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R T I C L E I N F O

eywords:
irigami
-cone
late mechanics
reased disk

A B S T R A C T

Following on Part I of this work series on local kirigami mechanics, we present a study of a
discretely creased mechanism as a model to investigate the mechanics of the basic geometric
building block of kirigami—the e-cone. We consider an annular disk with a single radial
slit discretised by a series of radial creases connecting kinematically flat rigid panels. The
creases allow both relative rotation and separation between panels, capturing both bending
and stretching deformations. Admissible equilibrium configurations are obtained by penalising
these deformations using elastic springs with stiffnesses derived from compatible continuum
plate deformations. This provides a tool to study both inextensible and extensible e-cone
configurations due to opening of the slit and rotation of its lips. This creased model hence
offers the possibility to study the e-cone away from its isometric limit, i.e., for plates with
finite thickness, and explore the full range of post-buckling (far-from-threshold) behaviour as
well as initial buckling (near-threshold) instability. Our local approach provides a fundamental
understanding of kirigami phenomenology, underpinned by a proper theoretical approach to
geometry and mechanics.

. Introduction

Present-day challenges in engineering continue to benefit from ancient ideas. This is the case for morphing and deployable
tructures (Saito et al., 2011; Lamoureux et al., 2015), highly stretchable graphene sheets and electronic devices (Qi et al., 2014;
lees et al., 2015; Zhang et al., 2015; Song et al., 2015; Han et al., 2017), nanocomposites (Shyu et al., 2015; Xu et al., 2016),
EMS (Rogers et al., 2016; Baldwin and Meng, 2017), and tuneable tribological properties (Rafsanjani et al., 2018), just to name a

ew examples. What these engineering advances all have in common is their inspiration from the Japanese art forms of paper folding
nd paper cutting, respectively, origami and kirigami. These have become useful exercises as they help to unlock novel strategies
o design a material’s kinematic degrees of freedom as well as its effective mechanical response—all achievable through changes
n geometry and topology via the insertion of folds and cuts (Castle et al., 2014; Sussman et al., 2015). In particular, kirigami
as recently been gaining attention because of its fascinating complementary properties to origami. While introducing cuts or slits
urposely into a medium may seem counter-intuitive, given their susceptibility to failure through fracture processes, kirigami offers
urther fundamental motifs of deformation in thin elastic sheets and unlocks new functionality. Cuts under tension induce a local
uild-up of compressive stresses (Dias et al., 2017; Mahmood et al., 2018), which in turn can be used to manipulate a thin sheet’s
opographic profile and program its mechanical behaviour (Scarpa et al., 2013; Cai et al., 2016; Yang et al., 2018; Moshe et al.,
019b,a). Other fundamental advantages of kirigami are its ability to regulate stretchability (Isobe and Okumura, 2019; Rafsanjani
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Fig. 1. Kirigami consists of making cuts in a flat sheet (a). The placement of such cuts endows the sheet with a higher capacity for stretching thanks to local
out-of-plane buckling (b). Such buckling reduces to e-cone motifs locally forming around the tip of every cut, hence being the basic building bloc of kirigami.
We show e-cones as a smoothly deformed surface (c) and a discretely deformed creased disk (d).

et al., 2019) and enable precise manipulation of shape-changing structures at a variety of scales (Dias et al., 2017; Kaspersen et al.,
2019; Alderete et al., 2021; Zhang et al., 2021). As we continue to seek potential applications inspired by kirigami, progress on the
fundamental understanding of such structures is still needed. Efforts to derive analytical models breaking down the multi-scale and
non-linear phenomenology of kirigami, underpinned by a proper theoretical approach to geometry and mechanics, certainly cannot
be ignored if we aim at better designs and reduced computational costs. This is indeed the target of this work series; to propose a
detailed theoretical account of local mechanical behaviour of kirigami-inspired materials and structures.

Following Part I of this work series (Sadik and Dias, 2021), we continue to focus on the fundamental local mechanics of kirigami
through its unit motif. As shown in Fig. 1-(a–c), this motif is a disclination-like defect in a medium, where global geometry is
dictated by localised sources of negative Gaussian curvature. Known as an e-cone (Müller et al., 2008; Guven et al., 2013; Efrati
et al., 2015; Seffen, 2016), this feature constitutes the basic geometric building bloc of kirigami; Fig. 1-(c). In part I, we presented an
analytical post-buckling study of a nonlinear continuum plate model for the e-cone in its isometric limit. As the thickness of the sheet
approaches zero, the stretching energy contribution vanishes and the plate undergoes an inextensible deformation governed solely
by the bending energy. In the present work, the main objective is to propose a model for local kirigami mechanics that moves beyond
the isometric zero thickness limit. Following an approach proposed by Walker in the study of creased disks (Walker, 2020), we swap
the nonlinear continuum plate model for a kinematic mechanism—see Fig. 1-(d)—which replaces smooth deformation by foldable
and separable radial sharp creases connecting rigid panels. In this model, bending is accounted for by axial rotational springs along
foldable hinges at the creases, and stretching by circumferential spring joints allowing separation of the panels at the creases. The
mechanics is naturally derived from the continuum such that the spring constants are found by equating the elastic energies of the
hinges and joints to the bending and stretching energies of the panels, respectively. This is a powerful method, as it fully captures the
entire range of the far-from-threshold post-buckling behaviour previously presented in Sadik and Dias (2021), while opening up the
possibility to study the near-threshold behaviour of instability. Moreover, the appearance of creases in e-cones is more than a model,
as it suggests an amalgamation of kirigami and origami. Indeed, the introduction of additional creases to accommodate non-rigid
panel bending in origami structures is well established (Tachi, 2013; Evans et al., 2015; Liu and Paulino, 2017; Andrade-Silva et al.,
2019; Yu et al., 2021). Such reduced-order bending models have a long history in engineering having been applied to phenomena
ranging from the buckling and collapse of thin-walled structures (Zhao, 2003; Hiriyur and Schafer, 2005) to the analysis of reinforced
concrete slabs (Kennedy and Goodchild, 2004). Our approach retains the computational efficiency of reduced-order models while
maintaining the capacity to describe the continuum.

