed in schistosomes and other helminths should also occur 

with high sequence and structural similarity in hydra. 

 

Resistance to PZQ is rare 

PZQ has been used to treat helminth infections since the1970s.  Currently millions of people are 

treated every year.  In addition, there is widespread veterinary use and also “unofficial” and 

experimental uses such as those described above in aquariums.  Yet, despite this extensive use, 

there are relatively few reports of resistance.  A number of reports describe treatment “failure” or 

reduced efficacy of the drug but it often unclear if this results from the emergence of genuine 

resistance [54-63].  In the cases of travellers from areas of low incidence of schistosomiasis 

becoming infected the lower efficacy of the drug may be due to a lack of partial immunity which is 
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acquired by many residents of countries with higher incidences [54, 64].  In areas with high levels of 

the disease, the high worm burden and the chances of rapid reinfection may account for some 

treatment failures [65].  Mass drug administration programmes may be associated with subsequent 

reduced efficacy, although more work is required to confirm this [66]. 

Even if some reports do represent evidence of genuine resistance, the level of resistance appears to 

be surprisingly low.  This is particularly the case when compared with antimicrobials where 

resistance typically develops within 10 years of widespread use.  Exposure of the pathogen to sub-

lethal doses of the antimicrobial is generally considered a key factor in accelerating the emergence 

of resistance to these drugs.  This may occur if patients fail to comply with the treatment regime, for 

example by missing doses.  It can also occur if low concentrations of the drug are released into the 

environment.  This is often unavoidable since, in some cases, the drug is excreted unchanged by 

metabolism or is metabolised into derivatives which retain some antimicrobial activity.  It can be 

exacerbated by the indiscriminate or less regulated uses in agriculture and in the ad hoc treatment 

of companion animals.  Similar causes have been attributed to the development of resistance to 

other antiparasitic drugs, such as triclabendazole [67].  All these factors which increase the risk of 

resistance occur with PZQ. However, PZQ is efficiently metabolised by mammals and probably less 

than 1% is excreted unchanged [68].  It should also be noted that the majority of the less regulated 

uses are likely to occur in the developed world and are often targeted against organisms which are 

not pathogens of humans, such as planarian worms and hydra.  In contrast, the vast majority of 

human helminth infections occur in the developing world.  These factors might partly mitigate the 

selective pressures for the development of resistance in pathogenic helminths.   

Nevertheless, it is hard to escape the conclusion that there is something special about PZQ 

compared to many other anti-infective agents.  This may reflect the molecular mechanism of action 

of the drug.  Resistance would be expected to develop relatively rapidly if there was a 

straightforward, single target mechanism.  If this was the case, it would be expected that drug 
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treatment would select for alleles of the gene which encode variants of the target which retain 

biological activity, but have reduced affinity for PZQ.  In general terms, this selection would act 

mainly on pre-existing polymorphisms in the gene encoding the target.  However, it is possible that 

novel, random mutations in the target which have the same effect may also arise and be selected 

for.  Selection for resistance-conferring alleles would be expected to be greatest in areas where the 

amount of PZQ use is sustained at high levels.  The absence of such resistance suggests that the 

drug’s mechanism of action is more complex. 

If there are multiple, pharmacologically relevant targets (see above) then selection of an allele 

encoding a variant of one with lower PZQ affinity may not be sufficient to result in a significantly 

resistant phenotype.  While PZQ action at that target would be mitigated, the remaining targets 

would still be affected.  Furthermore, selection of the lower affinity variant is likely to reduce the 

biological activity of the protein concerned and, consequently, the evolutionary fitness of the 

individual worm.  If the host targets are important in the mechanism of action of PZQ, then it is 

difficult to see how selection acting on the corresponding genes which result in loss of PZQ activity 

would confer an evolutionary advantage to the host.  Indeed, it would be likely to do the opposite in 

areas with high levels of schistosomiasis. 

Hypothesis 5:  At least one of the targets of PZQ may be a protein-protein interaction. 

Relatively few drugs are known to target protein-protein interactions.  However, they do offer some 

advantages as targets, perhaps especially in the treatment of infectious disease.  Disrupting a vital 

protein-protein interaction will prevent any downstream events, resulting in a pharmacological 

outcome.  However, resistance may require selection for alleles which affect both proteins, such that 

the drug no longer blocks interaction but retaining sufficient affinity between the two proteins.  This 

is much less likely than selection affecting a single target.  Therefore, resistance is much less likely to 

occur.  It is possible that PZQ disrupts the interaction between a calcium transport protein and one 

of its regulatory subunits.  It is well-established that mammalian voltage-gated calcium channels are 
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regulated by calmodulin [69, 70].  S. mansoni has two calmodulin isotypes [71].  Experiments with 

recombinant S. mansoni calmodulins and peptides from the organism's voltage-gated ion channels 

identified one sequence, an IQ-motif, which interacts with both calmodulin isotypes.  However PZQ 

does not inhibit this interaction [72].  Another possibility is that one or more of the SmTAL proteins 

can also act as a regulatory subunit of the voltage-gated calcium channels.  Given that some of these 

proteins interact with PZQ, it is possible that the drug inhibits this interaction. No experimental tests 

of his have yet been reported. 

