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Abstract—In this paper, we elaborate on the distinction be-
tween classic approaches towards brain machine interface (BMI),
that is Biomimetic and Biofeedback, and discuss their advantages
and disadvantages. For biomimetic BMI, we briefly report results
of a novel constrained Kalman filtering-optimization mechanism
for prediction of myoelectric signals from neural spike recordings
in a behaving macaque monkey. For the Biofeedback BMI, we
review early works on operant conditioning and our recent results
on emulating BMI by a myoelectric control interface.

I. INTRODUCTION

Biomimetic brain-machine interfaces (BMI) have evolved
from experimental paradigms which explore neural coding of
natural arm and hand movements to current real-time neural
firing rates decoders in humans or behaving monkeys [1], [2],
[3]. In a typical BMI setup, monkeys perform stereotyped
repeated arm or hand movements, e.g. the classic center-out
task or random target tracking using a manipulandum, and the
firing rates of tens of individual motor cortex neurons are fitted
to arm kinematics, (e.g. position and velocity). The estimated
mapping is then used to drive an artificial effector. While
neural activity recorded from primary motor (M1) cortex
is well documented to have high correlations with kinetic
parameters of movement as well as kinematics [4], [5], [6],
relatively few studies have addressed the kinetic component
(for exceptions, see [7]).

Despite recent decoding algorithms with increasing level
of sophistication, BMI control remains slow and inaccurate
in comparison to natural movements. Therefore, considerable
improvements are required if these devices are to have real-
life clinical applications. The main question to be answered
here is whether developing more sophisticated algorithms for
trajectory decoding (Biomimetic) would be more useful for
future real-life BMI applications or devising new BMI control
environments which exploit the brain’s inherent flexibility to
tune control parameters through biofeedback.

However, current multi-electrode and multi-site recording
techniques enable the simultaneous registration of neural
spiking activity from tens to hundreds of neurons so that a
decoder might make use of the underlying functional con-
nectivity between the neurons, together with the individual
rate codes [8]. In [7] several approaches for biomimetic BMI
including simple linear neural activity decoders and ambitious
closed-loop BMI by stimulating the sensory cortex [to restore
the loss of sensation] are listed. In general in biomimetic BMI,
firing rate of motor cortex neurons are fitted to arm trajectory

kinematics. Although these fitting algorithms are mathemat-
ically impressive and provide acceptable performance, they
suffer from poor generalization and therefore, clumsy real-
time control when compared to natural arm movements. The
main problem, we think, is the absence of any fast error
correction mechanism as all of the movement corrections are
mediated by visual feedback. Fagg et al. in [7] argue that lack
of proprioception is a considerable shortcoming of the classic
biomimetic and suggests stimulation sensory cortex to restore
it. The importance of proprioceptive feedback is challenged
in [9].

1) Biomimetic BMI: We have recently developed a point
process-generalized linear model (GLM) that accommodates
the neuron’s own spiking history, concurrent ensemble activity,
and extrinsic covariates such as visual stimuli or behav-
ioral measures to estimate a given in the neuron’s spiking
probability [10], [11]. Several variations of such an adaptive
point process filter or its Gaussian counterpart, the classic
Kalman filter, have appeared in the literature which reliably
decode arm movement kinematics [12], [13]. Nevertheless, a
fundamental limitation in using filters from the Kalman family
for prediction is their sub-optimality in dealing with non-
Gaussian observations or systems in which the state evolution
violates the linear-Gaussian Markov process assumption. Here,
we report an alternative approach for electromyogram (EMG)
prediction from multi-channel neural spike recordings in the
state-space recently introduced in [14]. Unlike the conven-
tional Kalman filtering based motor decoders in the BMI
literature, we employ a GLM similar to that proposed in [11].

2) Biofeedback BMI: In this approach once a few oper-
ational rules have been acquired, control of the interface is
optimised by the user through reinforcement or error-based
learning [15], [16], [17], [18]. The decoder is usually very
simple and fixed. For instance, linear combinations of a few
neurons control the position of a cursor on a screen. Biofeed-
back BMI provides the exciting possibility to study the neural
correlates of motor learning within the BMI framework [18],
[19].

