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Discrete Action Control for Prosthetic Digits
Agamemnon Krasoulis and Kianoush Nazarpour , Senior Member, IEEE

Abstract— We aim to develop a paradigm for simultane-
ous and independent control of multiple degrees of freedom
(DOFs) for upper-limb prostheses. To that end, we introduce
action control, a novel method to operate prosthetic dig-
its with surface electromyography (EMG) based on multi-
output, multi-class classification. At each time step, the
decoder classifies movement intent for each controllable
DOF into one of three categories: open, close, or stall
(i.e., no movement). We implemented a real-time myoelec-
tric control system using this method and evaluated it by
running experiments with one unilateral and two bilateral
amputees.Participants controlleda six-DOF bar interface on
a computer display,with each DOF correspondingto a motor
function available in multi-articulated prostheses. We show
that action control can significantly and systematically out-
perform the state-of-the-art method of position control via
multi-output regression in both task- and non-task-related
measures. Using the action control paradigm, improve-
ments in median task performance over regression-based
control ranged from 20.14% to 62.32% for individual par-
ticipants. Analysis of a post-experimental survey revealed
that all participants rated action higher than position con-
trol in a series of qualitative questions and expressed an
overall preference for the former. Action control has the
potential to improve the dexterity of upper-limb prosthe-
ses. In comparison with regression-based systems, it only
requires discrete instead of real-valued ground truth labels,
typically collected with motion tracking systems. This fea-
ture makes the system both practical in a clinical setting
and also suitable for bilateral amputation. This work is the
first demonstration of myoelectric digit control in bilateral
upper-limb amputees. Further investigation and pre-clinical
evaluation are required to assess the translational potential
of the method.

Index Terms— Myoelectric control, electromyography,
multi-output classification, upper-limb prosthesis.
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I. INTRODUCTION

MODERN hand prostheses offer the potential of partially
restoring the functionality of a missing upper-limb.

They are typically controlled by muscular activity signals
recorded on the skin surface using electromyography (EMG)
signals. Nowadays, there exist commercial systems allowing
for grip selection and activation based on machine learning
algorithms. Nevertheless, from a technical perspective the
holy grail of upper-limb prosthetics research is the simulta-
neous and independent control of multiple degrees of freedom
(DOFs), including wrist and digit artificial joints [1]. This
currently seems as the only way to approximate the remarkable
dexterity of the human hand, which is still considered as the
nature’s most versatile end-effector [2].

Significant efforts have been made towards achieving simul-
taneous, multi-DOF myoelectric control. The term propor-
tional control is often used to describe the feasibility of
controlling one or more prosthesis output(s) in a continuous
space [3]. To that end, many research groups, including
us, have used multi-output regression-based algorithms to
map features extracted from surface or intramuscular EMG
channels onto wrist [4]–[8] and/or finger position [9]–[15],
velocity [16], and force trajectories [17]–[20]. For prosthetic
digit control, several studies have shown promise in decoding
position/velocity offline [9], [11]–[13], [15], [16], however,
only a smaller number have achieved real-time digit control
in amputees [10], [14], [21]. This indicates that, to date,
reconstruction of position/velocity trajectories from surface
EMG signals in real-time remains a challenging problem.

In this work, we introduce action control, a novel para-
digm for simultaneous and independent control of multiple
prosthetic digits. Our approach simplifies the movement intent
decoding component and makes the system more practical.
In the heart of the algorithm lies a multi-output, multi-class
classifier, which decodes movement intent for each control-
lable DOF into one of three classes (i.e., actions): open,
close, or stall (i.e., no movement). A schematic diagram
of this concept is shown in Fig. 1. From a control theory
point of view, action control can be viewed as an extreme,
discretized case of velocity control. The relationship between
digit positions, velocities and actions is illustrated in Fig. 2.
Despite using a classifier, action control allows digit posi-
tions to take values within a large set that is defined by
the action step (i.e., position increase/decrease resolution).
That is, by selecting a relatively small step, digit movement
essentially becomes continuous. One practical advantage of
this method over regression-based position control is that
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Fig. 1. Action control concept. At each time step, raw EMG signals are pre-processed and fed to a multi-output classifier with six discrete outputs.
These can take one of three possible values (i.e., actions): open, close or stall (i.e., no movement). Each output controls one DOF of a multi-articulated
prosthesis: thumb opposition/reposition, thumb abduction/adduction, and flexion/extension of the index, middle, ring, and little digits.

Fig. 2. Relationship between digit position, velocity and action. Action
control can be viewed as a discretized version of velocity control. Note
that digit positions/velocities are not required for action control. Digit
positions (top row) were collected from an able-bodied subject using a
CyberGlove Systems� CyberGlove II data glove. Digit velocities (middle
row) are computed from digit positions using first-order differentiation.
Digit actions (bottom row) are computed from digit velocities using
thresholding.

it allows for collection of noise-free ground truth labels,
without relying upon the use of motion tracking hardware
(e.g., data gloves).

