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On the integration of deterministic opinions into mortality

smoothing and forecasting

Viani Biatat Djeundje

University of Edinburgh

Abstract: Modelling and forecasting mortality is a topic of crucial importance to actuaries and de-

mographers. However, forecasts from the majority of mortality projection models are continuations

of past trends seen in the data. As such, these models are unable to account for external opinions

or expert judgement. In this paper, we present a method for the incorporation of deterministic

opinions into the smoothing and forecasting of mortality rates using constraints. Not only does

our approach yield a smooth transition from the past into the future, but also, the shapes of the

resulting forecasts are governed by a combination of the opinion inputs and the speed of improve-

ments observed in the data. In addition, our approach offers the possibility to compute the amount

of uncertainty around the projected mortality trends conditional on the opinion inputs, and this

allows us to highlight some of the pitfalls of deterministic projection methods.

Key words: mortality, forecasting, expert opinions, smoothing, conditional uncertainty.

1 Introduction

Most actuarial calculations and demographic projections involve assumptions about the future. In

life insurance in particular, the future trajectories of mortality trends are of crucial importance

because unanticipated mortality improvements (Willets, 1999) can have detrimental effects not

only on the planning of national social programs but also on the financial stability of the insurance

industry, including pension plans and annuities.

Various mortality projection models have been proposed and developed successfully, including

the Lee-Carter model and its extensions (Lee and Carter, 1992; Renshaw and Haberman, 2006;

Brouhns et al., 2002; Delwarde et al., 2007; Debón et al., 2010), the CBD model and its exten-

sions (Cairns et al., 2006, 2009; Plat, 2009), and P-splines smooth models (Currie et al., 2004,
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2006; CMI, 2006; Djeundje and Currie, 2010; Biatat and Currie, 2010) among others. These mod-

els are built on different assumptions and they often yield different projected trends. Thus, in

practice, using several projection models generally gives more insight into the potential directions

of mortality improvements than using a single model; see Debón et al. (2010), Woods (2016) and

Richards et al. (2014, 2017) for discussion and illustration.

There is a role for flexible models that can integrate emerging information or expert opinions

in such a way that the impact of these opinions can be switched on or off. Indeed, this would

allow better understanding and greater scrutiny of the financial implications of potential mortality

trajectories. However, a common feature of current mortality projection models is that they are

extrapolative. That is, they are built on historical data and the resulting projected trends are

continuations of past behaviour in mortality rates. As such, these models are not flexible enough to

allow a direct incorporation of external opinions (or expert judgement) in the calibration process

or in the exploration of 1-in-200 years type events.

The desire to incorporate opinions into mortality forecasting is not new (Janssen and Kunst, 2007;

Stoeldraijer et al., 2013). In this context, short-term projections are usually treated separately

from long-term forecasts, and the former is based on the general principle that the near future

resembles the recent past (Andreev and Vaupel, 2006). However, long-term projections are tricky

and the outcome crucially depends on the choices made as part of the forecasting procedure. For

example, it is well known that the use of general extrapolative mortality forecasting methods can

yield unlikely future patterns in the long run (Currie, 2015; Janssen et al., 2013).

One way to overcome these issues is to include information about the determinants of past trends in

the mortality forecast. For example, several studies have attempted to incorporate epidemiological

information into mortality forecasting; see French and O’Hare (2014), Janssen et al. (2013) or

Preston et al. (2014) among others.

In the context of longevity insurance, actuaries find alternative ways to account for expert opin-

ions in their pricing and liability calculations. For longevity risk in the UK for instance, mortality

opinions are often expressed in terms of long-term mortality improvements and are incorporated

into the calculation process via a two-stage procedure. The first stage consists of fitting a mortality

model without forecasting, and the second stage is to draw sensible lines between the fitted rates

and the assumed long-term rate (CMI, 2006, 2016). However, there are caveats with this type of

procedure. For example, it can lead to discontinuities as one moves from the past into the future. In

addition, the speed or direction of travel are subjective. Furthermore, it is difficult to quantify the

uncertainty around the projected mortality trends from such a procedure, unless one relies on some

post adjustments of the output from a separate stochastic mortality model; see for example Cairns

(2017).
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In this paper, we present a direct method for the incorporation of deterministic opinions into the

smoothing and forecasting of mortality rates. Our method is built in the framework of P-splines (Eil-

ers and Marx, 1996; Currie et al., 2004) and the estimation methodology is adapted from the

contained equations in Currie (2013).

The reason for choosing P-splines framework is that, not only does it allow the smoothing of the

data and forecasting to be performed in one stage, but also, the framework is flexible enough to

handle even extreme opinion specifications. Our contribution is (a) to show how to appropriately

re-parameterize deterministic opinions stated in terms of standard mortality metrics into the model,

(b) to describe how to calibrate a P-splines mortality model in conjunction with opinion inputs in

such a way that the resulting mortality trends are a combination of the signals from past trends and

the expert opinions, (c) to quantify the amount of uncertainty around the central projected trends

conditional on the opinion inputs, and (d) to apply our method to real world mortality data under

various opinion scenarios.

