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Adaptive Sub-Aperture Integration for
Wide-Angle Synthetic Aperture Radar

Shahzad Gishkori, David Wright, Liam Daniel, Aasim Shaikh,
Tareq Al-Naffouri, Marina Gashinova and Bernard Mulgrew

Abstract—In this paper, we present an adaptive sub-aperture
integration method for wide-angle synthetic aperture radar
(SAR) for improved imaging, with emphasis on short-to-medium
range applications. In order to avoid full-aperture integration,
traditional approaches use fixed-width sub-apertures, which may
not conform to the persistence angle of the scatterers. Coherent
integration gains over the aperture are possible if integration is
carried out over the persistence angle of the scatterers, because
integrating shorter than the persistence angle may spread the
scattering response across multiple sub-apertures or, conversely,
integrating more than the persistence angle may cause noise
accumulation along with the useful signal. In this paper, we
propose to use change-point detection methods to estimate the
persistence widths of the scatterers, and consequently enhance
the coherent integration gains, resulting in improved imaging.
We compare our proposed methods with the standard integration
approaches as well as a recently proposed adaptive integration
approach. We provide qualitative and quantitative analyses
to prove that our proposed methods outperform the existing
approaches. We present experimental results on the real-data
of our low-terahertz (THz) radar as well as a publicly available
dataset to validate our claims.

Index Terms—THz radar, wide-angle SAR, sub-aperture inte-
gration, change-point detection

I. INTRODUCTION

Synthetic aperture radar (SAR) [2]–[4] can provide en-
hanced image quality in terms of spatial resolution by ex-
ploiting the diversity of viewing angles (see e.g., [5]–[8] and
references therein). Consequently, a wide-angle SAR (i.e.,
where the radar measurements are collected over a large
angular range) can significantly improve the image quality
as it accumulates increased information of the target scene.
Therefore, wide-angle SAR can envisage numerous applica-
tions, from a single sensor focusing on a target, to multiple
sensors, e.g., on unmanned air vehicles (UAVs), working in
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concert, and even in bistatic radar scenarios. Due to their
short wavelength, terahertz (THz) radars (with/without SAR
processing) have been gaining popularity for improved image
resolution [9]–[11]. Recently, imaging capabilities of a low-
THz circular radar have been presented in [12], [13] for
automotive context (i.e., for short-to-medium ranges), which
also signifies the importance of wide-angle SAR for such
civilian applications, and it forms the general theme of the
present paper as well.

Theoretically, SAR (based on any synthesised aperture) is
defined to be wide-angle if the aperture extent exceeds the
angular sector (i.e., 2 sin−1(B/2f0), where B is the bandwidth
and f0 is the carrier frequency), required for equal spatial
bandwidth in range and cross-range [14], [15]. However,
traditional SAR imaging techniques are based on the point
scattering assumption, i.e., a target object can be modelled
to be composed of a set of isotropic point scatterers whose
reflection coefficients are independent of the angle of inci-
dence. If this assumption is considered true, then, theoretically
it is possible to obtain full circular SAR images with a spatial
resolution of quarter of a wavelength over the Cartesian grid
of the target scene [16]. In reality, this may not be possible.
The point scattering assumption holds only for a small range of
angles before it breaks down. For man-made objects with sharp
corners and edges, the response is highly aspect dependent.

Generally, two broad integration approaches/methods are
used to deal with anisotropic scatterers in wide-angle SAR,
i.e., i) the full-aperture (FA) methods and ii) the sub-aperture
(SA) methods. The full-aperture processing methods model the
scattering as a function of both space and azimuth across the
full aperture [17]–[19]. Since the azimuth angle is explicitly
adopted as an independent variable, the dimensionality of
the image increases and requires some form of regularisation
to recover the image from its samples [20]. Full aperture
techniques are computationally expensive and are generally
only applied to small regions of interest. Sub-aperture (or
windowed) approaches [21]–[23] are the most commonly used
approaches to deal with aspect dependent scatterers for wide-
angle data. Full aperture is divided into a series of smaller
sub-apertures which span an angular range over which the
point scattering assumption is valid and the reflector response
is expected to be constant. This allows standard narrow-angle
imaging methods to be applied within the sub-aperture [24],
[25] to form a corresponding sub-image. An early example
of this approach appeared in [26] and it was named ‘aspect-
coherent image formation’. The sub-aperture processing tech-
niques, in contrast to full aperture, use a constant sub-aperture
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size and overlap distance, over the whole aperture. This is to
ensure that the resolution of each sub-aperture is the same.
The composite image of the target scene, per pixel, can then
be formed by either combining the contributions of all sub-
apertures non-coherently, i.e., sum of the absolute values, or
by selecting the contribution of a sub-aperture with maximum
absolute value. The composite image, in the latter case, has the
interpretation of a generalised likelihood ratio test (GLRT) and
is based on the assumption that the distribution of responses
from a point at a given pixel is normally distributed [14].
The GLRT based composite image formation has received
widespread acceptance from many researchers, e.g., [5], [6],
[14], [15], [27].