In a proof-of-concept study, we have previously demon-
strated that users can employ the action control scheme to
achieve comparable performance to joint angle (i.e. position)
control in a robotic hand tele-operation task with an instru-
mented data glove [22]. In addition, we have performed a sys-
tematic offline investigation of multi-output classification for
digit action decoding [23]. Here, we provide for the first time
a real-time implementation of the algorithm for myoelectric
digit control. We test the performance of our approach with
one unilateral and two bilateral amputees and benchmark it
against the state-of-the-art in myoelectric digit control, that
is, regression-based joint position control. We discuss the
advantages of our method over the regression-based approach
and propose ideas for further improvement and pre-clinical
evaluation.

II. METHODS

A. Participant Recruitment

Three transradial (i.e., below-elbow) amputee volunteer
participants were recruited (two female, one male; median
age 59). Participants 1 and 2 were bilateral amputees and
participant 3 was unilateral. Paritcipant 1 performed the exper-
iment using their right side. Participant 2 took part in two
sessions on the same day using alternate sides (i.e., right one
in the morning session and left one in the afternoon session).
Depending on the side used in each session, the participant
is referred to as 2R or 2L (right or left side, respectively).

TABLE I
PARTICIPANT DEMOGRAPHIC INFORMATION

All participants had normal or corrected to normal vision
and reported being able to discriminate red from blue (i.e.,
no color blindness). All three subjects had previously partici-
pated in laboratory myoelectric control experiments [24]–[26],
but none of them use myoelectric control in their everyday
lives. Detailed demographic information about the participants
is provided in Table I.

All experimental procedures were in accordance with the
Declaration of Helsinki and approved by the local ethics
committee. All participants read an information sheet and gave
written informed consent prior to the experimental sessions.

B. Apparatus

The apparatus used in the study comprised a surface EMG
recording system and a state-of-the-art, multi-articulated pros-
thetic hand.

1) Surface EMG Recording System: We recorded myo-
electric signals using a Delsys� TrignoTM wireless system.
We used 16 EMG sensors, which included 12 standard Trigno
and four Trigno Mini sensors. Prior to electrode placement,
we cleansed participants’ skin using 70% isopropyl alcohol
swabs. We then placed the EMG sensors in two rows of
eight equidistant electrodes below the elbow without targeting
specific muscles. In each row, we placed six standard and two
mini sensors. We attached the transmitter units for the mini
sensors on the participants’ skin above the elbow as shown
in Fig. 3(a). Upon visual inspection of the signal quality of
all EMG channels, we secured the electrode positions using
adhesive elastic bandage. For data acquisition, we used pro-
prietary software provided by the manufacturer. The sampling
rate for all channels was fixed at 2 kHz.

2) Prosthetic Hand: We used the multi-articulated Össur�
Robo-limb hand to demonstrate target postures to participants.
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Fig. 3. Experimental protocol. (a) Electrode placement for one subject.
Sixteen surface EMG electrodes were placed below the elbow arranged
in two rows of eight electrodes. A combination of classic Delsys Trigno
and Trigno Mini electrodes were used. The transmitter components
for the mini sensors were placed above the elbow. (b) Training data
collection. Participants performed imaginary movements of single-digit
and full-hand grips that were instructed on the prosthesis. (c) Real-time
decoding. Participants controlled the position of six bars on a screen.
Target postures were instructed on the prosthesis prior to the start of the
trial. The target posture in the shown trial was the “lateral” grip.

This model, which is almost identical to the commercial
i-LimbTM Ultra Revolution prosthesis, comprises six motors
controlling the following DOFs: thumb opposition/reposition,
thumb abduction/adduction, and index, middle, ring and lit-
tle finger flexion/extension. Throughout the experiments, the
hand was placed on a desktop base and powered via an
external power supply unit (7.4 V, 7 A). The hand was
controlled by a laptop computer using a CAN bus con-
nection (baud rate: 1 MHz). We used a right-hand model
for participants 1, 2R and 3 and a left-hand model for
participant 2L.

C. Experimental Paradigm

Following EMG sensor placement, participants sat com-
fortably on an office chair and rested their arm on a table.
Experimental sessions comprised two phases: training data
collection and real-time myoelectric control. The two sessions
were interleaved with a 10-minute break, during which partic-
ipants were allowed to move freely in the lab space.

1) Training Data Collection: In the first part of the exper-
iment, participants performed a series of imaginary finger
movements that were instructed to them on the prosthesis,
while surface EMG data were recorded from their upper-
limb (Fig. 3). We included a combination of single-finger and
full-hand grip patterns: thumb opposition/reposition; thumb
abduction/adduction, and index, middle, ring and little finger
flexion/extension; cylindrical and lateral grip opening/closing;
and rest (i.e., no movement). We instructed participants to
perform the exercises smoothly and track the prosthesis move-
ment as closely as possible.

For each exercise, the opening/closing, opposi-
tion/reposition to flexion/extension parts were separate.
Thus, the total number of exercises, including rest, was 17.
Each exercise was repeated 12 times and each repetition
lasted 1.3 s, which was the time required for the prosthesis to
complete the demonstration at a moderate speed. Participants
were given 2 s of rest in-between consecutive trials. The
total duration of training data collection was approximately
12 minutes.

2) Real-Time Myoelectric Control: In the second part of the
experiment, participants were instructed to use their muscles to
control a six-dimensional bar interface as shown in Fig. 3(c).