There are many alternative smoothing frameworks in the literature including kernel smoothing,

splines smoothing, locally weighted regression, direct smoothing, etc. A comparison of some of

these methods in the mortality context was carried out by Debón et al. (2006). More recently,

Ludkovski et al. (2018) described how mortality smoothing can be carried out through a kernel

method within a Gaussian Process framework, and illustrated how this can be implemented in a

Bayesian way using MCMC method. An attractive feature of the Bayesian method resides in the

possibility to incorporate stochastic prior information by specifying prior distributions for the model

parameters.

In practice in the longevity industry however, the use of deterministic opinions remains very pop-

ular (CMI, 2006, 2016). In addition, prior opinions are often formulated on the scale of standard

mortality metrics; the conversion of such prior specifications into prior distributions on model pa-

rameters is not always straightforward. Our work in this paper focuses on the incorporation of

deterministic opinions via penalty and constraints. In particular we show how opinions stated di-

rectly in terms of popular mortality metrics can be built into a smooth mortality model using well

known statistical techniques. The method of P-spline is our underlying smoothing method. A de-

tailed exploration of the benefits of P-splines compared to other smoothing methods can be found

in Eilers and Marx (2010). For example the resulting smooth surface can be decomposed into

an age component, a time component and an interaction term through the underlying difference

penalty. A thorough description and illustration of this within the spatio-temporal framework can

be found in Lee and Durban (2011).

The paper is organised as follows. Section 2 provides a brief overview of mortality smoothing using

the method of P-splines and discusses some practical challenges often encountered in the actuarial
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mortality context. Section 3 describes how to incorporate deterministic opinions into mortality

smoothing and forecasting. Section 4 presents some applications of our method, and we close with

some concluding remarks in Section 5.

2 Smoothing mortality data

Our approach to the incorporation of opinion inputs requires a flexible smooth modelling frame-

work to start with.

Thus, in this section, we begin with a brief description of the flexible method of P-splines smoothing

as it applies to mortality data, and set up some notation for the rest of the paper. For ease of

presentation we shall start in one dimension and then move to two dimensions.

2.1 Smoothing mortality data in one dimension

Let us consider mortality at a given age, x, for calendar years from t1 to tn in ascending order, and

let us denote by Dx = (D1, ..., Dn) and Ex = (E1, ..., En) the vectors of death counts and central

exposed-to-risk, respectively.

A standard way to estimate trends from aggregated mortality data is based on the assumption that

the death experience follows a Poisson1 distribution with mean proportional to the exposed-to-risk:

Dj ∼ Poisson (Ej × µj) , g(µj) = S(tj), (2.1)

where µj represents the force of mortality in calendar year tj , g is the link function, and S is a

smooth function that we want to estimate and extrapolate.

There are several ways to estimate a smooth function, one of the most appealing approaches being

the method of P-splines (Eilers and Marx, 1996; Currie et al., 2004).

The method shares several features with standard regression. In particular, it involves expressing

the smooth function S as a linear combination of a basis of B-splines:

S(t) =

c∑
k=1

B{k}(t) × θk, (2.2)

where the B{k}(t), 1 ≤ k ≤ c, represent the values of the B-spline functions at time t, and the θk
denote the regression coefficients associated with the B-spline basis.

1In practice, some aggregated mortality data are prone to over-dispersion. This, invalidates the Poisson assumption

and can lead to under-smoothing and unstable forecasts. A simple way to circumvent this violation is to replace the

Poisson distribution by the quasi-Poisson (Djeundje and Currie, 2010; CMI, 2014).
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In practice the smooth aspect of the model is achieved by penalising differences in adjacent coeffi-

cients via the optimisation of the penalised log-likelihood, `P , given by

`P (θ) = `(θ)− θ′Pλθ, with Pλ = λ∆′∆. (2.3)

In this expression, θ = (θ1, ..., θc)
′ represents the joint vector of coefficients, `(θ) is the ordinary

Poisson log-likelihood arising from (2.1), Pλ is the roughness penalty matrix, λ is the scalar smooth-

ing parameter, and ∆ is the difference matrix operator. In practice the second order difference is

often preferred because it produces sufficient flexibility over the data range, and when used for

forecasting, the shape of the extrapolated spline coefficients ties reasonably well with that of the

fitted coefficients, provided there is a sufficiently strong signal in the forecasting direction.

