
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Directional selection and the evolution of breeding date in birds,
revisited

Citation for published version:
Hadfield, JD & Reed, TE 2022, 'Directional selection and the evolution of breeding date in birds, revisited:
Hard selection and the evolution of plasticity', Evolution Letters. https://doi.org/10.1002/evl3.279

Digital Object Identifier (DOI):
10.1002/evl3.279

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Evolution Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://doi.org/10.1002/evl3.279
https://doi.org/10.1002/evl3.279
https://www.research.ed.ac.uk/en/publications/fa60af50-f066-4a77-bda6-d9d6b4f10bcf


LETTER

doi:10.1002/evl3.279

Directional selection and the evolution of
breeding date in birds, revisited: Hard
selection and the evolution of plasticity
Jarrod D. Hadfield1,2 and Thomas E. Reed3

1Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
2E-mail: j.hadfield@ed.ac.uk

3School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23

N73K, Ireland

Received August 19, 2021

Accepted January 7, 2022

The mismatch between when individuals breed and when we think they should breed has been a long-standing problem in evo-

lutionary ecology. Price et al. is a classic theory paper in this field and is mainly cited for its most obvious result: if individuals

with high nutritional condition breed early, then the advantage of breeding early may be overestimated when information on

nutritional condition is absent. Price at al.’s less obvious result is that individuals, on average, are expected to breed later than the

optimum. Here, we provide an explanation of their non-intuitive result in terms of hard selection, and go on to show that neither

of their results are expected to hold if the relationship between breeding date and nutrition is allowed to evolve. By introducing

the assumption that the advantage of breeding early is greater for individuals in high nutritional condition, we show that their

most cited result can be salvaged. However, individuals, on average, are expected to breed earlier than the optimum, not later.

More generally, we also show that the hard selection mechanisms that underpin these results have major implications for the evo-

lution of plasticity: when environmental heterogeneity becomes too great, plasticity is selected against, prohibiting the evolution

of generalists.

The seasonal timing of important life history decisions, such as

when to breed, hibernate, or migrate, are typically under natural

selection toward some optimum set by ecological circumstances

(Visser et al., 2010; McNamara et al., 2011). This optimum can

vary through time or across space (Phillimore et al., 2010, 2016;

Tansey et al., 2017; Gamelon et al., 2018; de Villemereuil et al.,

2020), particularly under climate change or other anthropogenic

stressors, with possible demographic consequences if populations

cannot keep pace evolutionarily (Visser, 2008; Gienapp et al.,

2013; Vedder et al., 2013; Simmonds et al., 2020). Breeding time

in birds, in particular, has received a lot of attention (Perrins,

1970; Verhulst & Nilsson, 2008), given the relative ease with

which data can be collected on egg laying/hatching dates and fit-

ness components such as number of fledglings, recruits, or adult

survival (Newton et al., 1989; Clutton-Brock & Sheldon, 2010).

Following Darwin (1896) and Fisher (1930), Price et al.

(1988) developed a quantitative genetic model in which the nutri-

tional condition of a bird negatively affects its breeding date and

positively affects fitness. This paper is mainly cited for the fact

that an unmeasured trait (nutritional condition) affecting both fit-

ness and the focal trait (breeding date) can generate spurious ev-

idence for selection on the focal trait. This result is largely self-

evident, and the more interesting outcome from Price’s (1988)

model is that at equilibrium the mean breeding date in the pop-

ulation is later than the optimal breeding date. This important

point seems to have been largely overlooked (Table 1), perhaps

because the reason why it happens is hard to intuit from the brief

explanation given:

“In adjusting the breeding dates toward the optimum, selec-
tion gives more weight to females in high nutritional condition
because they are more fecund. Since these individuals breed
earlier, the majority of the population is shifted to dates later
than the optimum.”(Price et al., 1988)
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Table 1. Number of papers published between January 2016 -

February 2021 citing Price et al. (1988) for each of five contexts. R1

refers to Price et al.’s (1988) result that birds are predicted to breed

later than the optimal breeding date. R2 refers to Price et al.’s

(1988) result that spurious directional selection for earlier breed-

ing is expected without knowledge about a bird’s nutritional con-

dition. C1 refers to early breeders being of higher quality, C2 refers

to directional selection for earlier breeding being common (with-

out stating that the evidence for this selection might be spurious),

and C3 refers to various generic ideas (e.g., phenology is impor-

tant) or miscitations. A full list of the papers together with the

relevant sentences can be found in the Supporting Information.