 

Some trematode species may not be susceptible 

PZQ is generally considered to be ineffective against liver flukes from the genus Fasciola [8, 73-79].  

The drug has no effect on the ultrastructure of the tegument, in contrast to drugs which do affect 

this parasite [80-84].  However, there are some reports to the contrary suggesting that PZQ can be 

effective in the treatment of fascioliasis [85, 86].  It is possible that this discrepancy may reflect the 

treatment of people in endemic versus non-endemic countries.  The effectiveness of PZQ in the 

treatment of schistosomiasis appears to vary between these two groups - an effect which is thought 

to result from partial immunity of many people who have repeatedly exposed and which may also 

occur in Fasciola spp. [64].  If PZQ is not as effective against Fasciola spp., it is not clear why this is 

the case.  It has been postulated that the tegument of these organisms prevents the effective uptake 

of PZQ.  However, radiolabelling studies provided evidence for some uptake of PZQ [87].  It therefore 

more likely that subtle difference in one or more of the drug's targets results in a lack of activity.  

Further work is required to resolve whether, or not, PZQ is effective against Fasciola spp.  If it is 

confirmed that the drug has no, or substantially lower, efficacy against these species, the 

investigation of the sequences and structures of suspected targets would be desirable. Differences 

between these structures and sequences in susceptible and non-susceptible organisms would 

provide clues about the mechanism of action and the location of PZQ binding sites. 
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Resistance to PZQ could arise 

Despite the lack of clear evidence for widespread resistance to PZQ it seems likely that it will, 

eventually, arise.  If we assume that the molecular mechanism is sufficiently complex to make 

selection acting on a single target gene(s) an unlikely cause of resistance, there remain other 

possibilities.  In microbes, two common causes of resistance are metabolism of the drug to a 

harmless compound and enhanced removal of the drug from the pathogen's cells.  Either 

mechanism would be theoretically possible in parasitic trematodes. 

Hypothesis 6:  Resistance will arise, but not through selection acting on the gene(s) encoding the 

target(s) 

Resistant isolates of Schistosoma spp. have been generated in the laboratory by several laboratories 

[88-94].  This is often achieved through the repeated, sub-lethal dosing with PZQ.  The resistant 

phenotype can be inherited, suggesting that it results from selection of resistant alleles in one or 

more genes [95, 96].  In some of these isolates, increased activity of p-glycoprotein, a relatively non-

specific active transport protein family which is responsible for the efflux of many drug-like 

molecules, has been observed [89, 97, 98].  S. mansoni is not known to metabolise PZQ [87].  

However, there is evidence for the existence of cytochrome P450 systems in Schistosoma spp [99].  

These systems are known to metabolise PZQ in the host [100, 101].  Therefore, it seems possible 

that selection for genes encoding variants of parasite cytochrome P450 systems which can detoxify 

PZQ would be a potential route to a resistant phenotype. 

 

Conclusions 

Despite decades of use, PZQ remains something of a biochemical enigma.  While it seems likely that 

its mechanism involves the disruption of calcium ion homeostasis, the molecular target remains 
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unknown.  The lack of resistance suggests something special, or unusual, about this mechanism.  

Further biochemical investigations are urgently required to address some of these issues. These 

studies might include work on animals not previously considered.  Hydra, for example, have the 

advantage of being relatively easy to grow.  Since these animals are not endoparasites, it would not 

be necessary to maintain a complex life cycle involving one or more hosts species.  Understanding 

the mechanism of action of this drug will be critical once resistance arises.  It will identify genuinely 

druggable molecules and systems in the parasites against which novel compounds could be 

designed. 

There is also a pressing need to understand the biochemistry, cell biology and physiology of 

Trematoda.  While much of this will be similar to the much better understood systems in mammals, 

even subtle differences may provide opportunities which can be exploited in drug discovery.  This 

will require the ability to think creatively and to advance realistic hypotheses.  We hope that the 

hypotheses proposed here will stimulate further thinking. 
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Figure legends 

Figure 1:  The chemical structure of PZQ.  The pharmacologically active R-(-) enantiomer is shown. 

Figure 2:  The interaction between PZQ and S. japonicum glutathione S-transferase.  The images 

were made using PDB 1GTB and PyMol [28].  The right hand image is rotated 90° around the y-axis 

compared to the left hand one.  Only one subunit of the dimeric GST is shown (ribbon format) and 

PZQ (stick format) binds at the interface between the two subunits. 

Figure 3:   Structures of some other proteins which may interact with PZQ.  (a)  S. mansoni actin 

(GenBank:  AAC46966).    (b)  S. mansoni myosin regulatory light chain (Genbank:  AAR99584).  (c) S. 

mansoni tegumental allergen protein 1 (SwissProt:  P14202; SmTAL1) with calcium ions (spheres) 

bound at its two EF-hand motifs.  In all cases, the protein was modelled using Phyre2 [102] and 

displayed using PyMol.  The SmTAL1 model has been reported previously [36]. 
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Tables 

Table 1:  A summary of the hypotheses advanced in this review 

Number Hypothesis Significance Potential tests 
1 PZQ does not work through direct 

action on a calcium transport protein. 
The search for binding sites in voltage-gated calcium 
channels etc, may be futile; however, efforts to 
identify new molecules which target these proteins 
may still be a viable route to novel anti-schistosomal 
drugs 

It is hard to “prove a negative” through 
experiment.  However, if an alternative 
target was identified, this would support 
this hypothesis. 