If we denote by t the joint vector of time points i.e. t = (t1, ..., tn), by Bt the matrix of B-splines

along the time points t, i.e. Bt = [B{1}(t) : · · · : B{c}(t)], then, the value of the coefficient vector

that maximises the penalised log-likelihood in (2.3) is found by solving the following penalised

version of the scoring algorithm:(
B′t W̃Bt + Pλ

)
θ̂ = B′t W̃ z̃, (2.4)

where W is the diagonal weight matrix and z is the so-called working variable; tilde (˜) refers to

an approximate solution, and hat (ˆ) refers to an improved estimate (Currie et al., 2004).

Actuaries often need to forecast mortality into the far future when calculating present values of

pension and annuity liabilities. With the method of P-splines, mortality projection is treated as

a missing data problem, and the penalty is used to fill-in the missing data. For example, let us

consider mortality data for calendar years t = (t1, ..., tn). To forecast for r years into the future,

these r future years are first appended to t and the B-splines are computed along the augmented

time vector t+ = (t1, ..., tn, tn+1, ..., tn+r). Thus, the original n × c B-spline matrix Bt becomes an

augmented (n+ n+)× c+ matrix of B-splines in time. Accordingly, an augmented iterative system

similar to (2.4) is solved, yielding estimates of the spline regression coefficients for both the data

and forecasting regions.

So far, we have overlooked a very important issue: the choice of the smoothing parameter, λ. To

provide a reasonable balance between the conflicting characteristics of goodness of fit and parsi-

mony, λ is often selected as the minimiser of the Bayesian Information Criteria given by

BIC = Deviance + log(n)× ED, (2.5)

where ED represents the effective dimension of the model.

2.2 Smoothing mortality data in two dimensions

Population mortality data are generally available in a two-dimensional form.
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The P-spline machinery in this context works by analogy to the one-dimensional case.

Let us denote by x = (x1, ..., xn1) and t = (t1, ..., tn2) the vectors of age and year indices. Also,

letD represent the n1×n2 table of death counts and Dij the entry ofD corresponding to age xi in

calendar year tj . Similarly, let E and Eij represent corresponding quantities in the exposure data;

i.e. E is the n1×n2 matrix of exposure-to-risk of death, and Eij is its entry corresponding to age xi
and calendar year tj . The basic model assumption (2.1) is extended to

Dij ∼ Poisson (Eij × µij) , g(µij) = S(xi, tj), (2.6)

where S is now a bivariate smooth function.

To estimate S, we express it in terms of marginal bases of B-splines in age and time; ie

S(xi, tj) =

c1∑
k=1

c2∑
l=1

B
{k}
1 (tj)×B{l}2 (xi) × Θkl, (2.7)

where the B
{k}
1 and B

{l}
2 are marginal B-splines in age and time respectively, and the Θkl are

coefficients to be estimated.

Let us denote by Θ the c1× c2 matrix whose entries are the Θkl. By analogy to the one-dimensional

case, the smoothness of the model is achieved by penalising the rows and columns of Θ. If we

denote by θ the c1c2-length vector obtained by stacking the columns of Θ, ie θ = vec(Θ), then,

this two-dimensional penalization of rows of columns of Θ is equivalent to applying the penalty

matrix Pλ1,λ2 on the coefficient vector θ, where

Pλ1,λ2 = λ1(Ic1 ⊗∆′1∆1) + λ2(∆
′
2∆2 ⊗ Ic1)· (2.8)

In this expression, λ1 and λ2 are smoothing parameters in age and time; ∆1 and ∆2 are second

order difference operators in age and time; Ic is the c × c identity matrix, and ⊗ is the Kronecker

product.

With this in place, model fitting is carried out as in the one-dimensional case, but, with death data

given by vec(D), exposure data vec(E), regression matrix Bt ⊗ Bx, link function g, and penalty

matrix Pλ1,λ2 . Projection can also take place not only in time, but also in age, by augmentation of

the relevant marginal bases as described in Section 2.1. This shall be illustrated in Section 4.

One challenge with P-splines reported in the actuarial context is what is known as the edge effects.

That is, the fitted mortality rates toward the edge of the data can be unduly influenced by the

relative level of experience in that final year (CMI, 2006). One may argue that this can potentially

lead to unrealistic mortality forecasts.

However, it is important to bear in mind that in any forecasting method, beside the data, forecasts

are also controlled by a number of key parameters. With P-splines in particular, forecasts can
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be controlled by the splines knots spacing, the smoothing parameters and the difference order

of the penalty. Stable mortality forecasts can be achieved through appropriate selection of these

parameters. See for example Richards (2009) on the illustration of the importance of the knots

spacing, Djeundje (2011, sect. 5.3) on the importance of appropriate smoothing parameters, or

Carballoa et al. (2017) on the quantification of the impact of individual data points on the forecast.

In addition, the incorporation of opinion inputs into the estimation process (as we shall see in the

next sections) does reduce the impact of the data at the edges on the direction of the forecast,

especially as one approaches the opinion points.