R1 R2 C1 C2 C3

Number of Papers 4 23 6 10 24

Price’s (1988) model, and its surprising outcome, can be

more easily understood by considering models of phenotypic

plasticity. Here, nutritional condition is the environmental vari-

able that varies between individuals, and breeding date is the

phenotypic trait that responds to the environmental variable with

plasticity slope b (set to –1 in Price et al., 1988). Since the opti-

mum breeding date is not a function of the environmental vari-

able in their model, we have maladaptive plasticity: individu-

als in low nutrition environments are breeding too late and in-

dividuals in high nutrition environments are breeding too early

(Figure 1A). When the mean breeding date across all nutritional

environments coincides with the optimal breeding date, the re-

sponse to selection for earlier breeding dates within low nu-

trition environments will be equal to the response to selection

for later breeding dates within high nutrition environments. It is

tempting to think that the net response to selection will there-

fore be zero and the population mean will continue to reside at

the optimum (Figure 1B). However, when mean absolute fitness

varies across nutritional environments, the net response is the sum

of the responses within each nutritional environment weighted

by the contribution of each environment to the total population

(i.e., the phenotype-independent intrinsic rate of increase) (Tufto,

2015). Consequently, the net response to selection is weighted to-

ward the response in high nutrition environments (Figure 1C).

Since the response to selection in high nutrition environments

is positive, this causes mean breeding date to evolve to be later

than the optimal breeding date (Figure 1D). Put differently:

birds in high nutrition territories generate more offspring, which

means that on average individuals are better adapted to high

nutrition environments simply because more genes have come

from, and have been subject to selection in, high nutrition en-

vironments. Similar conclusions have been drawn from source–

sink models where evolution favors adaptation to environments

with high intrinsic growth rates, reinforcing the disparity be-

tween sources and sinks (van Tienderen, 1991; Holt & Gaines,

1992).

The assumption that breeding date depends negatively on

nutrition seems untenable when viewed in the light of plasticity

Figure 1. Schematic depiction of the results of Price’s (1988) model. A) The strength of selection (indicated by the length of the arrows)

increases in more extreme nutritional environments because maladaptive plasticity causes the phenotype (red solid line) to lie further

from the optimum (blue dashed line) in these nutritional environments. The mean phenotype (red dot) is assumed to coincide with the

optimumwhen n = 0 so the strength of selection is symmetric around n = 0. The shaded band of blue in each figure indicates the density

of nutritional environments (dark blue - common, light blue - rare). B) Because extreme nutritional environments are rarer, they contribute

less to the total response to selection than nutritional environments closer to the mean. However, the contributions to the total response

to selection (arrows) are still symmetric around n = 0 because the nutritional environment is assumed to be normally distributed with

mean zero. C) When α > 0 then nutritional environments greater than zero make an increasingly larger contribution to the total response

to selection, because they contribute more individuals to the population in the next generation. The contributions to the total response

to selection are then not symmetric around n = 0 and the positive responses to selection (to the right of n = 0) are larger in magnitude

than the negative responses to selection (to the left of n = 0). D) The intercept of the reaction norm will then evolve to be greater so that

the forces of positive and negative selection cancel. The mean phenotype then no longer coincides with the optimum.
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Figure 2. Schematic illustration of different scenarios explained

in main text. Blue dashed lines represent optimal breeding time

θ, which is independent of individual nutrition n in the top row,

and negatively related to n in the other rows (with slope B). Red

lines depict linear reaction norms (RN) of breeding time y on n

(with intercept i and slope b), with red circles representing mean

y. The phenotype-independent intrinsic rate of increase (mean ab-

solute fitness) is assumed to vary over nutritional environments

(α > 0). In the left column, different arbitrary starting conditions

are assumed, and the right column then shows expected outcomes

at evolutionary equilibrium. First (top) row is same as Figure 1

and corresponds to the model of Price et al. (1988) although the

slope of the RN is allowed to evolve. Second row: hyperplastic-

ity is assumed, resulting in an upwards shift of the RN (i.e. larger

i evolves). Third row: perfect plasticity is assumed (b = B), so no

evolution occurs. Fourth row: hypoplasticity is assumed, so inter-

cept of RN shifted downwards (i.e. smaller i evolves). Inset graphs

in right column indicate whether a negative correlation between

fitness W and breeding time y (i.e. apparent phenotypic selection)

exists at equilibrium.

models: if the optimum breeding date does not depend on nutri-

tion, then the plasticity slope should evolve to be zero. Under this

scenario, the intercept would evolve such that the mean breeding

date would fall at the optimum, and nutrition would not generate

spurious evidence for selection on breeding date because the two

variables would be uncorrelated (Figure 2A). Given there is good

evidence that breeding date and nutrition are correlated in birds

(Price et al., 1988; Verhulst & Nilsson, 2008), a possible expla-

nation is that the optimal breeding date is a function of nutrition

(Verhulst & Nilsson, 2008). Intuition suggests that Price’s (1988)

central result—that the mean breeding date lies after the mean

optimum—is only expected when the plastic slope is more neg-

ative than the optimal slope, B (i.e., hyperplasticity; b < B). Un-

der this scenario, the positive selection in high nutrition environ-

ments, when weighted by reproductive output, will outweigh the

negative selection in low nutrition environments, leading to an in-

crease in the mean breeding date (Figure 2B). However, standard

plasticity models, which assume that the phenotype-independent

intrinsic rate of increase does not vary over environments, pre-

dict the reaction norm slope should evolve to match the optimal

slope b = B (Via & Lande, 1985). The mean breeding date would

then be expected to follow the optimum, rather than on average

being after it (Figure 2C), although a correlation between nutri-

tion and breeding date would exist if the phenotype-independent

intrinsic rate of increase varies over environments, salvaging the

result that Price et al. (1988) is predominantly cited for; i.e., spu-

rious evidence for selection on breeding date. If there is a cost

to plasticity (van Tienderen, 1991), or the environments of de-

velopment and selection are not perfectly correlated (Gavrilets &

Scheiner, 1993), then standard plasticity models predict that the

plastic slope would lie between 0 and B (“hypoplasticity”). If this

result holds when the phenotype-independent intrinsic rate of in-

crease varies over environments, then following the same logic

as above we would expect the mean breeding date to, on average,

lie earlier than the optimum (Figure 2D), and spurious evidence

for negative directional selection on breeding date to still exist.