Sub-aperture methods, with a constant aperture size, es-
sentially assume that the scattering persistence angle (SPA),
i.e, the angular range over which the scattering response of
a scatterer is isotropic, is the same for all scatterers in the
target scene. The resolution of a scatterer cannot be improved
by integrating beyond the SPA of the scatterer, this simply
adds noise to the image. Whereas, in case the sub-aperture
is shorter than the SPA of a scatterer, the scattering response
from the scatterer is spread across more than one sub-apertures
which results in image blurring. However, a priori knowledge
of the SPA of a scatterer is generally not available. Thus,
fixing a constant size of the sub-aperture may not guarantee
good image quality. One way to circumvent the problem of
constant sub-aperture size is to select an adaptive sub-aperture
size [28] corresponding to the SPA of the scatterers. Such
an approach was used in [29] to improve image quality of a
THz wide-angle SAR. The SPA of a scatterer was estimated
by approximating the scattering energy of the scatterer via
a Gaussian function. Finally, a common SPA was obtained
for all the scatterers (assumingly based on the mean values).
On the one hand, it is an approximate approach requiring
certain assumptions especially in the case of overlapping
SPAs. On the other hand, selecting a common SPA for all
the scatterers essentially brings the technique closer to a
constant sub-aperture approach. Therefore, only limited gains
can be obtained via this technique, particularly in the short-
to-medium-range THz sensing applications which exhibit large
variations in aspect dependent scatterings.

In this paper, we propose an adaptive sub-aperture (AdSA)
wide-angle SAR1 imaging approach where we estimate the
SPA of the scatterers by employing a change-point detection
strategy [32]–[36]. The change points basically capture the
statistical variations, e.g., mean, root mean square (RMS) and
standard deviation (STD), of the data segments. Thus, our
proposed strategy offers a thorough and flexible search on
estimating the SPA of a scatterer. Generally, the number of
change points are pre-defined. However, an over-estimate of
this number can also be utilised in our proposed method. In
order to keep noise-only segments out, we utilise a thresh-
old parameter which can be estimated from the data itself.
Finally, coherent integration is applied over the estimated
SPA of the scatterer, and a composite image is formed via

1Note, although we consider SAR imaging here, the proposed methodology
is applicable to inverse SAR (ISAR) [30], [31] as well.

the GLRT method. Since the proposed method concerns an
integration strategy over the aperture, it is independent of
image reconstruction, per aperture sample. However, to make
this point clearer, we consider images reconstructed by the
classical back-projection method [4] as well as the recently
proposed state-of-the-art super-resolution method [7] based on
fused least absolute shrinkage and selection operator (fused
LASSO) [37]. In order to implement our proposed strategy,
we primarily utilise a dataset that we collected in our lab
using a 300 GHz radar in a circular scanning SAR (CiS-
SAR) mode [12]. The CiS-SAR mode has been found useful
especially for short-to-medium range imaging applications
(aimed by this paper as well). However, to make our proposed
method data-independent, we also present some results on
the publicly available dataset of a backhoe target [38]. In
order to compare the performance of our proposed method,
we present results of full-aperture coherent integration along
with the constant sub-aperture coherent integration, as the
reference standard approaches. In terms of comparison with
an adaptive integration method, we also present some results
by using the proposed method of [29]. These comparisons, via
qualitative as well as quantitative analyses, prove the validity
of our proposed method2.
Contributions. The following are the main contributions of
this paper.

• We present an adaptive sub-aperture integration technique
for circular (scanning) synthetic aperture radar for im-
proved imaging.

• We employ the change-point detection method, which
leverages statistical variations of the aperture data, in
order to estimate the SPA of a scatterer.

• We compare our proposed methods with standard integra-
tion approaches as well as a recently proposed adaptive
integration method.

• We provide experimental results on our 300 GHz radar
real-data, and a publicly available dataset, in order to
prove the efficacy of our proposed methods, along with
qualitative as well as quantitative analyses.

Organisation. Section II provides the system model and image
reconstruction methods, Section III explains the concept of
change-point detection, Section IV elaborates on the proposed
adaptive integration technique, Section V demonstrates exper-
imental results and Section VI gives the conclusions.
Notations. Matrices are in upper case bold while column
vectors are in lower case bold, (·)T denotes transpose, [a]i
is the ith element of a and [A]i,j is the ijth element of
A, â is the estimate of a, ∆

= defines an entity, |A| denotes
the cardinality of set A, and the `p-norm is denoted as
||a||p = (

∑N
i=1 |[a]i|p)1/p.

2Note, the proposed method was preliminarily presented in [1], along with
qualitative assessment only. However, the present paper complements [1]
by providing, i) a thorough treatment on the subject, ii) a detailed system
model and theoretical foundations of the proposed method, iii) quantitative
analyses of the performance results based on standard performance metrics,
iv) a comparison with a recently proposed approach on adaptive sub-aperture
integration, and v) application of the proposed method on SAR images
reconstructed through super-resolution.
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Fig. 1: SAR System Schematic