3 Integrating opinions into the model

Actuaries like to investigate mortality scenarios subject to some prior or expert opinions, in conjunc-

tion with scenarios produced by full stochastic mortality projection models. These investigations

are usually carried out through various metrics, including the force of mortality, mortality rates,

mortality improvements or mortality reduction factors. In the projection method used by CMI

(2006, 2016) for instance, an important component of the user’s opinions is specified in terms of

long-term rates of mortality improvements.

In this section we look at how to build deterministic opinions into mortality smoothing and forecast-

ing. For ease of presentation, we shall assume that any opinions about mortality can be expressed

clearly on the scale of the force of mortality (equivalently, mortality rates) or in terms of mortality

improvements (equivalently, mortality reduction factors). We start in one dimension as in Section 2.

Thus, let us consider mortality data Dx and Ex at a given age, x, for calendar years t = (t1, ..., tn).

3.1 Incorporating deterministic opinions about the force of mortality

On the scale of the force of mortality, we are interested in projection scenarios in which the force

of mortality at age x in calendar years to = (to1, ..., tou) is known a-priori, where u is an integer. We

shall denote by, µ̊x,tok
, the a-priori value of the force of mortality at age x and calendar year tok,

k = 1, ..., u.

For example, let us consider mortality data at age, x = 60, for calendar years, t = (1970, · · · , 2010).

We might want to fit a smooth line to these data and forecast the trend into future in such a way

that the forecast values of the force of mortality at calendar years to = (2025, 2030) are set to

µ̊60,2025 = 0.006 and µ̊60,2030 = 0.005.

In general, let us assume that we want to estimate and forecast a smooth mortality trend to the
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data as described in Section 2, but, such that the mortality trend fulfils the following conditions:

µx,tok
= µ̊x,tok

, 1 ≤ k ≤ u, (3.9)

where µ̊x,tok
are known values of the force of mortality at age x in calendar years tok, and µx,tok

denotes the fitted force of mortality. The µ̊x,tok
represent prior opinion inputs on the scale of the

force of mortality.

This prior opinion (3.9) imposes some restriction on the shape and trajectory of the fitted mortality

trend. We will refer to this type of equations as the opinion constraints. There is no restriction on

the time-locations tok ’s of these opinion constraints.

The opinion constraints (3.9) can be expressed compactly as

Btoθ = g(µ̊x,to), (3.10)

where Bto denotes the u × c sub-matrix of the B-spline matrix in (2.2) whose rows correspond to

the opinion times to; g is the link function as in (2.1), and µ̊x,to = (µ̊x,to1 , ..., µ̊x,tou) is the joint

vector of known forces of mortality.

Thus, we have defined a penalised GLM with Poisson error (2.1)-(2.2), penalty matrix Pλ, link

function g, and deterministic opinions given by (3.10). The estimation process is described in

Section 3.3 below.

3.2 Incorporating deterministic opinions about mortality improvements

Alternatively, one may want to investigate a mortality scenario in which the mortality improvement

rates at a given age x in calendar years to = (to1, ..., tou) are known a-priori. We shall denote

by, ı̊x,tok , the a-priori value of the mortality improvement rate at age x and calendar year tok,

k = 1, ..., u.

For example, let us consider mortality data at age, x = 60, for calendar years, t = (1970, · · · , 2010).

We might want to fit a smooth line to these data and forecast the trend into future in such a way

that the resulting forecast of the mortality improvement rates in calendar years to = (2025, 2030)

are set to ı̊60,2025 = 1.5% and ı̊60,2030 = 1.1%.

In general, let us assume that we want to fit and forecast a smooth mortality trend to the data as

described in Section 2.1, but such that

qx,tok−1 − qx,tok
qx,tok−1

= ı̊x,tok , 1 ≤ k ≤ u, (3.11)

where ı̊x,tok are known values of mortality improvements at age x in calendar years tok.
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We propose two methods to express the opinion constraints (3.11) in a similar form as (3.10). The

first method is an approximation whereas the second method is exact.

3.2.1 Approximate incorporation of mortality improvements opinions

The left hand-side of equation (3.11) can be expressed in terms of the force of mortality as

qx,tok−1 − qx,tok
qx,tok−1

= 1−
qx,tok
qx,tok−1

= 1−
1− exp(−µx,tok

)

1− exp(−µx,tok−1)

Applying the first order Taylor expansion for “exp(y)” yields

qx,tok−1 − qx,tok
q̂x,tok−1

≈ 1−
µx,tok

µx,tok−1

Equation (3.11) becomes

1− ı̊x,tok ≈
µx,tok

µx,tok−1

· (3.12)

Thus, assuming the Poisson canonical link, ie g(µ) = ln(µ), the opinion constraints (3.11) can be

rearranged compactly as

(Bto −Bto−1)θ ≈ ln(1− ı̊x,to) (3.13)

where Bto and Bto−1 denote the u × c sub-matrices of the B-spline matrix in (2.2) corresponding

to the opinion time vectors to and (to − 1), and 1 is a vector of 1’s.