Here, we extend Price’s (1988) model to allow the relation-

ship between nutrition and breeding date to evolve, or equiva-

lently we extend plasticity models to cases where the phenotype-

independent intrinsic rate of increase varies over environments.

In doing so, we confirm that the results from standard plastic-

ity models outlined in the introduction largely apply in this new

context.

Methods
As suggested in the introduction, we will use the notation typi-

cal of plasticity models rather than Price at al.’s (1988) original

notation (See Table 2).

Breeding date y is given by

y = ai + (ab + eb)n + ei (1)

where i = ai + ei is the intercept with breeding value ai and en-

vironmental value ei, and b = ab + eb is the plastic slope for

breeding date with respect to nutrition n, with ab and eb being

the breeding value and environmental component, respectively.

EVOLUTION LETTERS 2022 3
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Table 2. Table of symbols used in the model. Parameters may be

subscripted to indicate the trait (breeding date y or nutritional

condition n) or the reaction norm component (intercept i or slope

b).

Symbol Meaning

y Breeding date
n Nutritional condition
i Breeding date when nutritional condition is

zero
b Plastic response of breeding date to nutritional

condition
a Additive genetic value
e Environmental value
W Fitness
α Effect of nutritional condition on fitness
θ Optimal breeding date
A Optimal breeding date when nutritional

condition is zero
B Effect of nutritional condition on optimal

breeding date
ω Strength of stabilising selection (larger values

indicate weaker selection)
β Selection gradient
μ Mean (in the case of fitness an overbar is used)
σ2 Variance
σ Covariance
∗ Indicates a quantity at equilibrium

In Price et al. (1988), b is set to −1 for all individuals. All random

variables are assumed to be normally distributed and the environ-

mental deviations have zero expectation. Without loss of general-

ity, we also assume that nutritional condition has an expectation

of zero.

The optimal breeding date θ depends on n through the func-

tion θ = A + Bn and the strength of stabilizing selection around

the optimum is inversely proportional to ω2
y . In Price et al. (1988),

B is assumed to be zero. In addition to the indirect selection act-

ing on plasticity through its effect on the phenotype, we also have

direct selection toward a plastic slope of zero with the strength

of selection around zero being inversely proportional to ω2
b (van

Tienderen, 1991). This represents a maintenance cost to plasticity

(Chevin et al., 2010), although we emphasize that other mecha-

nisms that penalize greater plasticity, such as other types of cost,

limitations (DeWitt et al., 1998) or imperfect cues (Gavrilets &

Scheiner, 1993) are likely to generate the same qualitative con-

clusions. As in Price et al. (1988), fitness depends log-linearly on

nutrition such that the fitness function is given by

W = exp

(
αn − (θ − y)2

2ω2
y

− b2

2ω2
b

)
. (2)

When α �= 0 the intrinsic rate of increase varies over envi-

ronments independently of breeding date (the focal phenotype),

while the match between breeding date and the optimum for any

given n also affects the intrinsic rate of increase. This can be in-

terpreted as hard selection sensu Christiansen (1975), in that each

nutritional condition does not contribute equally in demographic

terms to the overall population, but rather in proportion to the

strength of environment-specific selection. Christiansen (1975)

contrasted this with soft selection, which he defined as occur-

ring when each patch (in his case subpopulation, in our case nu-

tritional condition) contributes in constant proportions to over-

all population size, because of local density regulation that oc-

curs after selection. Bell et al. (2021) pointed out that these def-

initions of hard and soft selection are not necessarily the same

as Wallace’s (1975, 1968), and defined hard selection as occur-

ring when absolute trait value affects absolute fitness, and soft

selection as cases where only relative trait value (compared to

other conspecifics) matters to absolute fitness. Given that previ-

ous plasticity models (Via & Lande, 1985; van Tienderen, 1991;

De Jong, 1995; Van Tienderen, 1997; Tufto, 2015) used the terms

hard and soft selection in the sense of Christiansen (1975), we

here also use them in this context, but acknowledge that our find-

ings in relation to evolution of reaction norm intercept (which

are driven by the α parameter) could also occur if n is under soft

selection sensu Bell et al. (2021). That is, we make no explicit

assumptions about whether absolute or relative nutritional condi-

tion affects fitness.