Fig. 4. Real-time control task. Participants used their muscles to
control the position of six bars on the screen, each corresponding to
one DOF (from left to right: thumb opposition/reposition, thumb abduc-
tion/adduction, and index, middle, ring, and little finger flexion/extension).
For each DOF, blue and red bars indicate the user-controlled and target
positions, respectively. The shown example corresponds to the index
pointer with the following target positions: thumb fully adducted, middle,
ring, and little digits fully flexed (i.e., target bars 2, 4, 5 and 6 in maximum
position), thumb fully reposed, and index finger fully extended (i.e., target
bars 1 and 3 in minimum position).

Visual feedback was continuously provided at an update rate
of 15.625 Hz (Section II-D) on a 17” LCD flat panel display
positioned 1 m in front of the participants.

An illustration of the experimental task is given in Fig. 4.
Each pair of bars corresponded to one of the following
DOFs: thumb opposition/reposition and thumb, index, middle,
ring, and little finger flexion/extension. The blue bars were
controlled by the participants and showed actual positions
of the six DOFs. The red bars were kept fixed within
the trial and corresponded to target positions. Participants
were instructed to match the blue to red bars as closely
as possible.

The following target movements were included: full thumb
reposition; full flexion of the thumb, index, middle, ring, and
little fingers; cylindrical, lateral, and tripod grips; and index
pointer. Participants performed 10 blocks of trials for each
of two control conditions (Section II-E), that is, a total of
20 blocks. Every target posture was included exactly once
within a single block in a pseudo-randomized order.

Prior to the start of a trial, the target posture was
demonstrated on the prosthesis. During pilot experiments
we observed that, due to the dimensionality of the output
space (i.e., six DOFs), demonstrating the target postures to
participants ahead of the trial start was crucial for them to
quickly and unambiguously perceive the exact target posture.
Once the demonstration was complete, an audio cue (sine
wave; frequency 1000 Hz; duration 200 ms) initiated the start
of the preparation phase of the trial and the bar interface
appeared on the display (Fig. 4). Participants were then given
5 s to match the controlled posture (i.e., blue bars) to the
target (i.e., red bars) as closely as possible. At the end of
this period, a second cue indicated the start of the evaluation
phase of the trial, which lasted for 1 s. During the evaluation
phase, participants were instructed to retain the output state.
At the end of the trial, the bar interface disappeared from
the display and participants received a score characterizing
their performance during the evaluation phase (Section II-G).



KRASOULIS AND NAZARPOUR: DISCRETE ACTION CONTROL FOR PROSTHETIC DIGITS 613

The prosthesis was also reset to the neutral (i.e., resting)
posture. Consecutive trials were interleaved with 2.5 s of rest.

D. Signal Pre-Processing

Data were acquired and processed every 64 ms, which
translates into 128 new samples/channel at a 2 kHz sampling
rate. The data processing and display update rate was thus
1/0.064 s = 15.625 Hz. We processed EMG signals using a
128 ms sliding window (i.e., 50% overlap). We extracted two
EMG features from each channel, namely, waveform length
and log-variance [5]. We based our selection on previous
findings showing that these features are effective both for
multi-output regression and classification [14], [23]. We used
the same EMG processing pipeline for the two control schemes
presented in the following section.

E. Control Schemes and Decoder Training

We implemented the action control method and compared
it with the state-of-the-art approach of position control. The
two algorithms are based on multi-output classification and
regression, respectively.

All models were trained during the interval between the data
collection and real-time control parts using subject-specific
data. During pilot experiments with able-bodied participants,
we observed that individuals required a couple of trials
to familiarize themselves with a new exercise and perform
the demonstrated movement with their hand. Based on this
observation, we discarded the first two repetitions for each
exercise and, thus, the final number of repetitions per training
exercise was 10. We followed this procedure to avoid label
mismatches (i.e., label noise) in the training data sets. This
type of label noise mostly originated from a latency between
the demonstrated and performed movements, whenever a new
exercise was introduced to a participant.

Throughout the experimental sessions, participants were
blind to the control scheme being used. Furthermore, they
were given no specific instructions on how to activate their
muscles. This applied to both the preparation and evaluation
phases of the trials. That is, participants were not specifically
instructed whether to retain or relax their muscle activity once
they had reached a desired target posture.

1) Action Control: With action control, participants con-
trolled the bar heights on the display by taking at each time
step discrete actions in order to reach the desired positions.
With this control mode, the EMG features were mapped onto
a discrete six-dimensional vector using multi-output classifi-
cation as shown in Fig. 1. Each element in the output vector
corresponded to one of the six available DOFs and could take
one of three values: open, close or stall (i.e., no movement).
We set the action step for the “open” and “close” commands
such that a single-DOF movement from the bottom to top
position, or vice-versa, would require 1.5 s. This translated in
using an action step of 0.043. Based on previous findings [23],
we trained six independent linear discriminant analysis (LDA)
classifiers, one for each available DOF.

We post-processed predictions using a confidence rejection
strategy based on false positive rate minimisation [26], [27].