Hence, we have defined a penalised GLM with Poisson error (2.1)-(2.2), penalty matrix Pλ, log link,

and deterministic opinions expressed in (3.13). The estimation process is described in Section 3.3

below.

3.2.2 Exact incorporation of mortality improvements opinions

Approximation (3.12) is valid only when the µx,to1 and µx,to1−1 are small. Therefore, the method in

Section 3.2.1 might not be suitable for high mortality (for example the mortality of the very old).

Alternatively, let us set the link function to g(µ) = ln(1− exp(−µ)); that is

ln(1− exp(−µx,t)) = Bt θ (3.14)

The improvement opinions in (3.11) can then be rearranged and expressed compactly as

(Bto −Bto−1)θ = ln(1− ı̊x,to)· (3.15)
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Thus, we have a penalised GLM with Poisson error (2.1)-(2.2), penalty matrix Pλ, link function

g(µ) = ln(1− exp(−µ)), and deterministic opinions given by (3.15). In this case, the link function

corresponds to the logarithmic transform of the mortality rates.

It is worth clarifying that although the approximate constraint equation (3.13) and its exact coun-

terpart (3.15) have the same form, the underlying models use different link functions. An illustra-

tion of the difference arising from the two approaches will be shown in Section 4.

3.3 Fitting the model, standard errors and extension to two dimensions

We have established that deterministic opinions can be expressed as a set of linear constraints on

the regression or spline coefficients as in (3.12) or (3.15); i.e.,

Coθ = zo, (3.16)

whereCo is a matrix made up of a simple combination of the rows of the B-spline regression matrix

and zo is the joint vector of opinion inputs.

Thus, fitting the model under these opinions reduces to the optimisation of the penalised log-

likelihood `P subject to the constraints (3.16). Many strategies have been developed for constrained

optimisation problems; see for example Strang (1986), Bjørck (1996) and Currie (2013) among

others. Here we use the Lagrange multiplier method. Hence we consider the Lagrange objective

function

L(θ, δ) = `P (θ) + (Coθ − zo)′δ, (3.17)

where δ is the vector of Lagrange multipliers.

The value of (θ, δ) that maximises L can be obtained using the Newton-Raphson method (Strang,

1986; Currie, 2013). In particular, by adapting the result in Currie (2013), it can be shown that the

value of (θ, δ) that maximises L corresponds to the solution of the following extended penalised

scoring equations (
B′t W̃Bt + Pλ C ′o

Co 0

)(
θ̂

δ̂

)
≈

(
B′t W̃ z̃

zo

)
(3.18)

At convergence, the conditional effective dimension and conditional covariance matrix of the fitted

mortality trend can be computed based on the inverse of the 2 by 2 block matrix on the left hand

side of (3.18). If we set A = B′t ŴBt + Pλ, and apply the formula for the inverse of block

matrices (Searle et al., 2006), we obtain(
A C ′o

Co 0

)−1
=

(
A−1 −A−1C ′o(CoA−1C ′o)−1CoA−1 A−1C ′o(CoA

−1C ′o)
−1

(CoA
−1C ′o)

−1CoA
−1 −(CoA

−1C ′o)
−1

)
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Hence, the covariance of θ̂ is

Cov(θ̂ | opinions) = A−1 −A−1C ′o(CoA−1C ′o)−1CoA−1, (3.19)

and the effective dimension (ED) of the model is

ED | opinions = trace{ (A−1 −A−1C ′o(CoA−1C ′o)−1CoA−1)B′tŴBt } (3.20)

From expressions (3.19), the covariance matrix of the estimator of the fitted mortality curve Btθ̂

can be computed as

Cov(Btθ̂ | opinions) = Bt Cov(θ̂ | opinions) B′t

= BtA
−1B′t −BtA

−1C ′o(CoA
−1C ′o)

−1CoA
−1B′t· (3.21)

The square roots of the diagonal elements of expression (3.21) are the estimated standard errors

of the fitted mortality trends. We illustrate these standard errors in Section 4.2 below.

In general, the deterministic opinions tend to reduce the spread of the confidence intervals around

the estimated mortality curves. In particular, when the opinions are formulated on the scale of the

force of mortality or mortality rates as in Section 3.1, the standard errors of the fitted mortality

curves vanish at the opinion time points to. Indeed,

Cov(Bto θ̂ | opinions) = Bto Cov(θ̂ | opinions) B′to

= BtoA
−1B′to −BtoA

−1C ′o(CoA
−1C ′o)

−1CoA
−1B′to (3.22)

= 0 if Co = Bto ·

We emphasise that the standard errors arising from (3.19) must be interpreted with caution because

they are conditional on the opinion inputs. This is illustrated and discussed in Section 4.2 below.