The selection gradients (β) on the intercept and slope within

an environment can be found by taking the expectation of Equa-

tion 2 with respect to y and b to give mean fitness in environment

n (W̄ (n)), and then taking the derivative of lnW̄ (n) with respect to

the mean intercept and slope respectively (Lande, 1976). Assum-

ing no phenotypic covariance between intercept and slope (see

below) this gives:

βμi (n) = (A + Bn − μi − nμb)
(
σ2

b + ω2
b

)+ nμbσ
2
b

ω2
b

(
σ2

i + ω2
y

)+ σ2
b

(
σ2

i + n2ω2
b + ω2

y

) (3)

and

βμb (n) = (A + Bn − μi − nμb)nω2
b − μb

(
σ2

i + ω2
y

)
ω2

b

(
σ2

i + ω2
y

)+ σ2
b

(
σ2

i + n2ω2
b + ω2

y

) (4)

where σ2
i = σ2

ai
+ σ2

ei
and σ2

b = σ2
ab

+ σ2
eb

. The response to selec-

tion in each environment is then given by Lande (1979):

�μi (n) = σ2
ai
βμi (n) + σai,abβμb (n) (5)

�μb (n) = σ2
ab

βμb (n) + σai,abβμi (n) (6)

The total response to selection can be obtained by weight-

ing each environment’s response by the frequency of that
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environment multiplied by relative mean fitness in that environ-

ment (relative to the global mean) and then averaging these over

environments (Via & Lande, 1985; van Tienderen, 1991; Tufto,

2015):

�μi =
∫

�μi (n)
W̄ (n)

W̄
f (n)dn (7)

�μb =
∫

�μb (n)
W̄ (n)

W̄
f (n)dn (8)

where f (n) is the normal density function with mean zero and

variance σ2
n. W̄ is the global mean fitness. As long as the absolute

genetic correlation between intercept and slope is not one, the

equilibrium solutions to Equations 7 and 8 (i.e., when � = 0)

can be found by solving the Equations

βμi =
∫

βμi (n)
W̄ (n)

W̄
f (n)dn = 0 (9)

βμb =
∫

βμb (n)
W̄ (n)

W̄
f (n)dn = 0 (10)

Equations 9 and 10 cannot be solved analytically. However,

Equation 9 can be solved by assuming the phenotypic variance

is constant across environments. In reality the phenotypic vari-

ance is a quadratic function of n

σ2
y (n) = σ2

i + 2σi,bn + σ2
bn2 (11)

and we approximate this as σ2
y (n) ≈ E [σ2

y (n)] = σ2
y = σ2

i + σ2
bσ

2
n

thereby ignoring the increased strength of selection on the vari-

ance in extreme environments. This “constant variance” approx-

imation will be accurate under weak selection and/or when there

is little between-individual variance in the slopes (de Jong, 1999).

Solving Equation 10 requires the further approximation that there

is little slope variance (i.e., σ2
b ≈ 0). The equilibrium solution for

the slope is complex and so we also obtain solutions making the

further assumption that variation in mean fitness across environ-

ments is dominated by α, rather than the mismatch between mean

breeding date and the optimum (i.e., W̄ (n) ∝ exp(nα)). This is

expected when |B−μb

2ω2
y

| is small, either because B is small in mag-

nitude, selection on phenotype is weak, or the cost of plasticity

is low (since then B = μb). We refer to this approximation as the

“weak mismatch” approximation.

A Mathematica notebook is available on request from the

corresponding author.

SIMULATIONS

To test the validity of the approximations we simulated a popu-

lation of 10,000 individuals with equal numbers of males and fe-

males. Initial breeding values were sampled from a multivariate

normal with covariance matrix equal to the genetic (co)variances

of the intercept and slope and means equal to the approximate

equilibrium solutions. Environmental values and nutritional con-

dition were also sampled from independent normals with zero

means and specified variances. Individuals of each sex were sam-

pled with replacement 10,000 times to generate the parental iden-

tities of the next generation. The probability of an individual be-

ing sampled was proportional to its absolute fitness defined by

Equation 2. The breeding values of the new generation were ob-

tained by sampling from a normal with mean equal to the average

of their parents’ breeding values, and covariance matrix equal to

the half the genetic (co)variances, as expected under the infinites-

imal model (Barton et al., 2017). The effects of inbreeding were

ignored. The population was allowed to evolve for 10,000 gener-

ations and the average intercept and slope across the final 5,000

generations was calculated as it was assumed that the population

had reached equilibrium by this point. This was done 100 times

for B varying between –40 and 0 in 0.4 increments, and with

σ2
i = σ2

b = σ2
n = α = 1, A = 0 and ω2

y = ω2
b = 20. The equilib-

rium values only depend on the genetic (co)variances through

their contribution to the phenotypic (co)variances so we set the

heritability of intercepts and slopes to one to speed up the rate

of equilibration.

When obtaining expressions for the selection gradients

within each environment (β(n)) we assumed that there was no

phenotypic covariance between intercept and slope. This is usu-

ally justified by the fact that this minimizes the variance in phe-

notype in the average environment (if the average environment

is defined such that it takes value zero) and this canalization is

selected for under stabilizing selection (Lande, 2009). However,

under the present model, this justification would imply that the

phenotypic correlation between intercept and slope should evolve

to minimize the phenotypic variance in the average environment

weighted by the intrinsic rate of increase. Using simulation, we

test the robustness of the approximation to extreme correlations

(–0.9 and 0.9) in addition to our assumption of a zero correlation.