This paper is organized as follows. Section II very briefly
describes the constrained Kalman filtering method and reports
the results. The interested reader may refer to [14] for further
details. In Section III, we will review classic [15], [16] and
recent [17], [18] suggestions for biofeedback BMI and report
our earlier results [9], [19]. Section IV, concludes the paper.
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II. BIOMIMETIC BMI: EMG PREDICTION IN
STATE-SPACE [14]

In the classic Kalman filter setting, the hidden state and
observation vectors at time k are respectively denoted by
qk and yk and both evolve as Markov processes completely
defined by p(qk+1|qk) and p(yk|qk). Therefore, qk+1|qk ∼
N (qk;Aqk,Cq) and yk|qk ∼ N (yk;Bqk,Cy) where
N (a; µ,C) denotes a is a Gaussian distributed vector with
mean vector E[a] = µ and covariance matrix C. The system
parameters, A,B,Cq, and Cy are assumed to be fixed.

Several different instantiation of this recursive Gaussian
approximation have been introduced. However, in order to
circumvent the above shortcomings, all have places the neural
and behavioral data into bins of greater than 70 ms dura-
tion [12], [13], [20]. This approach has been effective for
prediction of the kinematics of arm movements where arm
positions and directional velocities can be modeled as Markov
linear-Gaussian processes [21]. However, the Kalman setting
is not effective in prediction of EMG signals, the dynamics of
which, p(qk|qk−1), are not smooth. The power in an EMG
signals is typically computed following rectification, in order
to extract the modulation envelope. This constrains the state
variable qk to be non-negative, leading to a discontinuity
in log p(qk|qk−1) at qk = 0. The forward distribution
p(qk|y1:k) turns out to be non-Gaussian. The breakdown of
the basic Kalman assumptions is inevitable, as there is no
mechanism to constrain the estimates to be non-negative.

Direct Optimization Interpretation of Kalman Filters: The
objective in using a Kalman filter is to compute the con-
ditional expectation of the hidden state path q1:K given
the observations y1:K , that is E(q1:K |y1:K). In a linear-
Gaussian setting, (q1:K ,y1:K) forms a jointly Gaussian ran-
dom variable, and therefore p(q1:K |y1:K) remains Gaussian.
Coincidence of the mean and mode of a Gaussian distribution
implies that E(q1:K |y1:K) is in fact equal to the maximum a
posteriori (MAP) solution, i.e., the maximizer of the posterior
p(q1:K |y1:K). Reformulating the Kalman filter in an optimiza-
tion framework leads to equations (1) and (2). Notice that Q
forms a quadratic function of q1:K

Q = arg max
q1:K

p(q1:K |y1:K) = arg max
q1:K

(
log p(q1)

+
K∑

k=2

log p(qk|qk−1) +
K∑

k=1

log p(yk|qk)

)
(1)

Therefore,

Q = arg max
q1:K

[
− 1

2

(
(q1 − E(q1))

T C−1
q1

(q1 − E(q1))

+
K∑

k=2

(qk −Aqk−1)
T C−1

q (qk −Aqk−1)

+

K∑
k=1

(yk −Bqk)T Cy
−1(qk −Bqk)

)]
.

(2)

The quadratic form Q implies that it may be solved by an
unconstrained quadratic program in q1:K as in [22], [23].
Therefore,

q̂1:K = arg max
q1:K

log p(q1:K ,y1:K)

= arg max
q1:K

[
1

2
qT

1:KHq1:K + ∇T q1:K

]
= −H−1∇

(3)

where Hessian H and gradient ∇ of log p(q1:K |y1:K) are
computed as

∇ = ∇q1:K
p(q1:K |y1:K)|q1:K=0 (4)

H = ∇∇q1:K
p(q1:K |y1:K)|q1:K=0; (5)

the Hessian H of log p(q1:K |y1:K) is a block-tridiagonal
matrix and its elements may be readily computed [14].

So far, we have assumed that p(yk|qk) is Gaussian dis-
tributed. However, spike recordings are point processes sam-
pled from the poisson distribution. It is straightforward to
extend the above optimization approach to directly compute
MAP estimate of q1:K in a general non-Gaussian case.