Class-specific thresholds were identified for each output using
training data and 10-fold cross-validation, such that the false
positive rate did not exceed a global cutoff threshold (set
a priori to θc = 0.2). During inference (i.e., real-time con-
trol), predictions that were made with posterior probabilities
smaller than the class-specific thresholds were discarded by
the controller. Let us illustrate this with an example. Assume
that for the j th DOF the rejection threshold for the “open”
class is θ

j
open = 0.98. Also assume that at time step t , this

DOF is stalled. If at step t +1 the prediction for the same DOF
is “open”, and the associated posterior probability is p = 0.9,
then the controller will discard the new prediction and the DOF
will hold its previous state, that is, it will remain stalled. For
a more detailed description of this confidence-based rejection
strategy, we refer the reader to our previous work [26].

2) Position Control: With position control, participants
directly controlled the bar heights on the display. That is,
the digit position trajectories were reconstructed from EMG
features using multi-output linear regression, as follows:

y = W T x, (1)

where x ∈ Rd is the EMG feature vector, y ∈ Rm is the
vector of estimated digit positions, and W ∈ Rd×m is a weight
matrix mapping input EMG features onto digit positions. The
input and output dimensionalities are d = 32 and m = 6,
respectively. The output vector was normalized between 0
(i.e., digit fully extended or thumb fully adducted/reposed)
and 1 (i.e., digit fully flexed or thumb fully abducted/opposed).
Following previous work on wrist and digit position decod-
ing [10], [14], [28], [29], predictions were low-pass filtered
in the time-domain using single exponential smoothing as
follows:

ỹ j [n] = α · y j [n] + (1 − α) · ỹ j [n − 1] , (2)

where y j [n] and ỹ j [n] denote, respectively, the raw and
smoothed predictions of the j th DOF at time step n, and α is
the smoothing parameter, set a priori to a = 0.05 [14].

F. Training Data Labelling

To train myoelectric decoders, ground truth data are required
for both regression and classification tasks. In the former case,
ground truth labels are real-valued, whereas in the latter they
are discrete. In our experiments, labels were acquired using
the prosthesis demonstrations presented to participants during
the data collection phase.

For training regression models (i.e., position control), for
which real-valued ground truth labels are required, we adopted
the following strategy: at the start and end of each trial, each
of the six DOFs are in one of the two extreme positions (i.e.,
thumb fully opposed/reposed and abducted/adducted, and all
other digits fully flexed/extended). Hence, the ground truth
starting and ending points are known. Within the trial, the
positions of those DOFs that are involved in the specific exer-
cise are linearly interpolated between the respective starting
and ending points. On the other hand, ground truth positions
for those DOFs that are not involved in the trial movement are
kept fixed and equal to their starting positions. To illustrate
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this approach, consider as an example the thumb opposition
exercise. Assume y ∈ R

6 denotes the position vector with the
first element corresponding to thumb opposition, the second
element corresponding to thumb abduction, the third element
corresponding to index flexion and so on. At the start of
the trial, all digits are fully extended and the thumb is fully
adducted and reposed. Thus, the ground truth starting point is
y = [0, 0, 0, 0, 0, 0]�. At the end of the trial, only the thumb
has moved to the fully opposed position. That is, the ground
truth ending point is y = [1, 0, 0, 0, 0, 0]�. The position of the
thumb opposition DOF is linearly interpolated within the trial,
which lasts for 1.3 s. Note that this is exactly the time it takes
for the prosthesis to demonstrate the exercise. For instance,
at t = 0.65 s, the ground truth position is approximated as
y = [0.5, 0, 0, 0, 0, 0]�.

Data labelling for multi-output classification models (i.e.,
action control) is simpler, since in this case ground truth labels
are discrete. That is, y ∈ S

6, where S = {open, stall, close}
and we assume the same ordering in y as in the regression
example above. For classification, however, we only need to
know which DOFs are moving within a trial and in which
direction. Considering again the thumb opposition example as
above, the ground truth vector for the whole duration of the
trial is y = [close, stall, stall, stall, stall, stall]�, where “close”
in the case of the thumb opposition DOF indicates opposition.

G. Performance Evaluation

At the end of each trial, participants received a score on the
screen characterizing their performance during the evaluation
phase of the trial. The score ranged from 0% to 100% and
was based on the multivariate median absolute error M AEmv

between the target and performed postures:

M AEmv = 1

D

D∑

j=1

Mdn| y j − ŷ j |, (3)

where y j ∈ R
N and ŷ j ∈ R

N denote the vectors containing
the target and performed position trajectories during the evalu-
ation phase for the j th DOF, N = 16 is the number of display
updates (i.e., time steps) in the evaluation phase, D = 6 is the
number of controllable DOFs, and Mdn denotes the median
operator. The target position trajectories y j are known and
constant (i.e., equal to the heights of the red bars in Fig. 4).
On the other hand, the controlled position trajectories ŷ j (i.e.,
the heights of blue bars) are variable, as they are controlled
by the participant.

We transformed M AEmv into an intuitive for the user
performance score with the following principles in mind:
1) the score range should be from 0% to 100%; 2) a perfect
match between the target and performed postures should result
in a 100% score; and 3) a very poor or random prediction,
defined as M AEmv > 0.5, should yield a 0% score. Taking the
above into consideration, we implemented this transformation
as follows:

score = 2 × max{0.5 − M AEmv , 0} × 100 (%) . (4)

To assess offline decoding performance on the training set,
we used 10-fold cross-validation. Within each iteration, nine

out of 10 repetitions from all exercises were used for training
and the remaining repetition was used for testing. We report
the average performance across folds. For multi-output regres-
sion we use the multivariate (R2) score and for multi-output
classification we report macro-average—both across outputs
and class labels— F1-score (i.e., harmonic mean of precision
and recall).