Our approximations for the equilibrium slope when the vari-

ance in slopes is small do not depend on α, but our weak mis-

match approximation suggests that in the presence of slope vari-

ance the equilibrium slope will depend on α (see Results). We

therefore reran the zero-correlation simulation detailed above but

holding B constant (−1) and allowing α to vary from 0 to 1 in

0.01 increments.

Simulation code can be found in the Supporting Information.

Results
ANALYTICAL MODEL

Under the assumption of constant phenotypic variance the equi-

librium intercept is

μ∗
i = A + σ2

nα

(
B − μb

ω2
b

σ2
b + ω2

b

)
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(
σ2

b + ω2
b

)(
σ2

b

(
σ2

i + ω2
y

)+ ω2
b

(
σ2

y + ω2
y

))
(
σ2

b + ω2
b

)(
σ2

b(σ2
i + ω2

y

)+ ω2
b

(
σ2

y + ω2
y

))+ σ2
bω

2
bμ

2
bσ

2
n

.(12)

Since the right-hand quotient must be positive, this demon-

strates that the mean breeding date only evolves to be greater than

the optimal breeding date when B > μb
ω2

b

σ2
b+ω2

b
. Since ω2

b

σ2
b+ω2

b
can-

not be greater than one, this implies hyperplasticity is required

when B ≤ 0, and in cases where the strength of selection against

plasticity is strong (ω2
b is small compared to σ2

b) the degree of

hyperplasticity required may be substantial. It can also be seen

that if the plasticity slope is shallower than B, as is expected

from most phenotypic plasticity models (see below also), then

the mean breeding date will in general lie before the optimum, not

after. Assuming there is little slope variance (σ2
b ≈ 0), the equi-

librium intercept has an even more straightforward form:

μ∗
i = A + σ2

nα(B − μb) (13)

and any level of hyperplasticity will cause the mean breeding date

to be greater than the optimal breeding date. Price et al. (1988) as-

sume B = 0 and μb = −1 hence their result that the mean breed-

ing date exceeds the optimum by an amount σ2
nα is recovered. Un-

der the assumption of little slope variance, the equilibrium slope

is given as

μ∗
b = 2

3
B − 1

3

pa

(
pb+

√
4pa3+pb2

2

)−1/3

−
(

pb+
√

4pa3+pb2

2

)1/3

σ2
n

(14)

where

pa = σ2
n

(
3
(
σ2

i + ω2
y + σ2

nω
2
b

)− σ2
nB2

)
(15)

and

pb = −2Bσ4
n

(
9
(
σ2

i + ω2
y − σ2

nω
2
b/2
)+ σ2

nB2
)

(16)

It can be shown (see the Mathematica notebook for details)

that if B = 0, as assumed in Price et al. (1988), then the equi-

librium slope is zero and any relationship between nutrition and

breeding date disappears. In addition, hyperplasticity implies the

equilibrium slope must be less than B, if B is negative, but this

cannot be satisfied in the above equations. The model therefore

demonstrates that hypoplasticity is the expected outcome and the

mean breeding date is expected to lie before, not after, the opti-

mal breeding date. In addition to this main result, it should also

be noted that the equilibrium slope under this approximation does

not depend on α and is not monotonic in B; the slope is maxi-

mized at intermediate values of B (see Figure 3 also). In the Sup-

porting Information, we explore the reason for this behavior, and

in the discussion give an intuitive explanation as to why it hap-

pens.

Figure 3. Circles represent the average intercept (μ∗
i ) and slope

(μ∗
b) of 50 million individuals (10,000 from each of the 5,000 final

generations of a 10,000 generation simulation). Light grey, dark

grey and black circles are for simulations where the correlations

between intercepts and slopes are -0.9, 0, and 0.9 respectively. The

blue line is the approximation assuming the variance in slopes is

small (σ2
b ≈ 0). The green and red lines assume that variation in

mean fitness across nutritional environments is dominated by the

direct effect of nutrition on fitness (α), rather than variation in

the phenotype-optimum mismatch (‘weak mismatch’). The green

line assumes the phenotypic variance is constant and the red line

assumes the variance in slopes is small. Parameter values were set

to σ2
i = σ2

b = σ2
n = α = 1,A = 0, andω2

y = ω2
b = 20with the slope of

the relationship between the optimal breeding date and nutrition

(B) varying.