The manuscript is organised as follows. In Section 2, we present the creased model of the disk. We set out the underlying
mechanism, lay out its kinematic description, and derive its mechanics from the Föppl-von Kármán plate equations. In Section 3,
we show how the creased model rapidly approaches the analytical solution in the isometric limit. presented in Part I, as the number
of creases is increased. Looking beyond the isometric limit, in Section 4 we include the stretching contribution for finite-thickness
plates. We study the effect of stretching on the initial buckling instability (near-threshold behaviour) of the e-cone and the role it
plays in the non-linear post-buckling paths and further loss of stability (far-from-threshold behaviour). We show how the onset of
buckling is delayed for thicker plates, how the strain energy equipartition is affected, and how the Gaussian charge at the apex,
imposed as a result of the excess angle, is not entirely realised into bending of the e-cone. In Section 4, we close with a few concluding
remarks.
2
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Fig. 2. Schematic diagrams for a creased annulus with inner radius 𝑅𝑖 and outer radius 𝑅𝑜 . (a) shows the creases layout, dividing each half-annulus into 𝑚
facets of sector angle 𝛼𝑚 = 𝜋∕𝑚 . The creases are numbered symmetrically, starting with the slit as 0 to 𝑚 for the antipodal crease. (b) shows the annulus in
the deformed configuration and indicates the rotation vectors between facets, 𝛾𝑖 , indicated as positive by a radially outward pointing vectors according to the
right hand rule. Superscripts 𝑙 and 𝑟 indicate rotations on the left or right side of the annulus respectively. The two sides of the slit are opened to an angle of
𝜓 and the imposed rotation angles at the slit lips labelled by 𝜂1 = 𝛾𝑟0 and 𝜂2 = 𝛾 𝑙0 . (c) shows the labelling convention for the edge vectors of each facet. Edge
vectors, 𝑢1,𝑛 and 𝑢2,𝑛 , are numbered in the clockwise direction on the right side and anti-clockwise on the left side, where 𝑛 is the crease number—see (a). The
superscript indicates which side (left - l, right - r) the facet is located on.

2. Discrete creased e-cone model

We consider a thin, initially planar annular disk of thickness ℎ , inner radius 𝑅𝑖 , and outer radius 𝑅𝑜 with a radial slit extending
from the centre to the boundary. We concern ourselves with the study of its deformation following the opening of the slit with an
excess angle 𝜓 and the rotation of its lips with angles 𝜂1 and 𝜂2 . This local kirigami model describes an intermediate asymptotic
case that is valid for sufficiently small 𝑅𝑜 that ensures 𝜂1 and 𝜂2 are uniform along the edge. Experimentally deformed smooth and
creased e-cones can be seen in Fig. 1-(c) &(d), respectively. First, we present the kinematics of the creased disk mechanism, then
we derive the mechanics, thereby providing a complete mechanical description of the creased disk.

2.1. Kinematics

Consider a discretised disk made of 2𝑚 identical panels connected by 2𝑚 − 1 radial creases uniformly spaced by an angle of
𝛼𝑚 = 𝜋∕𝑚 , where 𝑚 is the discretisation size. We label the two half-disks on either side of the slit as right and left such that the
right half corresponds to the lip rotated by 𝜂1 and the left half to the one rotated by 𝜂2 . Starting from the slit and ending on the
antipodal crease, panels and creases are numbered in increasing order on either half-disk—see Fig. 2-(a). Each radial crease acts
both as a hinge (to model bending by allowing relative rotation of the panels around its axis—Fig. 2-(b)) and as a joint (to model
stretching by allowing relative angular rotation of the panels about the 𝑧 axis—Fig. 2-(c)).

Let {𝑥, 𝑦, 𝑧} be an orthonormal Cartesian coordinate system with its origin attached to the centre of the disk such that, in the
disk’s planar undeformed state, the 𝑥-axis is along the slit, the 𝑧-axis is normal to the disk, and the 𝑦-axis points towards the right
half disk—see Fig. 2-(a). As the slit of the disk opens, its lips are constrained to remain on the 𝑥𝑦-plane such that 𝑥-axis bisects the
excess angle they form.

The lips’ rotation angles are denoted by 𝛾𝑟0 = 𝜂1 and 𝛾 𝑙0 = 𝜂2 . For 𝑗 ∈ {1,… , 𝑚} , we denote the relative hinge rotation angle of the
adjacent panels joined by the 𝑗th right (left, respectively) crease by 𝛾𝑟𝑗 (𝛾 𝑙𝑗 )—defined as positive by the right-hand rule with respect
to the radially outward unit vector along the hinge line. At the 𝑚th crease, we have 𝛾𝑚 = 𝛾𝑟𝑚 = 𝛾 𝑙𝑚 . See Fig. 2-(b). We assume the
relative separation angle between adjacent panels, at the joint connecting them, to be uniform and denote it by 𝜙 . This is effectively
a relative circumferential rotation of the adjacent panels around the 𝑧-axis such that 𝜙 > 0 for a gap in case of tension, and 𝜙 < 0
for an overlap in case of compression.