H. Non-Tasked-Related Measures

In addition to control performance, we assessed the two
control schemes in terms of two non-task-related measures:
muscle contraction intensity and output stability. For the
former, we computed the raw EMG power across all channels
during whole trial duration. For the latter, we estimated
average output variability (i.e., standard deviation) during the
trial evaluation phase.

I. Post-Experimental Questionnaire

At the end of each experimental session, participants were
asked to respond to a short questionnaire. Concretely, they
were asked to rate the two control schemes (i.e., action and
position control) on a scale from 1 (strongly disagree) to 5
(strongly agree), based on the following statements:

1) the control interface was easy;
2) the control interface was intuitive;
3) I found it easy to adapt to the control interface.

Half scores, for example 3.5, were allowed. Participants were
also asked to indicate their overall preference. Participant
2 responded to the questionnaire twice, once after each session,
and the respective scores were averaged.

J. Implementation

The experiment was implemented in Python (v3.7) and all
sessions were run on a standard laptop computer (16 GB, i7
2.70 GHz). Data collection, processing, and the real-time myo-
electric control interface were implemented using the axopy
library (v0.2.3) [30] and custom-written code. Model training
and inference were performed using the scikit-learn
library (v0.22) [31].

K. Statistical Analysis

Due to the small number of participants, we adopted
the small-N experimental design and performed indepen-
dent statistical analyses at the participant/session level [8].
We used two-sided Wilcoxon (i.e., non-parametric) tests to
perform comparisons between action and position control
and employed the Holm-Bonferroni correction to account
for multiple comparisons (i.e., four). The target presentation
order was identical for the two conditions and, hence, all
measurements were paired. The condition order was counter-
balanced: participants 1 and 2L first performed the task with
action and then position control, and participants 2R and
3 with the reversed order. We performed all statistical analyses
in Python (v3.7) using the Pingouin library (v0.3.1) [32].
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TABLE II
OFFLINE PERFORMANCE

Fig. 5. Performance comparison for action (i.e., multi-output classifi-
cation) and position (i.e., multi-output regression) control. Higher scores
are better. Points, medians; solid boxes, interquartile ranges; whiskers,
overall ranges of data; violins, kernel density estimates of underlying data
distributions; double asterisk, p < 0.01; triple asterisk, p < 0.001; MOR,
multi-output regression; MOC, multi-output classification.

III. RESULTS

A. Offline Training and Analysis

The results of the offline analysis performed as part of
model training are presented in Table II. The median macro-
average F1-score for multi-output classification (i.e., action
control) was 0.80 (ranging from 0.74 to 0.82) and the median
R2 score for multi-output regression (i.e., position control) was
0.46 (ranging from 0.38 to 0.51).

B. Real-Time Control Performance Benchmarks

Performance results for the real-time control experiment are
presented in Fig. 5. For each participant, performance scores
from all trials are aggregated and summarized using box and
violin plots. Statistical analyses were performed independently
for each participant (Section II-K). All participants achieved
significantly higher performance with action than position
control (P1, M D = 20.14, p < 10−2; P2R, M D = 52.63,
p < 10−13; P2L, M D = 47.23, p < 10−10; P3, M D = 62.32,
p < 10−13; M D denotes median difference between the
two control schemes). For participant P2, who took part in
two experimental sessions, one with each side, there were no
significant differences in performance when using the right
and left sides (action control, p = 0.39, M D = 2.90; position
control, p = 0.29, M D = −2.50).

A representative trial, performed with each of the two
control schemes, is shown in Fig. 6 for one participant (P2R).
The plots show target and user-controlled positions. Position
trajectories are juxtaposed for the two control schemes. Target
positions are also shown with horizontal black lines. The
vertical grey lines indicate the start of the evaluation phase

Fig. 6. Representative trial. The positions of the six DOFs are juxtaposed
for action and position control within the course of one trial. The shown
example corresponds to participant 2R and the “lateral grip”, with the
following target positions (black dashed lines): full thumb reposition and
adduction, and full flexion of all digits. Vertical grey lines indicate the start
of the evaluation phase of the trial. Performance scores for the shown
trial were 100% and 46.44% with action and position control, respectively.
A small offset has been added to target positions for illustration purposes.

Fig. 7. Single-DOF performance comparison. Average mean absolute
errors are summarized for action and position control for individual
DOFs. Lower scores indicate better performance. Data from all trials
are aggregated for each participant. Box plots show distribution of
participant-average data (n = 4).

of the trial. The shown example corresponds to the “lateral”
grip, for which the thumb is reposed and adducted and all other
digits are fully flexed. It can be observed from this example
that action control results in faster target reach, as well as
more accurate and stable control. Two video recordings from
the same experimental session are provided as supplementary
material. They correspond to the last block of trials for each
of the two control schemes for the same participant.