So far we have described how to build deterministic opinions into the model in one-dimensional

settings. This can be extended to two dimensions. As in Section 2.2, let us consider mortality dataE

and D, each stored in a matrix form for ages x = (x1, ..., xn1) and calendar years t = (t1, ..., tn2).

Without loss of generality, let us suppose that one is interested in modelling and forecasting mor-

tality rates under the assumption that mortality improvements in given cells (xo1, to1), ..., (xou, tou)

are known a priori. That is, one would like to fit a mortality surface to the data such that

1−
qxok,tok

qxok,tok−1

= ı̊xok,tok
, (3.23)

where the ı̊xok,tok are known values of the mortality improvements, and the qx,t are fitted mortality

rates.

11

Page 11 of 27

Cambridge University Press

Annals of Actuarial Science



For Peer Review

Note that the deterministic opinions can be formulated on different scales as in Section (3.1). Also,

there is no restriction on the locations (xok, tok) of the opinion constraints in the sense that some

opinion cells (xok, tok) can be within the data regions as well as outside of the data region.

If we denote by Θ the matrix of spline coefficients as in Section 2.2, by Co the matrix obtained by

stacking the rows of the one-row matricesBtok ⊗Bxok , 1 ≤ k ≤ u, on top of each other, and we set

θ = vec(Θ) and zo = (̊ıxo1,to1 , ı̊xo2,to2 , ..., ı̊xou, tou), then, the two-dimensional opinion (3.23) takes

the matrix form of (3.16).

Hence, the fitted mortality surface encapsulating the data and the opinion inputs is obtained by

solving an augmented system of iterative equations as in (3.18), but with Bt replaced by the two-

dimensional B-splines basisBt⊗Bx, and Pλ replaced by the penalty matrix Pλ1,λ2 defined in (2.8).

Furthermore, the conditional covariance matrix and effective dimension of the fitted mortality

surface can be computed as in (3.11), but, with Bt and Pλ substituted by Bt ⊗Bx and Pλ1,λ2 .

We close this section by noting that setting very dissimilar opinion inputs in successive ages/years

can yield an unsmooth mortality surface, especially in the vicinity of the opinion locations. Also,

setting a large number of opinion inputs (e.g. opinions at every single age/year) can cause sin-

gularities in the extended penalised scoring equation (3.18). These problems can be tackled by

adding a small ridge penalty to the penalty matrix (Hoerl et al., 1970), by selecting a subset of the

opinion inputs to work with, or by increasing the number of B-splines.

3.4 Similarities and differences with CMI projection approach

The Continuous Mortality Investigation (CMI) carries out research into mortality and morbidity

experience on behalf of the Institute and Faculty of Actuaries, and produces practical tools for

mortality projection that are widely used in the insurance industry to support the pricing and

valuation of pension and annuity business. The projection methodology used by CMI has evolved

over time, taking into account relevant literature on the mechanisms that determine ageing and

longevity, including empirical features such as cohort effects (Willets, 2004), as well as latest work

on mortality forecasting methods.

In the most recent CMI projection models (CMI, 2014, 2016, 2020), the basic approach is to project

mortality improvement rates by interpolating between current improvement rates and some as-

sumed long-term improvement rates. The current improvement rates are estimated from historical

data whereas the long-term improvement rates are set by users of the CMI model. This interpola-

tion process is carried out separately for age-period and cohort components, and these components

are then summed to give the overall mortality improvements. In this process, the shape of the

projected rates is driven by a large number of parameters, including the initial direction of travel
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of mortality improvements, the convergence period, and the proportion of the remaining improve-

ments at the midpoint. The users of the tools can then control projected mortality improvement

patterns by playing with these parameters.

Some of features of the CMI approach can be found in the method presented in this paper. In

particular, the initial and long-term improvement rates in the CMI approach can be fed into our

framework as opinion inputs; the age-dependent convergence period can also be specified. By

default, the initial direction of travel and the proportion of the remaining improvements at the

midpoint are controlled by the smoothing process. However the users of our approach can alter

these defaults. For example, let us denote by t0 the initial calendar year, by Tx the age-dependent

convergence period, by ix,t0 the initial improvement rates, and by ix,t0+Tx the long term improve-

ment rates. A proportion of remaining improvements of a% at midpoint is achieved within our

framework by setting the deterministic input in equation (3.12) to

ı̊x,to+Tx
2

= ix,t0+Tx +
a(ix,t0 − ix,t0+Tx)

100
(3.24)

A major criticism of the CMI projection methodology is that the shape of the forecast is subjective

and comes without any uncertainty measure. The methodology presented in this paper (i) combines

smooth patterns from the data together with the opinion inputs to derive forecasts and (ii) also

allow us to compute the amount of uncertainty around the forecasts conditional on the input opin-

ions. Moreover, unlike the CMI model, the approach presented in this paper allows us to specify

opinions not only in terms of mortality improvements, but also in terms of other mortality metrics

by ages and calendar years. In the application Section 4.1 for instance, we shall specify opinion

directly on mortality rates as well as on mortality improvements.