For 𝑗 ∈ {1,… , 𝑚} , we denote the radially outward unit vectors along the edges of the panels on either side of the joint on the
𝑗th right (left, respectively) crease by 𝒖𝑟 and 𝒖𝑟 (𝒖𝑙 and 𝒖𝑙 , respectively), according to the crease numbering—see Fig. 2-(c).
3
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On the right (left) lip of the slit, we denote the radially outward unit vector along it by 𝒖𝑟1,0 = 𝒖𝑟2,0 (𝒖𝑙1,0 = 𝒖𝑙2,0 ). We let 𝒏𝑟0 = 𝒏𝑙0 be
the unit normal to the disk in its initial planar state along the 𝑧-axis and we denote by 𝒏𝑟𝑗 (𝒏𝑙𝑗 , respectively) for 𝑗 ∈ {1,… , 𝑚} , the
normal to the 𝑗th right (left) panel such that the ordered triad {𝒖𝑟2,𝑗−1, 𝒖

𝑟
1,𝑗 ,𝒏

𝑟
𝑗} ({𝒖𝑙1,𝑗 , 𝒖

𝑙
2,𝑗−1,𝒏

𝑙
𝑗} , respectively) is positively oriented

following the right-hand rule. In the disk’s deformed configuration, the creases and normal unit vectors may be expressed iteratively
for all 𝑗 ∈ {1,… , 𝑚} as follows

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝒖𝑟1,0 = 𝒖𝑟2,0 = (cos(𝜓∕2) sin(𝜓∕2) 0)𝖳,
𝒏𝑟0 = (0 0 1)𝖳, 𝛾𝑟0 = 𝜂1 ,
𝒖𝑟1,𝑗 = sin (𝜋∕𝑚)

[

sin(𝛾𝑟𝑗−1)𝒏
𝑟
𝑗−1 + cos(𝛾𝑟𝑗−1)𝒏

𝑟
𝑗−1 × 𝒖𝑟2,𝑗−1

]

+cos (𝜋∕𝑚) 𝒖𝑟2,𝑗−1,
𝒖𝑟2,𝑗 = 𝑅𝒆̂𝑧 (𝜙).𝒖

𝑟
1,𝑗 ,

𝒏𝑟𝑗 = 𝒖𝑟2,𝑗−1 × 𝒖𝑟1,𝑗∕ sin (𝜋∕𝑚) ,

(1a)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝒖𝑙1,0 = 𝒖𝑙2,0 = (cos(𝜓∕2) −sin(𝜓∕2) 0)𝖳,
𝒏𝑙0 = (0 0 1)𝖳, 𝛾 𝑙0 = 𝜂2 ,
𝒖𝑙1,𝑗 = sin (𝜋∕𝑚)

[

sin(𝛾 𝑙𝑗−1)𝒏
𝑙
𝑗−1 − cos(𝛾 𝑙𝑗−1)𝒏

𝑙
𝑗−1 × 𝒖𝑙2,𝑗−1

]

+cos (𝜋∕𝑚) 𝒖𝑙2,𝑗−1 ,
𝒖𝑙2,𝑗 = 𝑅𝒆̂𝑧 (𝜙).𝒖

𝑙
1,𝑗 ,

𝒏𝑙𝑗 = −𝒖𝑙2,𝑗−1 × 𝒖𝑙1,𝑗∕ sin (𝜋∕𝑚) ,

(1b)

where 𝑅𝒆̂𝑧 (𝜙) denotes the rotation matrix around the 𝑧-axis unit vector 𝒆̂𝑧 by the angle 𝜙 . To ensure continuity of the kinematic
description between the left and right halves of the disk at the crease anti-podal to the slit, i.e., the 𝑚th crease, we require

𝒖𝑟1,𝑚 = 𝒖𝑙2,𝑚 and 𝒖𝑟2,𝑚 = 𝒖𝑙1,𝑚 . (2)

Following the kinematic description laid out above, given the lip rotations 𝛾𝑟0 = 𝜂1 and 𝛾 𝑙0 = 𝜂2 , infinitely many configurations of the
e-cone may be realised by the recursive scheme given in Eq. (1) for any arbitrary choice of hinge rotations {𝛾𝑟1,… , 𝛾𝑟𝑚−1, 𝛾

𝑙
1,… , 𝛾 𝑙𝑚−1}

and a joint angular displacement 𝜙 . For such a set of angles to constitute a kinematically compatible deformation, it must satisfy
the continuity conditions given by Eq. (2). Note that the hinge rotation 𝛾𝑚 , at the 𝑚th crease, need not be further specified: it is the
angle between 𝒏𝑟𝑚 and 𝒏𝑙𝑚 , which are recursively obtained by Eq. (1) from the joint opening and the hinge rotation angles excluding
𝛾𝑚 .

In the next section, we present a mechanics description of the creased disk model by energetically penalising the deformation
at the creases and derive the associated total strain energy.

2.2. Mechanics

In the discretely creased e-cone model introduced in the preceding section, the creases have two crucial features: as hinges, they
allow relative rotation of any two adjacent panels (around the radial hinge lines) to model bending; and as joints, they allow relative
angular displacement of any two adjacent panels (around the 𝑧-axis) to model stretching.

In order to identify the admissible equilibrium configurations of the disk, the kinematic description needs to be complemented
by the mechanics of the model. At the creases, we attach rotational springs, with bending stiffness 𝑘𝑏 , to the hinges (as a discretised
model for bending); and circumferential rotational springs, with stretching stiffness 𝑘𝑠 , to the joints (as a discretised model for
stretching). We then write the elastic energy  of the disk as the sum of a bending contribution 𝑏 with respect to the hinge
rotations {𝛾𝑟1,… , 𝛾𝑟𝑚−1, 𝛾

𝑙
1,… , 𝛾 𝑙𝑚−1, 𝛾𝑚} penalised by 𝑘𝑏 and a stretching contribution 𝑠 with respect to the uniform joint relative

angular displacement 𝜙 penalised by 𝑘𝑠; it reads

 = 1
2
𝑘𝑏

{𝑚−1
∑

𝑗=1

[

(

𝛾𝑟𝑗
)2

+
(

𝛾 𝑙𝑗
)2

]

+
(

𝛾𝑚
)2
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏

+ 2𝑚 − 1
2

𝑘𝑠𝜙
2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑠

. (3)