Here, we assume that, log p(qk+1|qk) is a concave function
of q1:K and that the initial density log p(q0) is concave
and also that the observation density log p(yk|qk) is concave
in qk [24]. Then, it is easy to show that the log-posterior
log p(q1:K |y1:K) is concave and hence the MAP estima-
tion of q1:K is a concave problem. The standard Newton’s
algorithm can be applied to optimize such an estimate as
q̂i+1

1:K = q̂i
1:K −H−1∇.

p(yk|qk) represents the probability of neural firings given
an external covariate, a sensory stimulus or a motor output.
It has been shown in [10], among others, that the conditional
intensity function λk(hk) can fully characterize the stochastic
neural point process as

λk(hk) = lim
κ→0

p(N(k + κ)−N(k) = 1|hk)

κ
(6)

where p(N(k+κ)) is a conditional probability, hk incorporates
the spiking history up to time k, and λk(hk) is a strictly
positive function [10]. For small κ, λk(hk) attains approx-
imately the neuron’s spiking probability in the time interval
∆tk = (k, k+κ]. In the GLM setting, hk pertains the neuron’s
own spiking history and the extrinsic covariates.

Therefore, as in [10], for an ensemble of C neurons we
have

log p(yk|qk) =
C∑

i=1

(
(λi

k △ tk)△Ni
k exp(λi

k △ tk)

)
. (7)

Mean firing rate for neuron i at time k, denoted by λi
k, is

estimated by a GLM that accounts for the neuron’s base firing
rate and a linear regression from the extrinsic covariate to in-
dividual neurons passed through an exponential non-linearity.
This GLM setting is hence of the form λi

k = f
(
bi + BT

i qk

)
where f(.) is a convex and log-concave function, bi is a
constant offset term representing the baseline firing rate of
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Fig. 1. Summary of EMG prediction generalization accuracy using SCKF (20
ms and 40 ms time delay) and Wiener cascade filter in four different bin
sizes. The average R2 values and their associated standard error of means
were found by 20-fold cross-validations. Generalizations accounted for 50-
55% of the the actual EMGs for the SCKF which was higher than that of
the Wiener cascade filter by 5-10%. The prediction accuracy of the SCKF
slightly improves by larger bin sizes but the delay between spikes and EMGs
does not much influence the generalization.

i-th neuron and the i-th row Bi of the observation matrix B
encapsulates the i-th neuron’s preference for target muscles.
The log-concavity of f(.) ≡ exp(.) allows us to use the
standard Gaussian approximation of the forward non-Gaussian
probabilities p(qk,y1:k).

Log-Barrier Method for Constrained Optimization: The
strictly positive envelope of rectified EMGs is predicted drives
the BMI [25]. Therefore, for EMG prediction we may not
utilize the above representations of the Kalman filter unless a
constrained optimization problem be formed. To handle this
constraint problem, the standard interior-point (log-barrier)
methods [22], [23], [24] is employed by replacing the con-
strained concave problem

q̂MAP
1:K = arg max

q1:K :qk>0
log p(q1:K |y1:K) (8)

with a sequence of unconstrained concave problems

q̂ϵ
1:K = arg max

q1:K

log p(q1:K |y1:K) + ϵ
∑

k

log qk. (9)

Incorporating the penalty term enforces q̂ϵ
1:K to satisfy the

non-negativity constraint, for log u → −∞ as u → 0. It is
easy to show that if q̂MAP

1:K is unique, then q̂ϵ
1:K converges to

q̂MAP
1:K as ϵ → 0.
Data Acquisition and Results: The experiment involved

one rhesus macaque monkey, chronically implanted with a
multi-electrode array (Blackrock Microsystems Inc., Utah)
in the arm area of motor cortex. Details of the surgical
procedure have been described previously in [26]. Neural
data was collected, at 25 KHz sampling rate, using a 96-
channel Cerebus acquisition system (Blackrock Microsystems
Inc., Utah). The monkey was also implanted with chronic
intramuscular EMG electrodes in twelve forearm and hand

muscles routed subcutaneously to a percutaneous connector.
The EMG activity from all muscles was sampled at a rate of
2 KHz.