Figure 7 shows DOF-wise, participant-average mean
absolute error for the two control schemes. Averages were
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Fig. 8. Muscle contraction level and output stability comparison.
(a) Average raw EMG power for all electrodes during whole trial duration.
(b) Average output variability during evaluation phase. For each partic-
ipant, data from all trials are aggregated (n = 100 in each box plot).
Diamonds indicate outliers.

calculated by combining trials from all blocks and targets. For
both controllers, the lowest average error was observed for the
little digit DOF. The highest average errors were observed for
the middle digit and the thumb for action and position control,
respectively. For all DOFs, median average errors were lower
with action than position control. Statistical tests were not
performed due to small sample size (i.e., n = 4).

We now turn our attention to non-task-related measures.
Firstly, we assess muscle contraction intensity levels for the
two control schemes. Figure 8(a) shows average raw EMG
power across all channels during the whole trial duration. For
all participants, action control resulted in significantly lower
average raw EMG power (P1, P M D = 57.6%, p < 10−10;
P2R, P M D = 93.1%, p < 10−15; P2L, P M D = 95.0%,
p < 10−15; P3, P M D = 90.2%, p < 10−15; P M D denotes
percent median decrease with respect to position control
values). In addition, we consider output stability by computing
the average output variability (i.e., standard deviation) during
the trial evaluation phase. We observed significantly lower
output variability with action control for all participants (P1,
P M D = 70.0%, p < 10−3; P2R, P M D = 92.1%, p < 10−9;
P2L, P M D = 86.3%, p < 10−8; P3, P M D = 89.2%,
p < 10−15).

C. Post-Experimental Questionnaire

The outcomes of the post-experimental questionnaire are
presented in Fig. 9. All participants rated action control
higher than position control in all three questions. Finally,
all three participants reported an overall preference for action
control.

Fig. 9. Post-experimental questionnaire. Participants were asked to
rate the two control schemes (i.e., action and position control) with
three questions. Ratings ranged from 1 (strongly disagree) to 5 (strongly
agree). Participant 2 answered the questionnaire twice, once after each
session (i.e., right and left sides), and respective scores were averaged.
AC, action control; PC, position control.

IV. DISCUSSION

A. Action Control for Prosthetic Digits

We have evaluated action control, a novel paradigm for
EMG-based prosthesis digit control based on multi-output
classification. We have previously shown that this type of
controller can result in comparable performance to direct joint
position control in a robotic hand tele-operation task [22].
Here, we have implemented the decoder and control algorithm
in real-time using surface EMG measurements and tested it
with three transradial amputee participants in a total of four
experimental sessions. We have shown that action control
can outperform multi-output regression-based digit control in
a static posture matching task. The observed improvement
in performance has been both substantial and systematic
across participants. Moreover, it has been systematic across
evaluation measures, including both task- and non-task-related
metrics. In addition, all participants rated the action control
scheme higher than position control in a series of qualitative
metrics and reported an overall preference for the former.

B. Relation to Previous Work

The concept of controlling actions with discrete commands
(i.e., “open”, “close”, and “rest”) has been previously used
for 1-DOF or 2-DOF prosthetic systems, such as wrist rota-
tion, whole hand opening/closing, or a combination of the
two [33]–[37]. In contrast, for prosthetic digit control, the
focus has been on using multi-output regression to decode joint
angles (i.e., positions) [9]–[12], [14], [15], [21], velocities [16]
or fingertip forces [18]–[20]. Action control can be seen as
an extreme, discretized case of velocity control (see Fig. 2),
whereby the velocity can be either zero or take a constant
value, which is only parametrized by its direction. Although
we kept the velocity of the output DOFs fixed in this study, this
needs not be restrictive; as is currently common in commercial
prostheses, it could also be adjusted to be proportional to the
overall muscle activity of the user at a given time.

In the past, a few classification-based methods have
been proposed for prosthetic digit control, but with some
fundamental differences when compared to our approach.



KRASOULIS AND NAZARPOUR: DISCRETE ACTION CONTROL FOR PROSTHETIC DIGITS 617

Tenore et al. [38] used a 12-class classifier to predict individ-
ual digit flexion/extension. By using a single-output, multi-
class decoder, this approach can only be used sequentially,
that is, a single DOF can be active at a time. Moreover,
the absence of a “stall” class limits the controllable DOFs
to be either fully open or fully closed. In comparison, our
approach allows arbitrary hand configurations, including those
not present in the training set, via appropriate sequences
of open/close and stall commands. To achieve the control
flexibility of our method, that is, simultaneous, independent
control of six DOFs, with the more conventional paradigm
of single-output, multi-class classification, the total number
of classes should equal 63 = 216. Arguably, with such an
approach it would be highly impractical to collect training data
and, furthermore, the accuracy of the system would likely be
extremely low due to the large number of classes.