In order to suitably approximate the continuum behaviour of the e-cone, we relate the hinge and joint stiffnesses (𝑘𝑏 and 𝑘𝑠)
to the mechanics of the panels they represent. We consider a wedge-shaped elastic plate with the same elastic properties as the
disk and the same geometry as that of the rigid panels forming the creased disk. This elastic plate is subject to a rotation on either
edge equal to half the hinge rotation, i.e., 𝛾∕2 , and to a stretch changing its subtended angle from 𝛼𝑚 to 𝛼𝑚 + 𝜙—these boundary
conditions are shown in Fig. 3. The crease stiffnesses are then found by equating the elastic energies of the hinge (𝑘𝑏𝛾2∕2) and joint
(𝑘𝑠𝜙2∕2) to the bending and stretching energies of the plate, respectively. These energies are computed by solving for continuum
degrees-of-freedom of the elastic plate. We let (𝑟, 𝜃) be a polar coordinate system for the panel such that its origin is at the apex.
The wedge has a fixed lateral side at 𝜃 = 0 and a free side at 𝜃 = 𝛼𝑚 . We solve for the deformed equilibrium solution of the plate
using the Föppl-von Kármán equations:

1 𝜕 (𝑟𝜎 ) −
𝜎𝜃𝜃 + 1 𝜕𝜎𝑟𝜃 = 0 , (4a)
4

𝑟 𝜕𝑟 𝑟𝑟 𝑟 𝑟 𝜕𝜃
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Fig. 3. Elastic panel deformation: a rotation on either edge equal to half the hinge rotation, i.e., 𝛾∕2 , and a stretch by changing its subtended angle from 𝛼𝑚
to 𝛼𝑚 + 𝜙.

1
𝑟
𝜕
𝜕𝑟

(𝑟𝜎𝑟𝜃) +
𝜎𝑟𝜃
𝑟

+ 1
𝑟
𝜕𝜎𝜃𝜃
𝜕𝜃

= 0 , (4b)

𝐷∇4𝑤 − ℎ
[

𝜎𝑟𝑟
𝜕2𝑤
𝜕𝑟2

+ 2𝜎𝑟𝜃
𝜕
𝜕𝑟

( 1
𝑟
𝜕𝑤
𝜕𝜃

)

+ 𝜎𝜃𝜃

(

1
𝑟
𝜕𝑤
𝜕𝑟

+ 1
𝑟2
𝜕2𝑤
𝜕𝜃2

)]

= 0 , (4c)

where the biharmonic operator in polar coordinates reads as follows

∇4𝑤 =1
𝑟
𝜕
𝜕𝑟

{

𝑟 𝜕
𝜕𝑟

[1
𝑟
𝜕
𝜕𝑟

(

𝑟 𝜕𝑤
𝜕𝑟

)]}

+ 2
𝑟2

𝜕4𝑤
𝜕𝜃2𝜕𝑟2

+ 1
𝑟4
𝜕4𝑤
𝜕𝜃4

− 2
𝑟3

𝜕3𝑤
𝜕𝜃2𝜕𝑟

+ 4
𝑟4
𝜕2𝑤
𝜕𝜃2

,
(5)

and the components of the strain tensor 𝝐 in cylindrical coordinates are given by

𝜖𝜃𝜃 =
1
𝑟
𝜕𝑢𝜃
𝜕𝜃

+
𝑢𝑟
𝑟
+ 1

2

( 1
𝑟
𝜕𝑤
𝜕𝜃

)2
, 𝜖𝑟𝑟 =

𝜕𝑢𝑟
𝜕𝑟

+ 1
2

( 𝜕𝑤
𝜕𝑟

)2
,

𝜖𝑟𝜃 = 𝜖𝜃𝑟 =
1
2
𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
2𝑟

+ 1
2𝑟
𝜕𝑢𝑟
𝜕𝜃

+ 1
2
𝜕𝑤
𝜕𝑟

( 1
𝑟
𝜕𝑤
𝜕𝜃

)

.
(6)

Here 𝑤 is the out-of-plane displacement of the panel, and 𝑢𝑟 and 𝑢𝜃 are the displacements in the radial and circumferential directions
respectively. We assume a linear-elastic constitutive relationship between the stress, 𝝈, and the strain, 𝝐, tensors:

𝝈 = 𝐸
1 − 𝜈2

[

(1 − 𝜈)𝝐 + 𝜈Tr(𝝐)𝑰
]

, (7)

where 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, and 𝑰 represents the 2 × 2 identity matrix. Eqs. (4) above is solved perturbatively
by choosing the following ansatz for the displacement fields: 𝑢𝑟(𝑟, 𝜃) = 𝛿 𝑓 (𝑟) + 

(

𝛿2
)

, 𝑢𝜃(𝑟, 𝜃) = 𝛿 𝑟𝜃𝜙∕𝛼𝑚 + 
(

𝛿2
)

and 𝑤(𝑟, 𝜃) =
𝛿 𝑟𝑔(𝜃) + 

(

𝛿2
)

, where 𝛿 is inserted as an artificial parameter in this perturbative series that has the sole purpose to keep track
of the orders in the expansion. Up to leading order, the ansatz is such that the radial displacement is azimuthally symmetric, the
circumferential deformation is uniform across the panel, and the out-of-plane deflection grows linearly along the radial direction.
Furthermore, by considering this problem up to the leading order, stretching and bending are decoupled and these may be solved
separately: Eq. (4a) yields a second order ODE for 𝑓 (𝑟) , Eq. (4b) is trivially satisfied, and Eq. (4c) yields a fourth order ODE for
𝑔(𝜃) .