The monkey’s behavioral task consisted of applying a grip
force to a ball to control the vertical movement of a small
circular cursor on a screen. The monkey placed its hand on
a touch pad to start each trial, until receiving a “Go” tone.
The ball, which was held by the experimenter in front of
the monkey, was connected by a flexible tube to a pressure
transducer which provided an estimate of grip force. The
monkey was allowed five seconds after the “Go” tone to reach
for and squeeze the ball, and then was required to hold the
cursor inside a target for 0.8 seconds. Following successful
trials, the monkey received a controlled amount of fruit juice.
We conducted two experiments in three days. In the first
two days, after a short (5-10 minute) warm up period, we
recorded three, six-minute data files. Single and multi-unit
spike signals were sorted on the first day, using 2D PCA-space
visualization computed with the Cerebus software. This sorting
was kept constant in the second day. Discriminated time
stamps were further analyzed in Matlab. Following [26], the
EMG envelopes in each channel were extracted by highpass
filtering at 50 Hz, rectification, and lowpass filtering at 10
Hz. During the task, the neural data and the EMG activity
were recorded simultaneously along with task relevant sensor
signals, e.g. pressure. Both spike recordings and EMG signals
were downsampled to various bin sizes (2, 5, 10, and 20 ms)
for further analysis.

20 fold cross-validated results are reported, in which 19
folds were used for training the model and one fold for testing.
Mean prediction rates are presented in terms of the coefficient
of determination R2 and either standard deviation. We com-
pared the results with the results of the conventional Wiener
cascade filters. Briefly, in the Wiener filtering approach, the
EMG activity are predicted using a linear system with multiple
inputs and a single output. In such a filter, each neural input
is convolved with its causal finite impulse response function
to produce a single output. The length of this filter is typically
250 ms. This linear system can be followed by a static non-
linearity to form the Wiener cascade model. Hence, the output
of such a system is a linear, weighted combination of the
recent history of neural signals, transformed by a second
or third order polynomial, that is the static non-linearity.
In practice, the non-linearity acted both as a threshold that
eliminated small signal fluctuations in the predictions when
muscles were quiescent, and to amplify the estimated peaks
EMG activity [27], [26].

Figure 1 reports a summary of EMG prediction gener-
alization accuracy in four different bin size. Generalization
predictions made by the SCKF1 reasonably accounted up
to 55% of the actual EMGs. In comparison to the rates
obtained by the Wiener cascade filter, 5-10% improvement

1SCKF stands for simplified constrained Kalman filter. [14] reports the
results of fully constrained Kalman filter in which the GLM model includes
the terms corresponding to the interactions between cells and firing history
of each cell.
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was achieved. A slight improvement in prediction rates was
observed using larger bin sizes by the Kalman filter, in contrast
to Wiener cascade filter. The delay between spikes and EMGs
did not influence the generalization capacity for SCKF.

III. BIOFEEDBACK BMI: A SHORT REVIEW

The traditional biomimetic BMI paradigm has its historical
roots in experimental studies elucidating the neural correlates
of natural movements. Neural activity is recorded in animals
performing a trained motor task to determine how the firing
rate of cortical neurons is related to (or “encodes” particular
movement parameters [28], [29], [30]. The biomimetic BMI
approach inverts these relationships between cells and move-
ments in order to “decode” motor output.

By contrast, the biofeedback BMI approach is motivated
by experimental demonstrations that the relationship between
cell activity and behaviour can be altered through operant
conditioning. In these experiments, animals were rewarded
for producing arbitrary combinations of cell and/or muscle
activity [15], [31] and rapidly learned to dissociate their
normal neuromotor patterns. This suggests that there is con-
siderable flexibility to neural “encoding” which may enable
learning novel neuromotor associations [9]. These findings are
important since it is unlikely that a biomimetic BMI will ever
be able to exactly match the complex efferent and afferent
connections of the limb it is replacing. Therefore exploiting
the brain’s plasticity and ability to learn new motor tasks will
be an important component of successful BMI applications.

Moritz et al. in [17], building upon early studies in [15],
[16] showed that monkeys can control functional electrical
stimulation (FES) of muscles using M1 neuronal activity to
restore movements in a temporarily paralyzed arm. In their
system, the animal was trained to modulate a smoothed cell
firing rate to control proportional muscle stimulation such that
if the activity exceeded a threshold the stimulator was switched
on and the wrist was extended. Interestingly they found that
after training, the quality of control achieved with individual
cells was unrelated to that cell’s tuning strength during normal
wrist movements. They further developed this approach to
control both wrist flexion and extension when the firing rate
of one single cell falls out of a defined frequency band, and
succeeded in conditioning pairs of neurons to collaboratively
control the FES.