II. SYSTEM MODEL AND IMAGE RECONSTRUCTION

CiS-SAR mode, essentially, combines scene scanning with
SAR processing over a circular aperture. It can be thought
of as the classical spotlight-mode SAR, with the difference
that the target scene is scanned by the radar at each aperture
position. This essentially results in a target image for each
aperture sample. Figure 1 shows the schematic for CiS-SAR,
where at each aperture position l ∈ [1, L] (over the circular
aperture), the radar scans the target over an angular range θ ∈
[θmin, θmax] (w.r.t. radar’s field of view). In general terms,
a full-aperture target image would collect contributions from
all the aperture positions, i.e., l = 1, · · · , L. However, a sub-
aperture image would contain contributions only from a subset
of the aperture positions, i.e., coherent integration is carried
out over the subset. Let, for the qth sub-aperture, Cq denotes
the set of indices of the aperture samples of a constant-size
sub-aperture, i.e., |C1| = · · · = |Cq| = · · · = |CQC |, where QC
denotes the total number of such sub-apertures, and Aq denote
the set of indices of the aperture samples of an adaptive-size
sub-aperture, i.e., |A1| � · · · � |Aq| � · · · � |CQA |, where
QA denotes the total number of such sub-apertures, and �
denotes ‘not necessarily equal’, i.e., the sub-apertures can have
different sizes.

Here, we briefly describe image reconstruction for the CiS-
SAR mode. Let, at aperture position l and scan angle θ, the
radar illuminates the target scene by a frequency modulated
continuous wave (FMCW) signal with carrier frequency f0,
bandwidth B, pulse repetition interval (PRI) T and chirp rate
β

∆
= B/T , for fast time t : 0 ≤ t < T , i.e.,

sTx(t) = exp
(
j2πf0t+ jπβt2

)
. (1)

The received signal, after dechirping, low-pass filtering and
deskewing [2], can then be written as

sl,θ(t) =

U∑
u=1

αu exp(j2π(f0τl,θ(u) + βτl,θ(u)t)) (2)

where τl,θ(u) is the two-way time-delay, αu is the reflectivity
coefficient and U is the total number of scatterers. The range
profile of the target scene xl,θ(r) can be obtained by taking

a Fourier transform of sl,θ(t) in (2) w.r.t., t, and using the
linear transformation, r = fc/2β, where r ∈ (0, Rmax] is the
range variable (with Rmax being the maximum unambiguous
range) and c denotes speed of light. The range resolution can
be defined as, ∆r

∆
= c/2B, for Nr

∆
= Rmax/∆r range bins.

Now, the target scene reflectivities along azimuth, for a given
range bin r, can be defined as, xl,r(θ) = {xl,θ(r)}θmax

θ=θmin
,

i.e., collecting samples of xl,θ(r), for a fixed r, over the scan
variable θ. The measured signal along the azimuth yl,r(θ) can
then be written as [39],

yl,r(θ) = h(θ) ? xl,r(θ) + nl,r(θ) (3)

where h(θ) is the antenna beam-pattern (uniformly sampled
over beam-width θ ∈ [−φ,+φ]), ? represents the con-
volution operation and nl,r(θ) is additive white Gaussian
noise (AWGN). Let the measurements from angular scan are
obtained at an angular interval ∆θ. Then, yl,r(θ) can be
represented as an Nθ × 1 vector yl,r, with Nθ = b(θmax −
θmin)/∆θc, and h(θ) can be represented as an Nh × 1 vector
h, with Nh = b2φ/δθc+ 1, where δθ

∆
= ∆θ/ξ denotes a finer

angular resolution with ξ ≥ 1 being a constant. Similarly,
nl,r(θ) and xl,r(θ) can be represented as Nθ × 1 and Nx × 1
vectors, nl,r and xl,r, respectively, where Nx = ξNθ+Nh−1
(See [7] for more details). Thus, (3) can be written as

yl,r = GHxl,r + nl,r (4)

where (ξNθ − 1) × Nx block-Toeplitz matrix H represens
the convolution between antenna beam-pattern and the target
reflectivities, and G is an Nθ × (ξNθ − 1) selection matrix,
i.e., comprising of Nθ rows of matrix I(ξNθ−1). From (4),
collecting measurements for all range bins, we can write

Yl = GHXl + Nl (5)

where Yl, Xl and Nl are Nθ ×Nr, Nx ×Nr and Nθ ×Nr
matrices, respectively.

Now, a SAR image via back-projection (BP) can be created
by essentially projecting all measurements back to the target
scene from all viewing positions. In the case of CiS-SAR,
these viewing positions comprise both the positions w.r.t. the
scanning angles as well as the positions over the aperture.
For this, the measurements are upsampled via interpolation
and then integrated coherently to capitalise on the SAR
gains. Mathematically, image reconstruction via BP, w.r.t. point
(xi, yj), for i = 1, · · · , I and j = 1, · · · , J , over the Cartesian
grid, can be represented as

γij =
∑
l

∑
θ

[↑κ,κ (Yl)]θ,Irij (6)

where ↑κ,κ′ (·) denotes an upsampling function which inter-
polates a matrix by an order κ along its rows and by an order
κ′ along its columns, Irij is the column index corresponding

to range rij
∆
=
√
x2i + y2j . From (6), let

γli,j
∆
=
∑
θ

[↑κ,κ (Yl)]θ,Irij (7)
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denotes the contribution of lth aperture position to a target-
scene point (xi, yj), then, a SAR image over full-aperture via
coherent integration can be described as

γFAij =

L∑
l=1

γli,j . (8)

Whereas, a SAR image via sub-aperture method with GLRT
based image formation can be described as

γSAij = max
q

∣∣∣∣∣∣
∑
l∈Cq

γli,j

∣∣∣∣∣∣ (9)

where the size of set Cq is the same for all q. Similarly, a
SAR image with adaptive sub-aperture method with GLRT
based image formation can be represented as

γAdSA
ij = max

q

∣∣∣∣∣∣
∑
l∈Aq

γli,j

∣∣∣∣∣∣ (10)

where the size of set Aq is determined adaptively w.r.t. the
SPA of the scatterer at point (xi, yj). Note, the real challenge
in this case is to determine the elements (and size) of Aq . This
paper, essentially, focuses on this aspect.