The solutions given above are complex, but by assuming that

variation in mean fitness across environments is dominated by

α (“weak mismatch”) simpler answers can be achieved. Under

weak mismatch and constant variance, the equilibrium intercept

is

μ∗
i = A + σ2

nα

(
B − μb

ω2
b

σ2
b + ω2

b

)
(17)

and the equilibrium slope is

μ∗
b = B

σ2
nω

2
b

σ2
nω

2
b

(
1 + σ2

bσ
2
nα

2

σ2
b+ω2

b

)
+ σ2

i + ω2
y

(18)

Under weak mismatch and little slope variance, the equilib-

rium intercept

μ∗
i = A + σ2

nα(B − μb) (19)
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is identical to that under the assumption of little slope variance

alone (Eq. 13), but the equilibrium slope is

μ∗
b = B

σ2
nω

2
b

σ2
nω

2
b + σ2

i + ω2
y

(20)

In both cases, hyperplasticity is required for the mean breed-

ing date to be later than the optimum, yet hypoplasticity (or per-

fect plasticity if selection against plasticity is weak) is expected

to evolve. Consequently, all approximations confirm the previ-

ous qualitative conclusions: hypoplastcity is expected to evolve

and the mean breeding date is displaced to earlier dates than

the optimum breeding date. However, note that unlike the ap-

proximations where the slope variance is small, the equilibrium

slope depends on α under the constant variance approximation

with weak mismatch (Eq. 18). This suggests that the equilibrium

slope is sensitive to α when there is slope variation (see simu-

lation results). The equilibrium slope under the weak mismatch

approximation with little slope variance (Eq. 20) is identical to

that found by Lande (2014) (see Supporting Information) since

it ignores the consequences of hard selection induced by greater

phenotype-optimum mismatch in extreme environments and is

therefore equivalent to a model assuming soft selection on breed-

ing date. Finally, in the approximations where the slope variance

is not assumed small, the equilibrium intercept depends on the

cost of plasticity even after conditioning on the mean plastic slope

(Equations 12 and 17). It is not clear to us why this is the case.

SIMULATIONS

Using simulations, we confirm that the approximation when the

slope variance is small is very accurate under biologically rea-

sonable parameter values, and that the weak mismatch approxi-

mations perform well when B is small in magnitude (Figure 3).

Phenotypic correlations between intercept and slope appear to

have little influence on the equilibrium values, suggesting that

results obtained under the assumption that the correlation is zero

are likely to be robust. While the equilibrium slope value depends

on α when there is slope variation, simulations show that this de-

pendency is very weak (see Supporting Information; a 1% change

in equilibrium value for a shift from α = 0 to α = 1) and the ap-

proximation with little slope variance, which does not involve α,

remains accurate.

Discussion
In Price at al.’s (1988) classic model, a negative relationship be-

tween a bird’s nutritional condition and breeding date is imposed.

Since the optimal breeding date is assumed constant across nu-

tritional states, this leads to maladaptive plasticity and begs the

question why birds in high nutritional condition would choose

to breed earlier than what was optimal? Here, we allowed the

relationship between nutritional condition and breeding date to

evolve under these conditions (B = 0) and showed that the rela-

tionship would disappear, taking Price at al.’s (1988) main results

with it. However, by assuming the optimal breeding date does in

fact become earlier with increasing nutritional condition (B < 0),

we show that the main result that Price et al. (1988) is cited for

can be salvaged: a correlational analysis of fitness and breeding

date would incorrectly generate evidence for negative directional

selection, if nutritional condition is not controlled for by includ-

ing it in the analysis (e.g., because it is unmeasured). However,

the more interesting and less obvious result in Price et al. (1988)

is that the mean breeding date in the population should be later

than the optimum breeding date. Here, we show that the exact

opposite result is more likely: the mean breeding date in the pop-

ulation should be earlier than the optimum breeding date. This

occurs because the plastic response of breeding date to nutrition

is likely to be shallower than the optimal response because of a

cost to plasticity (or an imperfect cue). Therefore, from the plas-

tic response alone, birds in high nutritional condition breed later

than what is optimal to the same degree that birds in low nu-

tritional condition breed earlier than what is optimal. However,

because birds with high nutritional condition have intrinsically

higher reproductive output, the intercept evolves so that birds in

high nutritional condition are better adapted than those in low

nutritional condition. This shifts the intercept to earlier values as

this reduces the discrepancy between the plastic and optimal re-

sponses in high nutritional conditions.

In order to recover Price at al.’s (1988) main result that

birds on average breed later than what is optimal, a hyperplas-

tic response to nutrition would be required. While hyperplastic-

ity is not an outcome in our rather simple model, it has been

shown to be an outcome under three different scenarios. First,

large fluctuations in the optimum that are not predicted by nutri-

tional condition could select for hyperplasticity. This is because

the fitness surface may move so much that the population finds

itself in a convex region most of the time, where disruptive se-

lection operates. The increased variance that hyperplasticity af-

fords is then selected for, as a result of this disruptive selection

(Tufto’s (2015) interpretation of Scheiner’s (2013) simulations).

In birds, there are clearly large annual and spatial shifts in the op-

timum breeding date that are independent of within-population

variation in nutritional condition of parents; e.g., variation in the

timing of peak availability of food fed to chicks (Visser et al.,

1998). However, these shifts in the optimum seem to be rea-

sonably well tracked by plasticity (de Villemereuil et al., 2020)

(probably in response to temperature (Visser et al., 2006; Char-

mantier et al., 2008; Phillimore et al., 2016)) and so it is unclear

whether the average distance between the optimum and mean

breeding date is sufficiently large to select for increased variance

and therefore hyperplasticity. Moreover, in such cases a separate
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variance-inducing mechanism (diversified bet-hedging) is likely

to evolve, allowing nutrition-mediated plasticity to evolve to its

hypoplastic optimum (Tufto, 2015).