Under these conditions, looking at the stretching of the panel, Eq. (4a) leads to the following differential equation for the radial
displacement, 𝑓 (𝑟):

𝑓 ′′(𝑟) + 1
𝑟
𝑓 ′(𝑟) − 1

𝑟2
𝑓 (𝑟) − 1 − 𝜈

𝑟
𝜙
𝛼𝑚

= 0 . (8)

The above equation is solved subject to zero stress boundary conditions at the radial edges of the panel (𝜎(𝑅𝑖) = 𝜎(𝑅𝑜) = 0) which
yields

𝑓 (𝑟)=

⎡

⎢

⎢

⎢

⎣

(1 + 𝜈)𝑅2
𝑖𝑅

2
𝑜 ln

(

𝑅𝑜
𝑅𝑖

)

𝑟2
(

𝑅2
𝑖 − 𝑅2

𝑜
) +

(1 − 𝜈)
[

𝑅2
𝑖 ln

(

𝑟
𝑅𝑖

)

− 𝑅2
𝑜 ln

(

𝑟
𝑅𝑜

)]

(

𝑅2
𝑖 − 𝑅2

𝑜
) − 1

⎤

⎥

⎥

⎥

⎦

𝑟𝜙
2𝛼𝑚

. (9)

Therefore, the equivalent joint stiffness, 𝑘𝑠 , is computed by equating the joint’s rotational spring energy, 𝑘𝑠𝜙2∕2 , to the linearised
stretching energy cost of the panel:

𝑘𝑠 =
ℎ
𝜙2 ∫

𝛼𝑚

0 ∫

𝑅𝑜

𝑅𝑖
Tr (𝝈 ⋅ 𝝐) 𝑟 d𝑟d𝜃 = 𝐸ℎ𝑚

8𝜋

(

𝑅2
𝑖 − 𝑅

2
𝑜
)2 − 4𝑅2

𝑖𝑅
2
𝑜

[

ln
(

𝑅𝑜
𝑅𝑖

)]2

(𝑅2
𝑜 − 𝑅

2
𝑖 )

. (10)

Next, we consider the moment balance in the panel. Eq. (4c) leads to the following differential equation for the function 𝑔(𝜃):

𝑔𝐼𝑉 (𝜃) + 2𝑔′′(𝜃) + 𝑔(𝜃) = 0 . (11)
5



Journal of the Mechanics and Physics of Solids 161 (2022) 104812S. Sadik et al.
Fig. 4. Gauss map representation of a creased e-cone for 𝑚 = 3 . Each facet’s unit normal (left) is represented by its embedding into the unit sphere 𝑆2 (right).
Spherical geodesics connect adjacent facets’ normals on 𝑆2 following the folding direction to form a piecewise smooth curve: each portion of the curve has a
length equal to the folding angle it represents; and any two portions of the curve form a spherical angle that is equal to the solid angle made by the respective
folding lines they represent (which in general is not equal to the panels’ subtended angle 𝛼𝑚 unless 𝜙 = 0—in the absence of any stretching).

This is solved subject to the panel edges remaining in plane (𝑔(0) = 𝑔(𝛼𝑚) = 0) and the imposed edge rotations (𝑔′(0) = −𝑔′(𝛼𝑚) = 𝛾∕2);
its solution reads:

𝑔(𝜃) =
(

𝜃 sin(𝛼𝑚 − 𝜃) + (𝛼𝑚 − 𝜃) sin 𝜃
𝛼𝑚 + sin 𝛼𝑚

)

𝛾
2
. (12)

The equivalent hinge stiffness, 𝑘𝑏 , is computed by equating the hinge’s rotational spring energy, 𝑘𝑏𝛾2∕2 , to the linearised bending
energy of the panel:

𝑘𝑏 =
𝐷
𝛾2 ∫

𝛼𝑚

0 ∫

𝑅𝑜

𝑅𝑖

(

∇2𝑤
)2 𝑟 d𝑟d𝜃 = 𝐷

1 + cos (𝜋∕𝑚)
𝜋∕𝑚 + sin (𝜋∕𝑚)

ln
(

𝑅𝑜
𝑅𝑖

)

, (13)

where 𝐷 = 𝐸ℎ3∕[12(1 − 𝜈2)] is the flexural rigidity of the plate.
The logarithmic divergence of the bending energy, as 𝑅𝑖 → 0 in Eq. (13), is characteristic of conical defects in thin elastic sheets;

a classic example being the d-cone (Cerda et al., 1999; Witten, 2007). For a real sheet, as the hole radius is reduced and the strength
of the singularity increases, plasticity or damage will occur. The effect on the mechanics of the disk depends on the nature of the
damage but can result in a deviation from the theoretical behaviour (Walker and Seffen, 2018). We now have a complete mechanical
description of the creased kirigami disk. In order to obtain the admissible equilibrium configurations, we minimise the total elastic
energy  , given in Eq. (3), over the space of kinematically compatible deformations, i.e., subject to the continuity constraints given
by Eq. (2).

3. The isometric case: Creased model versus smooth analytical solution

In part I of this series (Sadik and Dias, 2021), we concerned ourselves with the isometric solution of the e-cone—since the
stretching energy contribution becomes negligible moving towards this limit—and analytically solved the continuum post-buckling
problem in a geometrically nonlinear setting. Before investigating the influence of stretching deformations that are allowed using the
present creased model, we first compare to the analytical solution by discarding the stretching contribution to the model, i.e., 𝜙 = 0 .
Thus we minimise the bending energy 𝑏 , as in Eq. (3), with respect to the folding angles {𝛾𝑟1,… , 𝛾𝑟𝑚−1, 𝛾

𝑙
1,… , 𝛾 𝑙𝑚−1, } subject to the

kinematic constraints, Eq. (2).
In order to conveniently visualise the geometry of the deformed e-cones and compare the creased to the analytical solutions,

we use the Gauss map representation (Farmer and Calladine, 2005; Seffen, 2016; Walker and Seffen, 2018)—see Fig. 4. For any
given surface, the Gauss map representation consists of the image of the Gauss-Weingarten map: a mapping which associates every
point of the surface to points on the unit sphere 𝑆2 through the normal field, i.e., 𝐍 ∶  ⟶ 𝑆2 , where 𝐍 is the normal field on
a surface  . For the creased solutions, the outward unit normal of each rigid panel is represented as a point on the sphere; points
representing two adjacent panels are connected by the spherical geodesic following the folding direction; subsequently, connecting
all adjacent panels in this way produces the Gauss map representation as a piecewise smooth spherical curve on 𝑆2 as seen on
Fig. 4. For the analytical conical solutions, the outward unit normal is the same along any given radial generator; which yields the
Gauss map representation as a smooth curve on 𝑆2 traced by the smoothly connected generators’ normals as one sweeps the e-cone
circumferentially. A point of visual comparison may thus be given by super-imposing the Gauss map representations of the creased
and analytical smooth solutions.