Apart from BP, an image can be reconstructed via super-
resolution techniques. In this respect, we opt for our recently
proposed fused LASSO [37] based technique. For this, we first
vectorise (5) as

yl = Φxl + nl (11)

where yl
∆
= vec(Yl), xl

∆
= vec(Xl) and nl

∆
= vec(Nl) are

NθNr×1, NxNr×1 and NθNr×1 vectors, respectively, and
Φ

∆
= [INr ⊗ (GH)] is an NθNr×NxNr measurement matrix.

Note, since Nθ � Nx, (11) is an under-determined system
of linear equations. Assuming sparsity in xl, the optimisation
problem under fused LASSO, takes the following form.

x̂l = arg min
xl

‖yl −Φxl‖22 + λe ‖xl‖11 + λf ‖Dxl‖11 (12)

where λe and λf are positive penalty parameters w.r.t.
element-wise sparsity and fusion, respectively, and D is the
NxNr ×NxNr fusion matrix, i.e., Dxl is a vector containing
the differences of consecutive elements of xl [37]. Note, (12)
is convex and it can be solved via any available convex solver.
In our case we use alternating direction method of multipliers
(ADMM) [40], [41]. Now, the estimated x̂l can be reshaped
into an Nx × Nr matrix X̂l and a reconstructed SAR image
can be obtained as

γij =
∑
l

[↑1,κ (X̂l)]Iθij ,Irij (13)

where Iθij is the row index and Irij is the column index
in ↑1,κ (X̂l), corresponding to range rij and angle θij

∆
=

arctan(yj/xi), respectively. Now, let

γli,j
∆
= [↑1,κ′ (X̂l)]Iθi,j ,Iri,j (14)

denotes the contribution of lth aperture position to point
(xi, yj), then, a SAR image via full-aperture method can be
obtained via (8). Similarly, SAR images for sub-aperture and
adaptive sub-aperture based methods can be obtained via (9)
and (10), respectively.

III. CHANGE-POINT DETECTION

A change point is a sample within a time/data series at
which some statistical property (e.g., mean or variance) of the
series changes abruptly. A number of algorithms have been
proposed in the literature to find change points, e.g., [32]–
[36]. Generally, segmentation algorithms can be grouped into
three categories, i.e., i) sliding window, ii) top down and iii)
bottom up. In the sliding window algorithms, a segment is
grown until the error of adding a new point to the segment
exceeds some pre-determined threshold. Top-down algorithms
work by splitting the entire trace until a pre-determined error
threshold is reached. Bottom-up algorithms start by arbitrarily
dividing the trace into multiple segments and then recursively
merging two or more adjacent segments.

The approach used in our proposed method is the binary
segmentation (BS) approach which is a very well-established
top-down search method in the change-point detection liter-
ature [32]. It provides approximate results instead of exact
results. Therefore, it is computationally very efficient, with a
computational complexity of O(L logL), where L is the total
number of points in the data series. Exact methods, e.g., [33],
[34] can provide more accurate segmentation. However, their
computational complexity can be a bottle-neck for practical
implementation, especially for large datasets. Therefore, we
consider BS in our proposed method to highlight the advantage
of using change-point detection as a means to determine
adaptive sub-apertures.

Let, d1:L = (d1, · · · , dL), denotes a time/data series with
a certain ordering. Then, the positions of Q change points
in the series can be denoted as, c1:Q = (c1, ...., cQ), where
the integer cq ∈ [1, L − 1], for q = 1, · · · , Q. Assuming,
c0 = 0, cQ+1 = L and cq < cq+1, the Q change points
split the data into Q + 1 segments. Consequently, the qth
segment contains d(cq−1+1):cq . Generally, the detection task
of identifying multiple change points can be represented as a
minimisation problem of the following objective function.

Q+1∑
q=1

K(d(cq−1+1):cq ) + βf(Q) (15)

where βf(Q) is a penalty term (with β being a positive
constant, which can be considered as a change-point threshold)
required to avoid over-fitting and K(·) denotes a cost function.
A common choice of the penalty is the linear penalty in
the number of change points, i.e., βf(Q) = βQ. Similarly,
a common choice of the cost function is the negative log-
likelihood function.

The BS method begins by seeking to find a single change
point. A change point c is identified if it satisfies

K(d1:c) +K(dc+1:L) + β < K(d1:L). (16)

If, for a given change point c, (16) is not satisfied then c
is not the change point. Otherwise the data are split into two
segments, before and after the change point. The detection step
is then applied to each of the new segments. The procedure is
repeated until no further change points can be detected. Note,
(16) assumes that there exists a cost function parameterised
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Fig. 2: Scattering responses from two pixels within the
backhoe dataset.

by a certain property of the dataset for which (16) is valid.
Also, from (16), we can see that BS assumes f(Q) = 1.