Second, if the optimum breeding date is determined by nu-

trition, but the plastic response is determined by a correlated

cue (the environment of development), then hyperplasticity can

evolve when the cue accuracy varies across spatiotemporal scales

(King & Hadfield, 2019). The optimal plastic slope at each scale

is shallower the lower the cue accuracy at that scale (Gavrilets

& Scheiner, 1993), and the evolved slope is a compromise be-

tween these scale-specific optimal slopes. This can generate hy-

perplasticty at scales where the evolved slope is steeper than the

scale-specific optimal slope. Since the scale of most studies is

individuals in a population over short time periods, the between

individual relationship between nutrition and the environment of

development would have to be weaker than at other scales (such

as between-population or between-year) for hyperplasticity to be

seen. However, the evolved slope is weighted toward those scales

at which it is difficult to genetically track shifts in the optimum:

scales where spatial fluctuations in the optimum with respect to

dispersal distance are short and/or temporal fluctuations in the

optimum with respect to generation time are fast. This implies

that the evolved slope is going to be especially weighted toward

the optimal slope from the short/fast fluctuations present within

populations/years and so the discrepancy between the evolved

slope and the optimal slope at this scale may not be large enough

to generate much hyperplasticity, even if the cue accuracy at this

scale was especially weak. Third, hyperplasticity can be selected

for when there is assortative mating for a trait for which plastic

induction occurs prior to migration and mating and there is sex-

biased dispersal (Ronce pers. comm.). Breeding date, by its very

nature, is subject to strong assortative mating, and the require-

ment for spatial variation in, and local adaptation to, the nutri-

tional environment seems plausible in bird populations. However,

the assumption that birds would make plastic decisions about

when to breed based on the nutritional environment where they

were raised, rather than where they are currently breeding, seems

less tenable. Finally, hyperplastic responses could be the result

of maladaptation, but this is generally thought to arise when

species experience novel environments and so is unlikely to be

a widespread phenomenon (Ghalambor et al., 2007).

Given that the known mechanisms for generating hyperplas-

ticity seem rare or unlikely, the hypoplasticity that is likely to

evolve leads to our prediction that birds, on average, are breeding

earlier than the optimum. Assessing this empirically is difficult

because it would require the direct effect of nutritional condition

on fitness (determined by α) to be controlled for when estimating

the effect of breeding date on fitness. Without doing this, the op-

timal breeding date is likely to be inferred to be earlier than the

observed mean breeding date, suggesting, incorrectly, that birds

are breeding later than the optimum. Indeed, it is this very ef-

fect that Price et al. (1988) is usually cited for. Moreover, other

mechanisms can generate the scenario where the mean pheno-

type deviates from the mode of the individual fitness surface,

such as skewed breeding values (Turelli & Barton, 1994; Rice,

2002; Bonamour et al., 2017) and asymmetric fitness functions

(Lof et al., 2012; Urban et al., 2013).

The alternative approach for testing whether the mean breed-

ing date is earlier or later than the optimum is to perform an ex-

periment. This is most often done using replacement clutch ex-

periments or cross-fostering experiments (Verhulst & Nilsson,

2008). For example, in cross-fostering experiments, birds that

naturally breed on the same date (and therefore have the same ex-

pected nutritional condition) are taken and forced to raise chicks

at a range of hatch dates by giving them eggs that have been incu-

bated more (so their chicks hatch earlier) or less (so their chicks

hatch later). When looking at the fitnesses of birds with the same

natural lay date, the evidence suggests that the manipulated hatch

date that maximises fitness is less than the mean hatch date, con-

sistent with Price’s (1988) model rather than ours (Verhulst &

Nilsson, 2008). However, the experimental reduction in breed-

ing time in these experiments is completely confounded with an

experimental reduction in the cost of incubation that would pro-

duce spurious evidence that the optimum is earlier than the mean

breeding date (Verhulst & Nilsson, 2008). Moreover, because

hatching date is manipulated rather than breeding date these ex-

periments may miss any fitness costs associated with laying early,

such as smaller clutch sizes or increased adult mortality. Since the

mean breeding date that evolves maximizes mean fitness, rather

than maximizes a component of fitness such as breeding success

(Singer & Parmesan, 2010; Johansson & Jonzén, 2012; Visser

et al., 2012; Day & Kokko, 2015) this may generate spurious

evidence that the mean phenotype does not coincide with opti-

mum. Cleaner manipulations that focus on breeding date rather

than hatching date would provide better evidence but are hard

to achieve.