Assuming mirror symmetric boundary conditions on the lips of the e-cone, i.e., 𝜂 = 𝜂1 = −𝜂2 , we solve for the symmetric
configurations of the e-cone using both the creased and analytical approaches. In Fig. 5, for an excess angle of 𝜓 = 𝜋∕5 , we
show the e-cones obtained from the creased and analytical solutions, and their corresponding Gauss map representations for three
6
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Fig. 5. Gauss map representations of the creased solution for 𝑚 = 5 , 10 , 50 , & 100 compared to the analytical results (Sadik and Dias, 2021) for an excess angle
of 𝜓 = 𝜋∕5 and lips rotations of 𝜂 = −𝜋∕4 , −𝜋∕8 , 0 , & 3𝜋∕40 . The creased solution’s Gauss maps quickly approach the corresponding analytical solution, even
for a relatively small discretisation size, 𝑚.

different lip rotations 𝜂 (−𝜋∕4 , −𝜋∕8 , and 3𝜋∕40). The creased solutions show a clear pattern of asymptotic convergence towards
the analytical solutions with increasing discretisation size 𝑚 .

As previously discussed in Part I of this work (Sadik and Dias, 2021), for a specific excess angle, 𝜓 , and mirror symmetric
boundary conditions, 𝜂 = 𝜂1 = −𝜂2 , there may be up to two symmetric stable states (corresponding to the two symmetric
stable solution orbit branches) and multiple symmetric unstable states (corresponding to the unstable winding continuation of the
aforementioned orbit branches). Tracking the symmetric configurations of the e-cone for the lips rotation 𝜂 = 𝜂1 = 𝜂2, an inflection
point of the bending energy is found at 𝜂 = 𝜂 , marking the onset of instability separating the stable from the unstable configurations
7
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Fig. 6. The onset of instability for the e-cone’s symmetric creased configurations approaches that of the analytical smooth solution (Sadik and Dias, 2021) for
an increasing discretisation size 𝑚 . Here, the excess angle 𝜓 is fixed at 𝜋∕5 . In the inset, we see the onset of instability, 𝜂𝑐 , i.e., the limit between the stable
and unstable configurations: it is a point of inflection for the bending energy as a function of the lips rotation 𝜂 .

Fig. 7. Symmetric solution orbits and anti-symmetric connecting path for both the creased (m = 100) and analytical (Sadik and Dias, 2021) solutions. The
solutions are shown in the {𝑧∕𝑅𝑜 , 𝜂} phase space for ℎ∕𝑅𝑜 = 10−3 , with 𝑧 being the deflection of the antipodal point to the slit. The inset shows the energy
landscape for both the creased and analytical solutions. The + indicates the limit of stability for the symmetric solution.

along the orbit—see inset of Fig. 6. Beyond this point, i.e., for a lips’ rotation |𝜂| > |𝜂𝑐 | , the e-cone is in an unstable configuration
and may experience a snap-through transition to the corresponding stable configuration for the same lips’ rotation 𝜂 . Plotting the
value of the critical lips rotation 𝜂𝑐 of the creased solutions, against the discretisation size 𝑚 , it may be seen that it asymptotically
approaches, for increasing 𝑚 , the critical lips rotation 𝜂𝑐 for the analytical solution—see Fig. 6. It is found, from fitting the data in
Fig. 6, that the deviation between the critical values of the creased solutions, 𝜂(𝑚)𝑐 , and the smooth analytical counterpart, 𝜂𝑐 , follows
an asymptotic form in 𝑚 given by 𝜂(𝑚) − 𝜂 = (5∕2)(−1∕𝑚 + 𝜋∕(2𝑚2)) + (1∕𝑚3).
8
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Fig. 8. Deflection of the antipodal point to the slit for increasing values of the excess angle, 𝜓 , plotted for different thicknesses of the creased model with
𝑚 = 100 . The near-threshold behaviour of finite thickness e-cones at the critical excess angle 𝜓𝑐 can be clearly observed: unlike the isometric case where 𝜓𝑐 = 0 ,
out-of-plane buckling is delayed for increasing thicknesses. In the inset, the critical excess angle, 𝜓𝑐 , is plotted against the dimensionless thickness—data fitting
identifies the quadratic scaling 𝜓𝑐 ∝ (ℎ∕𝑅𝑜)2 .

Fig. 7 shows the symmetric stable solution orbits, which are connected by an unstable anti-symmetric path. We represent these
solutions in the {𝜂, 𝑧∕𝑅𝑜} phase space, where 𝑧 is the deflection of the antipodal point to the slit. The creased solution (for 𝑚 = 100)
closely matches the analytical solution along the two stable symmetric paths, and the unstable anti-symmetric path connecting them.
Stretching in the creased model is included to provide a smoothing effect, which facilitates the numerical scheme to find the global
minimum solutions. However, when the total strain energy is minimised the stretching energy is found to be vanishingly small. The
inset of Fig. 7 shows the energy landscape for the e-cone, the creased solution shows the lower-energy anti-symmetric path between
the two symmetric stable orbits.

4. Beyond isometry: e-cones of finite thickness

We now include the stretching energy contribution in the creased model of the e-cone—that is, we minimise the total energy
 over the space of kinematically compatible deformations—and consider its influence near the threshold of instability. Beyond
providing a computationally efficient method to solve the isometric problem (as shown indeed in Section 2—the problem is
essentially reduced to a constrained algebraic minimisation procedure), our creased model allows us to further study the mechanics
of finite thickness plates, where the stretching energy contribution can no longer neglected.