The algorithm can be easily implemented via Matlab (func-
tion) libraries. Common statistics used for the cost function
are mean, standard deviation (STD) and root mean square
(RMS). For a data segment dµ:ν , the cost function can take
the following least-squares-based form to detect changes w.r.t.
the mean [35].

KMean(dµ:ν) =

ν∑
ι=µ

(dι − 〈dµ:ν〉)2 (17)

where 〈·〉 provides the sample mean of the data segment.
To detect changes w.r.t. STD, the cost function can take the
following form [35].

KSTD(dµ:ν) = ζµν log

(
1

ζµν

ν∑
ι=µ

(dι − 〈d1:L〉)2
)

(18)

where ζµν
∆
= ν − µ + 1 is the length of data segment dµ:ν .

Similarly, to detect changes w.r.t. RMS, (18) is utilised while
assuming 〈d1:L〉 = 0, i.e.,

KRMS(dµ:ν) = ζµν log

(
1

ζµν

ν∑
ι=µ

d2ι

)
. (19)

IV. ADAPTIVE SUB-APERTURE INTEGRATION

Most of the sub-aperture approaches use a constant sub-
aperture size. This is to ensure the same resolution for each
sub-aperture. However, due to difference of SPA of different
scatterers over the aperture, this approach can render itself
counter-purposes. If the sub-aperture size is larger than the
SPA of a scatterer, then coherent integration over the sub-
aperture, potentially, accumulates noise along with the scat-
tering response. Similarly, if the sub-aperture size is smaller
than the SPA of a scatterer, then the scattering response would
spill over to the adjacent sub-aperture. Thus, image-resolution
enhancement cannot be guaranteed without estimating the SPA
of a scatterer.

The aspect-dependent nature of the scattering response of
a scatterer can be ascertained by plotting it against the aspect
angles. Figure 2 shows the scattering response of two pixels
from the backhoe dataset [38] (over 1540 apertures, for a
circular aperture of 110◦, at an elevation angle of 30◦). We
can see that the response from both the pixels has multiple
peaks and that the peaks have different widths. Therefore,

Fig. 3: Change points (green vertical lines) with 10 pre-defined
change points, to detect statistical changes in the scattering
response.

fixing a constant sub-aperture size would not be the best
option. Instead, an adaptive sub-aperture w.r.t. the SPA of
the scatterer would be a better course of action. The main
question here is how to estimate the SPA of the scatterer. If
the scattering response has only one peak, the SPA can be
defined by locating the peak and then estimating the angular
range, either by a threshold value or by fitting a Gaussian
function (i.e., deriving the SPA from the fitting parameters)
[29]. However, in case of multiple peaks in the scattering
response, a better method is needed to take account of all
the peaks and their respective spread to derive a suitable SPA
for the scatterer. In this regard, we propose to use the change-
point detection method. As explained in Section III, change-
point detection is based on capturing changing statistics in
different segments of the data. Thus, it provides a flexible
and robust approach to identify all significant peaks in the
scattering response along with their spread. In the following
we explain how the method is implemented.

First a pre-defined number of change points (e.g., 10− 20)
are used to ensure that all peaks are captured. Figure 3 shows
the scattering response at a single pixel for 5600 aspect
angles in a circular aperture from the dataset described in
[42]. Change points (w.r.t. mean, RMS and STD, as change
statistics) are denoted by vertical green lines. It can be seen,
when the pre-defined change points are 10, there is a clear
response at around aperture 2300 which has not been picked
up. However, when the number of pre-defined change points
is increased to 20, as shown in Figure 4, the peak at aperture
2300 is recognised by the change points on either side. Thus,
a slight over-estimate of the peaks in the scattering response
can capture all of the significant peaks.

Using an over-estimate of scattering-response-peaks in
change-point detection can cause the inclusion of non-
significant data segments. Therefore, as a second step in
our proposed method, we remove these non-significant data
segments. For this, we use a threshold parameter that is learnt
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Fig. 4: Change points (green vertical lines) with 20 pre-defined
change points, to detect statistical changes in the scattering
response.

Fig. 5: Change points (green vertical lines) after noise rejection
and merging the adjacent change points.

from the data itself. It can be seen that a large number of data
samples in the scattering response (of the circular aperture) are
noise. Thus, the mean of all the data samples is a reasonable
heuristic to approximate the noise. Any data segment with
mean greater than a scalar-multiple of this threshold can be
defined as significant, otherwise, it can be considered as noise
and discarded from subsequent processing.

As a third step, in case there are multiple adjacent change
points, we merge the adjacent change points to maximise the
coherent integration gain. This is an important step because it
also takes care of the issue of scattering-response-peaks over-
estimation in the second step which may cause a bifurcation
of a single peak (as can be seen in Figure 4). The final set of
change points, after the last two steps, is shown in Figure 5. We
can see that our proposed method has resulted in identifying all
the significant peaks in the scattering response with reasonable

(a) Radar, 300 GHz (b) Trolley on a Turn-Table

Fig. 6: Experimental Setup

TABLE I: Specifications of 300 GHz Radar

Modulation FMCW

Frequency Range 281− 299 GHz

Transmit Bandwidh (B) 18 GHz

Chirp Duration (T ) 1 ms

Sampling Frequency 4.096 MHz

Angular Step (∆θ) 0.25◦

Two-way 3 dB Beamwidth (θ3dB) 1.3◦

noise-rejection.