2 PZQ has multiple, pharmacologically 
relevant targets in schistosomes.  The 
biochemical effects on these targets 
synergise to produce the overall 
pharmacological outcome. 

Some, or all, of the currently proposed targets may 
be pharmacologically relevant.  It is possible that the 
failure to demonstrate definitive effects at these 
targets may result from the need for the drug to hit 
multiple targets for a synergistic effect. 

Identification of PZQ-binding proteins (e.g. 
through proteomic methods, affinity 
chromatography etc).  Further work to 
verify binding to the currently proposed 
targets and to map binding sites 
biochemically and/or by molecular 
modelling.  Investigation of the biochemical 
consequences of binding to the target (e.g. 
does PZQ inhibit GST?) 

3 The effects of PZQ on host proteins and 
systems are important in its activity as 
an anthelminthic. 

It may be necessary to look at the host as well as the 
parasite when trying to put together an overall 
picture of how PZQ works. 

Clear demonstration that some of the 
effects on the host vasculature are 
important in clearing worms.  Studies on 
knock-out/knock-down animal models.  
Hosts lacking these targets should be more 
susceptible to infection by schistosomes. 

4 PZQ’s molecular mechanism of action in 
hydra is broadly similar to that in 
parasitic helminths. 

Hydra, and other animals affected by PZQ, may 
make good experimental models for understanding 
the mechanism(s) of action. 

Definitive scientific, experimental 
investigation of PZQ’ effect on hydra.  This 
would include tests on overall morphology 
and physiology following administration of 
the drug.  If PZQ does kill hydra then 
identification of binding partners would be 
valuable as would comparative 
genomics/proteomics to determine 
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common proteins between Hydra and 
schistosomes. 

5 At least one of the targets of PZQ may 
be a protein-protein interaction. 

This may help explain the lack of evidence for 
widespread, clinically relevant resistance.  The 
interaction may be a viable target for new drugs. 

Mapping of protein-protein interactions in 
schistosomes, perhaps focussing on those 
involved in calcium ion homeostasis.  Clear 
demonstration that PZQ antagonises at 
least one of these.  This may require model 
systems, e.g. yeast models in which the 
parasite proteins are expressed with some 
form of “read-out” for lack of interaction. 

6 Resistance will arise, but not through 
selection acting on the gene(s) encoding 
the target(s) 

It may be possible to detect resistance even without 
knowing the targets since we might expect 
alterations in cytochrome P450 diversity or 
increased p-glycoprotein activity to accompany 
resistance. 

Monitoring of cytochrome P450 sequences 
and biochemical testing to determine if any 
have activity against PZQ.  Measurement of 
p-glycoprotein activity in resistant isolates 
generated in the laboratory. 
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Table 2:  Some effects of PZQ on non-helminth groups. 

Species or group Reported Effect or Consequence Source 

Bacteria No mutagenicity [51] 

Yeasts No mutagenicity [51] 

Hydra Clears hydra from fish tanks etc www.plantedtank.net/forums 

Insects No mutagenicity [51] 

Shrimps May kill shrimp 

“Probably” safe 

www.shrimpnow.com/forum 

www.fishforums.net 

Fish No harm linked to the drug 

reported 

Safe to use as anthelminthic 

Various aquarium forums 

 

[50] 

Plants Safe www.fishforums.net 

Snails Minimal effects.  May reduce 

fecundity, but this is probably 

related to worm burden not the 

drug 

Safe for apple snails; possibly 

toxic to nerite snails 

[103] 

 

 

 

applesnail.net/forum3 

Plasmodium May potentiate the effects of 

chloroquine and partially reverse 

chloroquine resistance 

[104] 

Reptiles Safe to use as anthelminthic [49, 105] 

Amphibians Safe to use as anthelminthic [48] 

Birds Safe to use as anthelminthic 

 

[47, 106] 

[107] 



19 
 

May be toxic to finches if injected 

Giardia spp. Effective treatment.  Clears 

parasite from host in >80% of 

cases 

[52, 53] 

Blastocystis hominis No effect on the parasites in host [108] 

Toxoplasma No effect [109] 

Cryptosporidium Cures ~50% of patients [110] 

 

Some of these data were obtained from websites and internet discussion forums aimed at hobbyists 

and small-scale producers.  To date, many of these findings have not been confirmed in the peer-

reviewed scientific literature.  Therefore, considerable caution should be used when interpreting the 

data (see text).  The effects on shrimp appear to be particularly controversial with some forums 

describing PZQ as “safe” and others reporting the results of small scale experiments which suggest 

that it is harmful to shrimps. 
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