Fig. 8 shows the deflection of the antipodal point to the slit in the creased e-cone model with 𝑚 = 100 for increasing values of
the excess angle, 𝜓 (at a fixed 𝜂 = 0). In the isometric case, ℎ∕𝑅𝑜 → 0 , out-of-plane buckling occurs for any excess angle 𝜓 > 0 .
However, as the thickness of the plate increases, the critical excess angle, 𝜓𝑐 , at which out-of-plane buckling occurs, also increases.
Indeed, as shown by the side snapshots of Fig. 8, below the threshold of the critical excess angle, the Gaussian charge due to the
imposed excess angle is fully consumed by in-plane stretching deformations before eventually buckling out-of-plane at the critical
threshold 𝜓 = 𝜓𝑐 . The inset shows the dependence of the critical excess angle, 𝜓𝑐 , on the dimensionless thickness. Fitting the
results for the critical excess angle against the thickness reveals an approximate fit such that 𝜓𝑐∕(2𝜋) ≈ 𝐶𝜋2(1 − 𝜈)(ℎ∕𝑅𝑜)2∕3 with
𝐶 ≈ 2.2 . This scaling may be analytically proven by performing a linear stability analysis of the Föppl-von Kármán equations where
𝐶 is found to be a geometric buckling coefficient. For example, for the critical buckling strain of a rectangular plate, one finds that
𝐶 = 1 (Audoly and Pomeau, 2010).

The equipartition of strain energy into bending and stretching contributions for increasing values of the excess angle, 𝜓 , and
the dimensionless thickness, ℎ∕𝑅𝑜 , is shown in Fig. 9. For the isometric case, ℎ∕𝑅𝑜 → 0 , the stretching contribution is nil, and the
behaviour of the e-cone is solely governed by its bending energy—corresponding to out-plane-buckling immediately occurring when
the slit is opened, i.e., 𝜓𝑐 = 0 (see Fig. 8). As the thickness of the plate increases, the stretching contribution becomes increasingly
more important to the point that it even overtakes the bending contribution. In fact, a region where the bending contribution
becomes nil emerges for large thicknesses and small excess angles. This corresponds to the region below the threshold of the non-zero
critical excess angle, 𝜓 < 𝜓𝑐 , seen in Fig. 8.

Fig. 10 shows the relative difference between the effective Gaussian charge concentrated at the apex of the e-cone (the area, 𝐴𝐺 ,
enclosed by the Gauss map —see Fig. 11) and the excess angle 𝜓 . Subjecting a flat disk to an excess angle introduces a Gaussian
charge at the apex, which causes deformation of the disk. In the isometric limit, this charge fully translates into bending to form a
stretch-free e-cone. In other words, the excess angle fully manifests itself as the effective Gaussian charge at the apex of the e-cone. In
this case the total area of the Gauss map, 𝐴 , is identical to the excess angle, 𝜓 , as seen in Fig. 10 for ℎ∕𝑅 → 0 . However, for finite
9
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Fig. 9. Strain energy equipartition showing bending and stretching contributions as a function of the excess angle, 𝜓 , and the plate’s dimensionless thickness,
ℎ∕𝑅𝑜 , for a creased e-cone (𝑚 = 100) with a fixed lip rotation 𝜂 = 0 . Vertical lines connect the corresponding stretching and bending contributions for equilibrium
states with 𝜓 = 𝜋∕4, 𝜋∕16 and ℎ∕𝑅𝑜 = 0.01, 0.05, and 0.10.

thickness plates, a combination of bending and stretching is experienced, as seen in Fig. 9. Before reaching the initial instability
threshold, the energy landscape is pure in-plane stretching. Therefore, for finite thickness plates, part, or all, of the Gaussian charge
is consumed by in-plane stretching such that there exists a mismatch between the excess angle, 𝜓 , and the available Gaussian
charge, 𝐴𝐺 —see Fig. 10. Indeed, this mismatch turns into in-plane stretching, while the remaining available Gaussian charge turns
into out-of-plane bending deformation. This explains the striking similarity between the relative Gaussian charge mismatch shown
in Fig. 10 and the energy equipartition profile shown in Fig. 9. Further, the Gauss map snapshots in Fig. 10 show how, for the
same excess angle, 𝜓 , the available Gaussian charge, 𝐴𝐺 (or equivalently the area enclosed by the Gauss map), is reduced as the
thickness is increased.

In order to quantify the available Gaussian charge discussed above, we must compute the actual area, 𝐴𝐺 , of the surface patch 
with boundary 𝜕 given by the Gauss map representation of the e-cone—see Fig. 11. Let us first make a few important observations
about the Gauss map representation of Fig. 11 in contrast to that of Fig. 4. Fig. 4 concerns an isometric (and hence stretch-free)
e-cone, while Fig. 11 concerns a stretched e-cone. In both figures, the lengths of the geodesic edges composing the path are exactly
equal to the folding angle of the corresponding crease. However, the external turning angle of the geodesics composing the path
are different. In Fig. 4, since there is no stretching, the external turning angle of the geodesics composing the path are given by the
panels’ subtended angle 𝛼𝑚 = 𝜋∕𝑚 . In contrast, for the stretched e-cone of Fig. 11, the presence of compression forces the panels to
overlap at the creases effectively changing their subtended angle to 𝛼̃𝑖𝑚—the superscript (r - right, l - left) designates the side where
the panel is located—depending on both the folding angle at the crease, 𝛾𝑖, and the overlap angle, 𝜙 . Consequently, the turning
angle is different for each panel and given by the corresponding modified subtended angle 𝛼̃𝑖𝑚 .