V. EXPERIMENTAL RESULTS

In order to validate our proposed methodology, we primarily
use the real data collected with a 300 GHz radar, in our lab,
for CiS-SAR. Figure 6a shows the radar. The radar consists of
a single transmitter (Tx) and three vertically-aligned receivers
(Rx). We use the measurements collected from two receivers,
i.e., Rx2 and Rx3. The corresponding channel (CH) data is
marked as CH2 and CH3. The radar emits FMCW signal
with bandwidth of 18 GHz. Figure 7 shows the measured
antenna pattern of the radar, with a two-way 3-dB beam-width
θ3dB = 1.3◦. Table I shows the radar specifications. For the
target, we use a 1× 0.5× 0.55 (length × width × height) m3

trolley (Figure 6b). In order to realise the circular aperture,
we put the trolley on a turn-table instead of moving the radar
over the aperture. Each turn of the trolley emulates a sample
over the circular aperture. Angular steps for the turn-table are
0.1◦ apart, i.e., a total of L = 3600 aperture samples for
the full 360◦ rotation. Note, for practical applications, it can
be a section of the full rotation. For each aperture position,
the radar scans the target scene over an angular range of
θ = ±9◦, at angular intervals ∆θ = 0.25◦. Figure 8 shows
the measurement schematic.

We compare the performance of our proposed adaptive
integration method with i) the standard full-aperture coherent
integration method (8), denoted as FA, and ii) the sub-aperture
integration (for a constant sub-aperture size of 2◦) followed
by GLRT-based composite imaging method (9), denoted as
SA. For our proposed method (10), we use two statistics for
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Fig. 7: Measured antenna pattern of the radar.
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Fig. 8: Measurement Schematic

change-point detection, i.e., mean (17) and RMS (19). With
the former statistics, we denote our method as AdSA-Mean
and with the latter statistics, we denote our method as AdSA-
RMS. Note, the composite image in both the cases is formed
via GLRT. The number of pre-defined change points are 20.

Figure 9 shows the performance of FA, SA, AdSA-RMS and
AdSA-Mean aperture integration methods, for CH2 radar data,
with image reconstruction via back-projection (BP). From a
qualitative perspective, we can see that our proposed methods,
AdSA-RMS and AdSA-Mean, show very sharp images. In
contrast, the FA and SA methods show higher side-lobes, as
evident by the amount of scattering around the target structure.
A zoomed-in perspective of these images is provided in
Figure 10, showing the right side of the trolley. It can be seen
clearly that the proposed methods have better performance
than the standard integration methods in terms of image
resolution.

(a) FA (b) SA

(c) AdSA-RMS (d) AdSA-Mean

Fig. 9: Aperture Integration methods, with BP-based image
reconstruction, for CH2.

Fig. 10: Comparison of integration methods, with BP-based
image reconstruction, for CH2.

We also provide performance results of different aperture in-
tegration methods with image reconstruction via fused LASSO
(FLASSO). Figure 11 shows these imaging results of FA, SA,
AdSA-RMS and AdSA-Mean methods, for CH2 trolley data.
Again, we can observe that our proposed methods produce
sharper images of the target. Figure 12 provides a zoomed-in
perspective of these images, which shows that the standard
integration methods result in higher side-lobe levels and thus,
result in lower image resolution.

Apart from qualitative assessment, we also provide quanti-
tative analyses of the performance of the aperture integration
methods. For this, we use two performance metrics. The
first performance metric is known as 3-dB main-lobe width
(MLW) [43], which provides a relative measure of spatial
resolution of the radar image (in meters). We focus on the
strongest scatterers [6]. This metric is calculated by finding
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(a) FA (b) SA

(c) AdSA-RMS (d) AdSA-Mean

Fig. 11: Aperture Integration methods, with fused LASSO-
based image reconstruction, for CH2.

Fig. 12: Comparison of integration methods, with fused
LASSO-based image reconstruction, for CH2.

the distance of the nearest point 3 dB below a strong scatterer
and then averaging such distances of all of the strong scatterers
(see Appendix A for a mathematical expression). Note, a
finer estimate is obtained by first interpolating the in-between
points. This relative measure gives a reasonable estimate of
the spatial resolution of the radar image, as it directly gages
the side-lobes. The lower the MLW value, the higher the
spatial resolution. The second performance metric measures
the speckle [43]. This parameter essentially measures variance
of the smooth non-target areas of the dB-valued image, which
in essence estimates speckle volume (see Appendix B for a
mathematical expression). Thus, we use this metric to measure
the capability of an integration method to reduce speckle. The
lower this metric, the lower the speckle.