4 Applications

For illustrations, we use mortality data for UK males, ages 50 to 95 and calendar years 1965 to 2010

from the Human Mortality Database. We start by fitting and forecasting mortality in age and time

without opinion constraints. We use cubic B-splines with five-year equi-spaced knots in age and

time, and apply second order difference penalties to achieve smoothing. In the time direction we

project 35 years into the future, and in the age direction we project from age 95 to age 105. The

output of the fitted model is shown in Figure 1. This is broadly as expected: increasing mortality

rates with age, and mortality reduction over time.
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Figure 1: Output from the model without opinion constraints.

Upper panels: fitted and projected mortality rates.

Lower panels: mortality improvements.
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4.1 Some scenarios involving opinion inputs

We now turn to the model involving opinion inputs, and we consider two scenarios. The first sce-

nario states opinion inputs in terms of mortality improvement rates whereas the second expresses

opinions in terms of mortality rates.

4.1.1 Scenario 1

In this first scenario, we set opinions about mortality improvements rates according to equation

equation (4.25). In order words, we assume that the mortality improvement rate from age 50 to

age 85 in 2029 is set to 1.5%, and then decreases linearly from that value of 1.5% at age 85 down

to 0.6% by age 95. A similar pattern is used to set long term improvements throughout the CMI

models.

ı̊x,2029 =


1.5% if 50 ≤ x ≤ 85

(95− x)× 1.5% + (x− 85)× 0.6%

10
if 85 < x ≤ 95

(4.25)

We then incorporate opinions (4.25) into the model using the exact method presented in Sec-

tion 3.2.2.

A comparison of the outputs from the model encapsulating these options which is shown in Fig-

ure 2 against the model without deterministic opinions shown in Figure 1. In particular, the lower

panel on the right hand side shows the convergence of the fitted mortality improvement rates

towards the deterministic opinion pattern specified in equation (4.25). Comparing this panel to

the corresponding panel in Figure 1 illustrates the impact of the opinion inputs (4.25) on the fitted

mortality improvement rates. Similarly, the resulting impact in terms of mortality rates is visualised

by comparing the upper panels of Figure 1 and Figure 2.
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Figure 2: Outputs from the model with opinions on improvements according to equation (4.25).

Upper panels: fitted and projected force of mortality.

Lower panels: mortality improvements.
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4.1.2 Scenario 2

In a second scenario, we set opinion inputs in terms of mortality rates according to Table 1. These

rates were obtained by projecting the “NLT16-18 (E&W)” mortality base table through the CMI

model with core values specifications and a long-term mortality improvement rate of 1.5%.

Age Calendar year Mortality rate

60 2029 0.007

60 2040 0.006

70 2029 0.015

Table 1: Opinion inputs about mortality rates for scenario 2.

The output from the model encapsulating the deterministic opinions in Table 1 is shown in Figure 3.

Contrasting the panels of this Figure against corresponding panels in Figure 1 and Figure 2 illustrate

how various opinion inputs can affect projections. In particular, the lower panel on the right in

Figure 3 shows an overall upward pattern of improvement rates resulting from the fact that the

improvement opinion rates at age 60 (in Table 1) are lower compared to those around the same

age from the model without opinion constraint (shown in Figure 1).
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Figure 3: Outputs from the model with opinions on mortality rates according to scenario 2.

Upper panels: fitted and projected force of mortality; the blue dots correspond to the opinion inputs.

Lower panels: mortality improvements.
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4.2 Conditional uncertainty

An essential aid to the interpretation of estimated mortality trends is the uncertainty. The deter-

ministic opinion constraints affect not only the fitted and projected mortality surface, but also its

standard error as well.

In the one dimensional case as in Section 3.3, the variances of the fitted mortality curve, g(µ̂t), are

the diagonal elements of the covariance matrix (3.21), where g represents the link function used

throughout Section 3. The computation is identical in the two dimensional case, except that the

B-spline matrix Bt is substituted by its two dimensional counterpart as described in Section 3.3.

In general, incorporation of opinion constraints tend to reduce the spread of the conditional stan-

dard error around the projected mortality curves; this is illustrated in Figure 4. Many comments

can be made about this figure.
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Figure 4: Illustration of the uncertainty around log(µ̂x,t) arising from fitting models to UK mortality

data for males from calendar year 1970 to 2010.

Left: model without opinion constraints.

Middle: model with opinion inputs on mortality improvements - See Equation (4.25).