We now apply the Gauss–Bonnet theorem to the surface patch  on the unit sphere in order to compute its surface area, 𝐴𝐺 ,
which reads as follows:

∫⊂𝑆2
𝐾 𝑑𝐴 + ∫𝜕

𝑘𝑔 𝑑𝑠 + 𝜃1𝑚 +
𝑚
∑

𝑖=2
(𝜃𝑟,𝑖𝑚 + 𝜃𝑙,𝑖𝑚 ) = 2𝜋𝜒() , (14)

where 𝐾 is the Gaussian curvature of  , which is equal to 1 since  ⊂ 𝑆2 ; 𝑘𝑔 is the geodesic curvature of 𝜕 , which is identically
equal to zero since the spherical boundary 𝜕 traces a path composed of great circles on 𝑆2 ; 𝜒() is the Euler characteristic of  ,
which is equal to 1 since  is a simply connected patch; and 𝜃1𝑚 = −𝛼𝑟,1𝑚 − 𝛼𝑙,1𝑚 + 𝜓 is the external turning angle associated to the
panels by slit—see Fig. 11. For 𝑖 ∈ {2,… , 𝑚} , 𝜃𝑖𝑚 is the external turning angle associated with the 𝑖th panel, which depending on
the direction of the fold, reads either as 𝜃𝑖𝑚 = 𝜋 − 𝛼̃𝑖𝑚 or 𝜃𝑖𝑚 = −𝛼̃𝑖𝑚 , see Fig. 11. It follows that Eq. (14) transforms to yield the area
𝐴𝐺

𝐴𝐺 ≡ 𝜓 − 2𝜋 +
𝑚
∑

(𝛼𝑟,𝑖𝑚 + 𝛼𝑙,𝑖𝑚 ) . (15)
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Fig. 10. (a) Gaussian charge deficit expressed as the relative difference between available Gaussian charge, 𝐴𝐺 , and the excess angle, 𝜓 , as a function of the
dimensionless thickness, ℎ∕𝑅𝑜 , and the excess angle, 𝜓 for a creased e-cone (𝑚 = 100) with fixed lip rotation 𝜂 = 0 . (b) Gauss map snapshots corresponding to
points on (a) and Fig. 9 for selected values of 𝜓 and increasing plate dimensionless thicknesses ℎ∕𝑅𝑜 . When the Gaussian charge is completely consumed by
in-plane stretching, e.g., when 𝜓 = 𝜋∕16 and ℎ∕𝑅𝑜 = 0.1 , the Gauss map representation is reduced to a point.

Fig. 11. Gauss map representation of a creased (𝑚 = 3) e-cone with 𝜓 = 𝜋∕5 and 𝜂 = 0 undergoing a combination of stretching and bending deformations.
Unlike the Gauss map representation in Fig. 4, where the e-cone is only subject to bending, here stretching forces the panels to overlap at the creases, effectively
reducing the subtended angles of the panels and with it the area of the spherical surface, , enclosed by the path 𝜕 described by the surface normals.

Note that in the isometric case, since 𝛼𝑟,𝑖𝑚 = 𝛼𝑙,𝑖𝑚 = 𝛼𝑚 = 𝜋∕𝑚 , we have ∑𝑚
𝑖=1(𝛼

𝑟,𝑖
𝑚 + 𝛼𝑙,𝑖𝑚 ) = 2𝜋 and Eq. (15) reduces to 𝐴𝐺 ≡ 𝜓 . That is,

the Gaussian charge is exactly equal to the excess angle. However, for stretched e-cones, we have ∑𝑚 (𝛼𝑟,𝑖 + 𝛼𝑙,𝑖) < 2𝜋 and hence
11
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5. Concluding remarks

In this work, we develop a model which moves beyond the isometric limit to provide a more complete picture of local kirigami
echanics through its fundamental building block—the e-cone (as shown in Fig. 1). Our new model fully captures the entire range

f far-from-threshold post-buckling behaviour as well as enabling investigations of near-threshold instabilities, which must account
or both the effects of both bending and stretching. The model discretises the e-cone using a series of radial creases connecting
inematically flat rigid panels. The creases allow both relative rotation and separation between panels, capturing bending and
tretching deformations, respectively. To identify admissible equilibrium configurations, these deformations are penalised by elastic
prings with stiffnesses derived from continuum deformations of an elastic plate with the crease deformations imposed as boundary
onditions. The fidelity of the model is improved simply by increasing the number of creases, formally approaching the continuum
n the limit of large numbers of creases.

For finite-thickness sheets, our model shows that for increasing thicknesses the Gaussian charge, as a result of an imposed
xcess angle, is partially consumed by in-plane stretching, thus reducing the magnitude of out-of-plane deformations. For sufficiently
hick sheets, this charge can be completely absorbed into pure in-plane stretching, i.e., no out-of-plane deformations occur. This
henomenon arises in connection with what is expected from the continuum theory, whereby one of the Föppl-von Kármán equations
elates the curvature charge to the Airy stress potential as a source term (Moshe et al., 2019a; Seung and Nelson, 1988). Moreover,
hickness also has the effect of increasing the critical excess angle for the onset of buckling, from zero in the isometric limit and
ncreasing with the thickness squared. Understanding this effect is essential for engineering applications of kirigami structures, which
epends on identifying the conditions required to transition from in-plane to out-of-plane deformations and the corresponding switch
rom low to high stretchability. As such, this local approach provides the required understanding of the building block, leading to
etter control of effective mechanical properties in kirigami structures, as well as other desirable properties—e.g., shape-changing
nd multistability.

By building on Part I of this series, this work further underpins the phenomenology of kirigami structures with a proper
heoretical approach to geometry and mechanics. It will enable better designs and reduce computational costs. Our analysis approach
ffers the computational efficiencies of reduced order bending models while also capturing stretching and formally approaching
ontinuum behaviour in the limit. By identifying the underlying kinematic behaviour, this approach can also be applied to other
arge-deformation shell mechanics problems and offers the potential to improve our understanding of the behaviour of thin-walled
tructures more generally.
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