Tables II and III show the MLW results of CH2 and
CH3, respectively, for image reconstruction via BP. Similarly,

TABLE II: MLW Comparison for Different Integration
Methods on Trolley Dataset (CH2) via Back-Projection

No. of Strongest Scatterers
200 400 600 800 1000

FA 0.5721 0.5595 0.5712 0.5777 0.5767

SA 0.6044 0.5836 0.5743 0.6046 0.6229

AdSA-RMS 0.2818 0.3005 0.3024 0.3087 0.3116

AdSA-Mean 0.2661 0.2994 0.3102 0.3082 0.3115

TABLE III: MLW Comparison for Different Integration
Methods on Trolley Dataset (CH3) via Back-Projection

No. of Strongest Scatterers
200 400 600 800 1000

FA 0.5798 0.5670 0.5661 0.5824 0.5931

SA 0.6215 0.6108 0.6235 0.6327 0.6502

AdSA-RMS 0.3357 0.3295 0.3289 0.3335 0.3338

AdSA-Mean 0.3130 0.3136 0.3136 0.3154 0.3184

TABLE IV: MLW Comparison for Different Integration
Methods on Trolley Dataset (CH2) via Fused LASSO

No. of Strongest Scatterers
200 400 600 800 1000

FA 0.4888 0.4789 0.4792 0.4842 0.4844

SA 0.5052 0.5055 0.5126 0.5273 0.5325

AdSA-RMS 0.2937 0.2955 0.2970 0.3020 0.3007

AdSA-Mean 0.2949 0.2993 0.2958 0.2957 0.2908

TABLE V: MLW Comparison for Different Integration
Methods on Trolley Dataset (CH3) via Fused LASSO

No. of Strongest Scatterers
200 400 600 800 1000

FA 0.4710 0.5016 0.4962 0.4996 0.5028

SA 0.5319 0.5310 0.5279 0.5413 0.5570

AdSA-RMS 0.3577 0.3507 0.3322 0.3295 0.3259

AdSA-Mean 0.3288 0.3486 0.3248 0.3239 0.3266

Tables IV and V, show these results for image reconstruction
via FLASSO. We provide these results for varying number
of strong scatterers. We can see that our proposed AdSA
methods, i.e., AdSA-RMS and AdSA-Mean, outperform both
the FA and SA integration methods, as they show lower
values of MLW (almost by a factor of 2) for different number
of scatterers. For speckle results, we focus on four smooth
non-target regions of the target, as depicted in Figure 13.
Tables VI–IX show these results for the four regions. The
results consider both CH2 and CH3 data images when the
reconstruction method is BP and FLASSO. We can see that
in all the cases, our proposed methods display higher speckle
reduction (almost by a factor of 5 or higher) than the other
methods. These results validate the efficacy of our proposed
methods. Note, an interesting general observation can be made
about our proposed methods. We see that for MLW results,
AdSA-Mean outperforms the AdSA-RMS, and for speckle
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Fig. 13: Speckle Regions

results, it is vice versa. Since AdSA-Mean uses the segment
mean as the change statistic, it seems this has a positive impact
on reducing the side-lobes and enhancing the MLW. In case of
AdSA-RMS, since RMS is used as the change statistic, which
is related to data variance, it is understandable that it would
have a positive impact on speckle reduction which also relates
to data variance (as explained in the previous paragraph).
Thus, our proposed methods can also provide the flexibility
of favouring a particular performance metric, if so desired.

We also compare the performance of our proposed methods
with another recently proposed adaptive integration method,
i.e., [29]. Here, we refer to this method as, AdSA-[29]. As
explained in Section I, this method estimates the SPA of
a scatterer by fitting a Gaussian function to the scattering
response, followed by determining a common SPA for all
the scatterers. For illustration, we only consider CH2 data of
the radar when the image is reconstructed via BP. Figure 14
shows this comparison. We can see that AdSA-[29] provides
reasonable imaging results, however, the noise floor seems to
be much higher than our imaging results. Table X provides
the quantitive results for this comparison for MLW (750
scattterers) and speckle metrics. We can see that our proposed
methods outperform AdSA-[29] for both the performance
metrics.

In order to prove that our proposed methods are not bound
to one dataset, we also provide the performance results for
the publicly available dataset of a backhoe target [38]. This
is a synthetic dataset, generated over a dome/circular aperture
around the target (Figure 15) at an elevation angle of 30◦,
for the angular range −10◦ to 100◦, with a bandwidth of 5.9
GHz and with a central frequency of 10 GHz. Figure 16 shows
the aperture integration performance of FA, SA, AdSA-Mean
and AdSA-RMS methods, for BP based image reconstruction.
We can see that our proposed methods show sharp images
with reduced noise levels. Figure 17 shows a close-up on
the lower left side of the target. We can clearly see that
our proposed methods have succeeded in removing the noise-
like artefact in comparison to FA and SA. Table XI provides
the quantitative results of this comparison for MLW metric

TABLE VI: Speckle Comparison for Different Integration
Methods on Trolley Dataset (Region-1)

FA SA AdSA-Mean AdSA-RMS

BP (CH2) 14.7837 14.2578 7.2674 5.5332

BP (CH3) 14.9768 6.9173 11.9831 10.0790

FLASSO (CH2) 1.3969 3.1302 0.7906 0.7935

FLASSO (CH3) 1.9614 2.8420 1.6522 1.8710

TABLE VII: Speckle Comparison for Different Integration
Methods on Trolley Dataset (Region-2)