In a recent study [18], Ganguly and Carmena used a 2-D
BMI decoder in which the directions that neurons act on the
cursor are randomised. Importantly they used only a subset of
recorded cells which showed stable activity over a period of
up to 20 days. This afforded the animal time to practise over
several days and consolidate a stable neural representation of
the BMI. Interestingly, the animal was then able to learn a
new random decoder based on the same set of neurons, and
readily switch between the two when required.

We are interested in the mechanisms by which the brain
learns these abstract, non-intuitive neuromotor transforma-
tions. To explore this question with non-invasive techniques
in human subjects we use a myoelectric-controlled interface

(MCI). Rectified and smoothed EMG activity from multiple
hand and arm muscles is mapped onto a 2-D cursor space
through a linear combination of vectors aligned to a direction
of action (DoA). In our first study [9] we compared “intuitive”
control, in which muscles acted on the cursor in directions that
were consistent with their action on the hand given the sub-
ject’s posture, with “nonintuitive” control when muscle DoAs
were randomly assigned. Although performance was initially
poorer under nonintuitive arrangements, with practice subjects
learned to make direct, feed-forward movements towards the
target. Within about 30 minutes performance plateaus at a high
level that is comparable to control under the intuitive mapping.

We then tested the importance of proprioceptive feedback
from muscles by introducing random sensory noise through
vibration, but this did not affect the rate at which learning
progressed. We suggest that acquiring MCI control involves
learning the association between an internal copy of the
efferent motor command and the visual feedback from the
cursor. The apparent ease with which subjects could learn this
association is in contrast to the longer time-frame required to
acquire a randomised BMI decoder in animal studies [18].
Nevertheless, the results of Ganguly and Carmena suggest
that given sufficient time, the brain can learn novel efference-
feedback mappings at the neural level. If so, then utilizing
these mechanisms may potentially be more effective than
accurate biomimetic decoding.

IV. CONCLUSIONS

In this paper we briefly compared the classic biomimetic
and biofeedback approaches to BMI. For biomimetic BMI we
reported results of novel signal processing method to predict
muscle activity from neural recording and for biofeedback, we
briefly reviewed classic work on operant conditioning and its
relevance to recent BMI and MCI studies.

The accuracy of BMI decoding algorithms has yet to be im-
proved before existing proof-of-principle demonstrations can
be translated into viable clinical applications. After decades of
BMI research, it seems appropriate to reassess the current ap-
proaches to BMI and explore alternatives to address the short-
coming of existing protocols. For instance, it has been estab-
lished that in order to make accurate reaching movements, the
human motor system employs an optimal combination of feed-
forward prediction and visual/proprioceptive feedback [32].
In biomimetic designs, the decoded trajectories are corrected
only via visual feedback, leading to jerky movements. In
other words, BMI control may seem more like concatenation
of several feed-forward movement segments rather than the
smooth operation of a closed-loop feedback controller. Simi-
lar clinical observations have been described in deafferented
patients suffering from loss of proprioception [33]. However,
motor errors during natural movements may reflect uncertainty
about the state (kinematics and kinetics) of the limb and
the external world. In the BMI setting, the movement of the
cursor is an entirely predictable consequence of the efferent
signal. Therefore, trajectory errors likely reflect central noise
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in the motor system, which is exacerbated since only a small
proportion of neurons within motor cortex are sampled. The
mechanisms by which the brain deals with variability in neural
firing patterns during natural movements [34] are only now
beginning to be understood [19], [35] but these insights have
yet to be developed within a BMI setting.

Although we have here contrasted biomimetic and biofeed-
back approaches, the ultimate success of BMI applications
will likely to require some combination of both. Current
biofeedback experiments may be improved by incorporating
the sophisticated decoding algorithms already matured in the
biomimetic setting. In turn, insights about the mechanisms of
neural adaptation from biofeedback experiments may be in-
corporated into new adaptive biomimetic decoders, Hopefully,
such best of both strategies will lead to a new generation
of machines that interface with the brain on computational,
algorithmic and implementational levels, according to Marr’s
Tri-Level Hypothesis [36], to restore sophisticated function
following injury.
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