Given the issues raised above, it may be easier to test the as-

sumption that our prediction is based on: that any fitness advan-

tage of breeding early is greater for birds in high nutrition. To our

knowledge, no study has sought to test this idea directly, although

several possible mechanisms exist. For example, if breeding early

entails the risk that conditions are too cold to sustain incubation,

but high nutrition birds are more confident they can sustain in-

cubation, they may choose to go early so that their chicks hatch

early. In contrast, low nutrition birds that are not confident they

can sustain incubation may choose to go late even if their chicks

hatch later. This relates to the individual optimisation hypothe-

sis (Pettifor et al., 1988, 2001), which is usually applied in the

context of clutch size optimization but also relates to date ef-

fects (Daan et al., 1988, 1990). Existing data from hatch-date
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manipulations could be used to test whether the manipulated

hatch date that maximizes fitness depends on original lay date.

However, a positive relationship between the inferred optimum

date and the actual lay date would merely support individual op-

timisation of lay date without implicating nutritional condition

as the driver. To test this, hatch-date manipulation experiments

could be extended by splitting birds that naturally breed on the

same date into two groups and giving one group food supple-

ments and the other not. Birds in both groups could then be sub-

ject to hatching date manipulations, and the optimum breeding

date estimated. If the key assumption of our model holds (B < 0),

we expect the inferred optimum breeding date to be earlier in the

group that have been food supplemented. This experimental de-

sign would, however, miss any changes in the optimum due to

changes in pre-hatching fitness components driven by nutritional

condition (for example, birds in high nutrition can lay early with

out suffering an increased risk of mortality). In addition, if the

cost of incubation is reduced for food-supplemented birds this

will reduce the bias inherent in cross-fostering experiments for

this group, causing what would appear to be a shift in the opti-

mum toward later dates in food supplemented birds, opposite to

what we predict.

While we have disagreed with Price et al. (1988) in regard

to the likely direction in which breeding dates may deviate from

their optima, we do not wish to diminish the importance of Price’s

(1988) paper in highlighting that the mean phenotype may not

coincide with the peak of the individual fitness surface even if it

coincides with the peak of the “fitness landscape,” i.e., a plot of

mean fitness versus mean phenotype (Fear & Price, 1998; Walsh

& Lynch, 2018). This has important implications as breeding-

date manipulations, which aim to estimate parameters of the fit-

ness surface, do not necessarily imply directional selection when

the mean breeding date is shown to deviate from the optimum.

Similarly, methods such as Lande-Arnold (1983) regression that

aim to estimate parameters of the fitness landscape do not im-

ply that the mean and optimum phenotypes match when no di-

rectional selection is found. These points are most evident when

converting the parameters of the Gaussian fitness surface into se-

lection gradients (Lande, 1980, Eq. 8): there may be no direc-

tional selection on a trait (breeding date) that deviates from it’s

optimum if there are other traits (nutritional condition) that are

also not at their optima and that are correlated and/or under cor-

relational selection with the focal trait.

While the primary focus of this work was to clarify and ex-

tend the work of Price et al. (1988), our results also provide new

insights into the evolution of plasticity more generally. Specifi-

cally, we find that as B gets steeper, mean plasticity increases to

allow better tracking of the optimum, as expected. However, if B

becomes too steep then we find that plasticity is actually selected

against and mean plasticity starts to decrease (see Figure 3). Since

our approximation for the equilibrium slope value does not de-

pend on α, and therefore variation in the phenotype-independent

intrinsic rate of increase, it is surprising that this behavior has not

been noted before in previous models. The reason for this is that

this behavior depends on there being hard selection on the focal

trait (i.e., deviations of breeding date from a nutrition-dependent

optimum reduce mean absolute fitness) in the presence of a cost

to plasticity. In contrast, previous models have either assumed

soft selection in the presence of a cost (e.g., King & Hadfield,

2019), hard selection in the absence of a cost (e.g., Via & Lande,

1985; Tufto, 2015) or constant environmental values among indi-

viduals within a generation in the presence of a cost (e.g., Chevin

et al., 2010; Lande, 2014; Scheiner et al., 2020). In our model,

the reason that plasticity gets weaker as B gets too steep is that

mean fitness in extreme environments becomes so low, owing to

phenotype-optimum mismatch, that extreme environments con-

tribute very little to the response to selection and so the popu-

lation mainly adapts to environments closer to the average. The

selection to increase the slope (via phenotype change) in these

average environments is weaker than in extreme environments

(Lande, 2009) but the selection to decrease the slope (via the

cost of plasticity) is the same, and so plasticity decreases. This

outcome can be interpreted as the evolution of a specialist (to

average environments) in the presence of too much environmen-

tal heterogeneity. This result is opposite to that found by Lande

(2014) but is found in van Tienderen’s (1991) two-patch model

and Holt and Gaines’ (1992) non-plasticity model, both of which

allow for hard selection sensu Christiansen (1975).

In conclusion, we believe the widespread observation that

individuals of high nutritional condition breed earlier can most

readily be explained by the optimal breeding date being earlier for

such individuals (Verhulst & Nilsson, 2008). Without this, plas-

ticity models predict any relationship between nutritional condi-

tion and breeding date would disappear. However, when there are

costs to plasticity, the plastic response to nutritional condition is

shallower than the optimal response, and this leads to individuals,

on average, breeding earlier than the optimum when nutritional

condition positively influences fitness.
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