Olsson et al. [39] proposed a strategy that is conceptually
similar to ours, however with the following three differ-
ences/limitations: 1) it is based on position rather than action
control; 2) there are only two classes for each digit, fully
open or close, and hence, intermediate digit positions are not
feasible; 3) the study of Olsson et al. was limited to offline
analysis, and thus, was open-loop. In comparison, the focus
of our work has been on real-time control with the user in
the loop. More recently, the same group proposed a neural
network-based approach for real-time estimation of continuous
output variables from discrete training labels, which in this
case included the “stall” class. However, the experimental
setup only involved two DOFs, that is, flexion/extension of
the wrist and of all digits together [40]. Finally, Lukyanenko1
et al. [41] recently proposed a linear interpolation method for
reconstructing velocities of four DOFs in a continuous space
by using discrete training labels.

C. The Importance of Feedback

It is known and well accepted that interaction with a
myoelectric interface that provides the user with some sort
of feedback information (e.g., visual), leads to user adap-
tation over time. When machine learning-based controllers
are deployed, this is usually manifested as an increase in
task performance [42]–[44], regardless of the level of intu-
itiveness of the interface [14]. In fact, there exists a stream
of research especially exploiting the high level of plasticity
of the human brain to develop myoelectric interfaces that,
despite being non-intuitive from a physiological perspective,
can be mastered by the user with experience (i.e., user learning
approach). These are typically not based on machine learning
and rather rely on the user’s ability to integrate feedback infor-
mation to implicitly develop an inverse map of the interface
so as to maximize performance at a given task [25], [45]–[50].

The role of continuous feedback in action control is of
particular importance. To achieve the desired digit positions,
the user has to estimate the error between the current and
target positions and take the appropriate action(s) to minimize
it. In other words, the algorithm on its own can be seen
as an open-loop control paradigm, in which the user closes
the loop by continuously integrating the available feedback

information. This requirement might at first seem as a dis-
advantage in comparison with digit position control. One
should keep in mind, however, that regression-based position
control also relies heavily on the provision of continuous
feedback information. This is due to biomechanical differ-
ences between a natural and an artificial limb, including, for
example, a different number of controllable DOFs, a different
arrangement of the available DOFs, and so on. Even in
the hypothetical scenario of a perfect digit position decoder,
feedback information is still useful, given that the prosthesis
biomechanics are different to those of a natural limb that
the user might be accustomed to. Taking into consideration
the potential variance not accounted for by a digit position
decoder that uses surface EMG as input signal, and prediction
inaccuracies due to measurement noise and other confounding
factors [51], it becomes evident that feedback plays a vital role
for digit position control, despite that this approach is regarded
as bio-mimetic [14]. Note that in our experiments the feedback
was visual, but it could also take other invasive [52] or non-
invasive [53] forms. Yet, it is not clear whether the use of
alternative feedback modalities, such as electrical stimulation,
can scale and/or provide functional benefit when dealing
with multi-dimensional outputs—in our case, six-dimensional.
This aspect warrants further investigation during real-time
prosthesis use.

D. Relationship Between Velocity Control and
Signal-Dependent Noise

In addition to an increase in task performance (Fig. 5),
action control resulted in significantly lower muscle con-
traction intensity (Fig. 8(a)) and improved output stability
(Fig. 8(b)). Note that participants were not given specific
instructions on whether to retain or relax their muscle activity
during the evaluation phase of the trials. The decrease in EMG
amplitude may be attributed to the velocity control nature of
the algorithm; an equal amount of muscle activation is required
to open/close a digit, regardless of its current position. In stark
contrast, with position control, the amount of required muscle
activation is proportional to the target position; extreme digit
positions require more effort from the user. Lower muscle
contraction intensity translates into more effortless control for
the user on the one hand, as well as less EMG signal noise
on the other, which is known to be signal-dependent [54].

The improvement in control stability is likely due to the
discrete nature of the output variable in the case of classifica-
tion. It is well known that the EMG signal is intrinsically
stochastic [55]. In the case of regression, the input noise
is propagated through to the output resulting in an unstable
controller and unintended prosthesis activations (i.e., jitter
effect). To address this issue, it is common to post-process
predictions using a low-pass filter (i.e., smoothing) [10], [14],
[21]. A large amount of smoothing is typically required to
achieve a satisfactory outcome, at the expense of a decrease
in the responsiveness of the system. In our implementation,
we set this parameter according to our previous work [14]
and did not experiment thoroughly with the trade-off between
stability and sensitivity. It is likely that setting the smoothing
parameter to a larger value would have resulted in more
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stable control, nonetheless at the cost of increasing the observ-
able output delay. In comparison, a classifier-based controller
addresses this limitation to a large extent by producing discrete
output values. This type of thresholding mechanism can be
viewed as an extreme case of low-pass filtering, however
it avoids the large response delay associated with moving
average filtering of continuous control outputs. The use of
a confidence-based rejection strategy further decreases the
likelihood of unintended activations [26], hence resulting in
more robust and stable digit control. Finally, the increased
output stability may lead to further decrease in EMG power,
via reducing the amount of needed compensatory contractions.