Right: model subject to opinion constraints on mortality rates - See Scenario 2 in Table 1.

First, the panel on the left shows that the standard error about the projected trends from the model

without opinion constraints increases over time, as expected: as we travel further into the future,

the projected trends become more uncertain.

Second, the panel in the middle shows increasing standard errors during the early years of pro-

jection and then a slowdown and flattening of these standard errors due to the incorporation of

opinions constraints on mortality improvements in calendar year 2029.

Third, this slowdown of standard errors is also seen in the panel on the right hand side. In particular
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this panel shows that imposing deterministic opinion constraints on mortality rates implies that one

is claiming to know the exact values of mortality rates at the opinion locations, and as a result, the

standard error around the projected mortality rates decrease and vanishes as we approach the

opinion locations.

In general, imposing deterministic opinion constraints on a given mortality metric causes standard

error about the fitted/projected values of that metric to reduce and to vanish at the opinion loca-

tions. However, the standard errors in respect of other resulting mortality metrics do not necessarily

vanish. For example, the middle panel in Figure 4 reveals that, although deterministic constraints

are placed on mortality improvements, there are still some amounts of uncertainty around the fit-

ted mortality rates at the opinion locations. This can be ascribed to the fact that the value of the

mortality improvement rate in a given year is driven by a combination of mortality rates in two

successive years.

4.3 Exact method versus approximate method

In Section 3.2, we presented two ways to integrate opinions on the scale of mortality improvements.

In practice, the difference between these two approaches is relatively small. For illustration let us

re-consider the opinion inputs in Scenario 1 - See Equation (4.25).
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Figure 5: Illustration of the difference between the exact method (continuous lines) and its approximate

counterpart (dashed lines), from model fitted under Scenario 1. The dots represent the opinion inputs

in 2029.

An illustration of the difference between the exact method and the approximate method based on

the opinion specification of scenario 1 is shown in Figure 5. On this graphic, the smooth lines

correspond to the exact method and the dashed lines represent the approximate method. Although

the exact method appears to be more accurate at hitting the targets, this graphic indicates that the

difference the two methods is relatively small. Nonetheless, the approximate method is slightly

easier to implement because it uses the Poisson canonical link function.

4.4 Impact of deterministic opinion on the edges

Opinion input about future mortality rates can potentially impact the in-sampling smoothing of

historical data, especially towards the edge of the data region. In this section, we illustrate the

magnitude of such influence using the two opinion scenarios shown in Section 4. Under each

scenario, we compared the fitted mortality rates at the edge of the data (that is calendar year 2010

and ages 50-95) to the fitted mortality rates from the model without opinions. This comparison is

shown on graphics in Figure 6.
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Figure 6: Illustration of the impact of opinion inputs on the edge of the data region (i.e. calendar

year 2010) under the deterministic opinions in scenarios 1 and 2. Scenario 0 refers to the model

without opinion inputs. The dots (◦) represent the observed data in 2010.

Left hand panel: fitted mortality rates.

Right hand panel: change in the fitted mortality rates relative to Scenario 0.

These graphs highlight that the impact of the opinion inputs on the in-sampling smoothed surface is

relatively minor under the two scenarios considered (except perhaps at ages 50-60 for scenario 2).

A further investigation using more extreme opinion specifications yielded a similar conclusion. The

choice of the smoothing parameters plays a role here. On the one hand, large values of the smooth-

ing parameters would tend to yield a smoother mortality surface and this could increase the remote

impact of opinion inputs on the in-sampling smoothing. On the other hand, lower smoothing pa-

rameters increase the roughness/flexibility of the fitted mortality surface and, therefore, tend to

reduce the remote impact of the opinion inputs. In our experience, selecting smoothing parame-

ters through BIC adjusted for overdispersion allows us to reduce the remote impact of the opinion

inputs. Nonetheless, it is good to bear in mind that a very extreme opinion specification near the

edge of the data could yield a larger impact especially on the edges.

5 Concluding remarks

The main objective of this paper was to present a simple way of integrating deterministic opinions

into flexible mortality projection models. This has been achieved by expressing the opinion inputs
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as a system of constraints, and building them into the model using the standard machinery of

iterative weighted least squares. This integrated approach addresses many limitations of current

deterministic projection methods. In particular, the fitted and projected mortality trends arising

from our method are driven by a combination of the speed of improvements from the data and the

opinion inputs. Additionally, our approach provides a statement of conditional uncertainty around

the mortality trends.

In this work, we have focussed on opinion inputs expressed in terms of the actual value of widely

used mortality metrics. Other types of constraint can be considered. For example, incorporating

opinion constraints on the gradient of mortality rates has the potential to address the problem of

crossing over of mortality forecasts at adjacent ages often found in some mortality models. Also,

extending the work presented in this paper to account for non-deterministic opinion will be a

valuable addition to the topic of mortality forecasting.
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