FA SA AdSA-Mean AdSA-RMS

BP (CH2) 13.3060 10.9294 4.8563 4.0300

BP (CH3) 10.9760 3.2073 9.4528 8.3557

FLASSO (CH2) 0.2439 0.2093 0.2080 0.1721

FLASSO (CH3) 1.0976 0.6558 0.8820 0.9739

TABLE VIII: Speckle Comparison for Different Integration
Methods on Trolley Dataset (Region-3)

FA SA AdSA-Mean AdSA-RMS

BP (CH2) 14.3353 22.1857 6.2335 4.7359

BP (CH3) 11.9102 20.0988 9.2830 7.9054

FLASSO (CH2) 1.7476 6.3576 1.0427 1.0689

FLASSO (CH3) 2.0534 6.3834 1.4258 1.5926

TABLE IX: Speckle Comparison for Different Integration
Methods on Trolley Dataset (Region-4)

FA SA AdSA-Mean AdSA-RMS

BP (CH2) 9.4450 16.1770 2.6328 2.0519

BP (CH3) 4.0698 5.6039 2.8655 2.4517

FLASSO (CH2) 0.5490 1.7409 0.2571 0.2683

FLASSO (CH3) 0.6251 1.7256 0.4840 0.5017

TABLE X: Comparison for Adaptive Integration Methods
on Trolley Dataset (CH2) via Back-Projection

MLW Speckle Regions
(750) Region-1 Region-2 Region-3 Region-4

AdSA-[29] 0.4524 12.0242 14.5445 12.4758 9.3170

AdSA-RMS 0.3080 5.5332 4.0300 4.7359 2.0519

AdSA-Mean 0.3053 7.2674 4.8563 6.2335 2.63284

with varying number of strong scatterers. Again, we can see
that our proposed methods have outperformed the traditional
approaches. Note, since this is a synthetic dataset, there is
no real speckle in the data. Therefore, we have not provided
speckle results. However, as mentioned earlier, regarding
Figure 17, our proposed methods have shown higher noise
rejection capability than the other methods.

VI. CONCLUSIONS

In this paper, we have presented an adaptive sub-aperture
integration method for wide-angle SAR for improved imaging.
We have proposed to employ change-point detection methods,
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(a) AdSA-RMS (b) AdSA-Mean

(c) AdSA-[29]

Fig. 14: Adaptive Integration methods, with BP-based image
reconstruction, for CH2.

Fig. 15: Backhoe Target

which use change statistics of the scattering response data,
to estimate the persistence angle of the scatterers, and con-
sequently enhance the coherent integration gains. We have
provided qualitative and quantitative analyses to gauge the
performance of our proposed methods. We have compared our
proposed methods with the standard integration approaches
as well as a recently proposed adaptive integration approach.
The performance results show that our proposed methods have
the ability to enhance image resolution as well as reduce
speckle/noise artefacts in comparison to the existing methods.
We have presented experimental results on the real-dataset
collected on our 300 GHz radar as well as on the publicly
available backhoe dataset. These results validate our claims.

TABLE XI: MLW Comparison for Different Integration
Methods on Backhoe Dataset via Back-Projection

No. of Strongest Scatterers
1000 2000 3000

FA 0.55095 0.57869 0.60043

SA 0.57147 0.62265 0.68141

AdSA-RMS 0.52221 0.54984 0.57218

AdSA-Mean 0.4892 0.51167 0.53917

(a) FA (b) SA

(c) AdSA-RMS (d) AdSA-Mean

Fig. 16: Aperture Integration methods, with BP-based image
reconstruction.

Fig. 17: Comparison of integration methods, with BP-based
image reconstruction.

APPENDIX A
MEASURE OF SPATIAL RESOLUTION

As explained in Section V, we use the 3-dB main-lobe width
(MLW), as a metric to measure the spatial resolution of the
radar image. The following procedure is used to find MLW.
For an I × J target image, with pixel locations (xi, yj), for
i = 1, · · · , I and j = 1, · · · , J , and respective pixel inten-
sities, γi,j , let the brightest scatterers among these pixels are
represented as (xz, yz), for z = 1, · · · , Z, where Z ⊂ I × J ,
with respective pixel intensities γz . Note, here we assume the
pixel intensities to be in dBs. Then, the MLW for zth scatterer
can be obtained as

MLWz = min
√

(xi − xz)2 + (yj − yz)2, ∀(xi, yj) (20a)

s.t. γi,j ≤ γz − 3 (20b)
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and the MLW for the whole image is obtained as

MLW =

Z∑
z=1

MLWz. (21)

Note, for a finer estimate, we interpolate over (xi, yj) in (20a)
so that (20b) is close to equality.

APPENDIX B
MEASURE OF SPECKLE

Given the pixel intensities, γi,j in dBs, for i = 1, · · · , I ′
and j = 1, · · · , J ′, of a smooth and non-target, I ′ × J ′ patch
of the image, where I ′ ⊂ I and J ′ ⊂ J , the speckle volume
can be measured as

var(γ1,1, · · · , γI′,1, · · · , γI′,J) (22)

where var(·) denotes the standard mathematical function of
variance.
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