E. Implications for Bilateral Amputation

To train regression-based systems, users are typically
instructed to perform bilateral mirrored movements, whilst
hand kinematic data are recorded from the contralateral to the
EMG side using data gloves [9], [10], [14], [16] or motion
tracking systems [11]. This approach has two main limitations:
1) from a clinical perspective, it is highly non-practical; and
2) it can only be applied in the case of unilateral amputation.
Indeed, two out of three participants in our study were bilateral
amputees. To address this issue, we used computer-generated
prompts in combination with linear interpolation to produce
regression ground truth labels (Section II-F) [21]. However,
this approach can introduce label noise, given that it is not
guaranteed that participants precisely track the demonstrated
digit positions on the prosthesis with their phantom limb. Our
position control implementation was based on our previous
work, which has achieved state-of-the-art performance [14].
However, the offline decoding accuracy in the current study
was lower (median R2 0.46 vs 0.60 for the two amputee partic-
ipants in [14]). This reduction in performance can be attributed
to the use of different ground truth collection schemes, but this
aspect warrants further investigation, for example, by directly
comparing the performance of the two methods in the regres-
sion setting. In comparison, the use of classification methods
avoids this pitfall since labels are discrete and constant within
a trial. In other words, as long as the participant tracks the
movement direction, the discrete training labels will be correct,
regardless of whether they perfectly track the digit position.
The feasibility of collecting noise-free ground truth labels
without a requirement for bilateral mirrored training is an addi-
tional advantage of the action control approach. This feature
has enabled us to recruit both unilateral and bilateral amputee
participants in our experiments. To our knowledge, this is the
first demonstration of real-time, multi-DOF myoelectric digit
control in bilateral upper-limb amputees.

It is worth noting that despite having demonstrated here
the feasibility of individual digit control in bilateral amputees,
in our experiments participants controlled digits corresponding
to a single side at a time. Extending our approach to both
sides would be trivial from an algorithmic perspective, as it
would only require using two identical EMG processing and
digit control pipelines. Nevertheless, from a user’s perspective,
it might prove challenging considering the high dimensionality
of the control space (i.e., 12 DOFs).

F. Limitations
Our study has a few limitations. Participants controlled a

computer interface rather than an actual prosthesis. This was
due to the lack of position encoders on the prosthesis that
we used in our experiments, which were required for bench-
marking our proposed algorithm against the regression-based
approach. Moreover, our real-time control task only involved
digit closing actions; intermediate finger postures and opening
motions were not included. This design choice was due to a
number of practical reasons: 1) the lack of position encoders
hindered the demonstration of intermediate digit postures on
the prosthesis; and 2) digit opening motions were not included
as it would not be straightforward to test them in the case of
position control. In order to evaluate a digit opening motion,
participants would be required to start the trial from a closed
state, which corresponds to non-zero muscle activity. For
action control, it would have been trivial to test digit opening
motions, as given the velocity control nature of the algorithm,
it is feasible to assume a closed initial position without any
corresponding muscle activity. However, the aim of the study
was to compare the performance of the two control schemes
and, hence, we decided to exclude digit opening motions. Our
decision was further dictated by a requirement to keep the total
experiment time within reasonable limits to avoid muscle and
mental fatigue. Given this trade-off, we opted for digit closing
and grasping postures only, which are particularly relevant in
prosthetics from a functional perspective.

Although the capability of the action controller to pro-
duce arbitrary postures was not explicitly demonstrated, such
postures are indeed feasible, despite the discrete nature of
the decoder. The capability to achieve intermediate postures
is directly related to the ability of the decoder to correctly
predict the “stall” class. In offline analysis, we have previously
observed that this class can be recognized with very high
sensitivity (median recall of 0.91, as compared to 0.56 and
0.50 for the “open” and “close” classes, respectively) [23].
Moreover, many target postures comprised single-digit closing
motions. Considering that our performance score computes the
average error across all six outputs, unintended activations
of the non-moving DOFs would result in poor performance
scores. In other words, the ability of the algorithm to correctly
predict the “stall” class was implicitly taken into account
by our performance metric and choice of testing postures.
Finally, given the comparable recall (i.e., sensitivity) between
the “open” and “close” classes in offline analysis [23], we do
not expect a substantial difference in real-time performance
between the two classes.

Another limitation of the study is that it involved only
matching static postures. This could have potentially biased
measured performance towards the action control paradigm.
This is due to the observation that, once a target posture
has been achieved, the user can hold it without exert-
ing any muscle activity. Whether this feature is benefi-
cial for real-life prosthetic use remains to be investigated
during real-time operation of a prosthesis mounted on a
socket.

Taking everything into consideration, further validation of
our proposed algorithm is required, either using standardised
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pre-clinical tests, such as the target achievement control (TAC)
test [56], or ideally during control of a real prosthesis. In the
future, we will transfer the control interface from the computer
display onto a prosthesis and evaluate performance during
activities of daily living, such as object grasping. This will
further allow us to assess the performance of the algorithm
for intermediate digit positions and opening motions, as well
as evaluate its robustness under dynamic limb position and
prosthesis load conditions. Ideally, our controller should be
tested with a larger number of participants to further validate
the results of this study.

V. CONCLUSION

We have proposed and evaluated a novel control scheme
for myoelectric digit control with transradial amputee partici-
pants. Our proposed algorithm, termed action control, is based
on multi-output, multi-class classification and relies on the
provision of continuous visual feedback to the user. We have
shown that it can significantly outperform the state-of-the art
regression-based approach with respect to several task- and
non-task-related measures. In the future, we will further eval-
uate the performance of the method under real-life scenarios
by transferring the task space from a computer interface onto
a prosthesis.
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