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The informativeness/complexity trade-off in the

domain of Boolean connectives

Wataru Uegaki

February 6, 2022

Abstract

I apply the model of semantic universals in terms of informativeness/complexity

trade-off (Kemp, Xu, and Regier, 2018) to Boolean connectives. The model explains

the cross-linguistic absence of the connective NAND, once we incorporate

theoretical insights from Horn (1972) and Katzir and Singh (2013). The lack of

NAND follows if languages optimise the trade-off between (a) simplicity of the

lexicon measured in terms of primitive symbols and (b) informativeness of the

lexicon measured in terms of accurate transfer of information, given scalar

implicature. The analysis demonstrates that the model provides a promising insight

into the nature of lexicalisation in logical vocabularies.

Keywords: Boolean connectives, NAND, Complexity/informativeness tradeoff,

lexicalisation, semantic universals.
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1 Introduction

Investigation of semantic universals has been highly successful in the the lexical semantics

of logical vocabularies (Horn 1972; Barwise and Cooper 1981; Keenan and Stavi 1986;

see von Fintel and Matthewson 2008; Steinert-Threlkeld and Szymanik 2019 for reviews).

However, there are still open questions concerning explanations of observed semantic

universals. The most fundamental ones among such open questions include why attested

universals exist and whether it is possible to have a unified explanation for different

universals observed in different domains of vocabulary.

For domains of content words, such as colour terms and kinship terms, research has

shown that universal semantic patterns can be explained by a principle favouring a

linguistic system that supports an optimal trade-off between INFORMATIVENESS and

COMPLEXITY of linguistic expressions (Kemp, Xu, and Regier, 2018). Importantly, this

principle is highly general, and suggests that seemingly disparate semantic phenomena

may in fact reflect a unified pressure. Thus, it is of theoretical interest to investigate

whether this model also explains semantic universals in logical vocabularies.1 In a recent

study, Steinert-Threlkeld (2019) has shown that properties of natural language quantifiers

described in Keenan and Paperno (2012); Paperno and Keenan (2017) follow the pattern

predicted by the trade-off model. Similarly, Denić, Steinert-Threlkeld, and Szymanik

(2020) show that the model predicts known typological generalisations in the domain of

indefinite pronouns due to Haspelmath (1997). In addition, Carcassi (2020) reports that

the monotonicity universal of gradable adjectives is correctly predicted by a computational

model of language evolution that builds in the pressures from informativeness and

simplicity. Singh (2019) is also relevant in this context, as he considers the trade-off

between informativeness and cost in the computation of processing cost associated with

implicature/exhaustification.
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This paper is an attempt to show that the model in terms of the

informativeness/complexity trade-off (henceforth the TRADE-OFF MODEL for short) is also

applicable to the domain of BOOLEAN CONNECTIVES, and that it offers an explanation of a

well-known semantic universal in the domain, i.e., the lack of NAND—the connective

such that ⌜p NAND q⌝ means ‘not (p and q)’—once we incorporate the theoretical insights

from Horn (1972) and Katzir and Singh (2013). In a nutshell, the lack of NAND follows if

languages optimise the trade-off between (a) simplicity of the lexicon measured by the

number of metalanguage symbols necessary to express the meaning of the connectives and

(b) informativeness of the lexicon measured by the fine-grainedness of the semantic space

partitioned by the lexicon, given scalar implicature. The analysis takes its inspirations

from an existing analysis by Katzir and Singh (2013) (K&S) (who in turn improves on

Horn 1972), but it also diverges from it in important respects. First, it explains the absence

of several unattested inventories that are not ruled out by K&S. Second, it replaces K&S’s

hypotheses about lexicalisable combinations of primitive semantic elements to a separate

set of hypotheses, i.e., one in terms of the optimal trade-off between complexity and

informativeness and one in terms of commutativity of lexicalisable connectives.2

The rest of the paper is structured as follows. In Sect. 2, I will introduce the theory in

terms of the informativeness/complexity trade-off as a general model for semantic

universals. In Sect. 3, I will review existing explanations of the cross-linguistic absence of

NAND due to Horn (1972) and Katzir and Singh (2013), and point out their limitations. At

the same time, I will draw attention to conceptual similarities between the Horn/K&S

account and the trade-off model. Building on this conceptual similarity, the Horn/K&S

account will be reformulated within the trade-off model in Sect. 4. Within this section, I

will also discuss empirical validity of the account’s predictions, first with respect to the

restricted class of inventories that only contain connectives in the four ‘corners’ of the

square of opposition, and later with respect to all non-empty combinations of Boolean
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connectives. I will then discuss issues pertaining to the choice of parameters in the model

in Sect. 5, before concluding in Sect. 6.

2 Informativeness/complexity Trade-off as a Mdel for

Semantic Universals

The model of semantic universal and variation proposed by Kemp, Xu, and Regier (2018)

is stated in terms of two pressures that can be taken to shape semantic systems in general:

SIMPLICITY and INFORMATIVENESS. The former is a preference for a simpler system that

requires less cognitive cost while the latter is a preference for a more informative system

that ensures that the meaning intended by the sender is accurately recovered by the

addressee as much as possible. These two pressures compete with each other. The simpler

a system is, less guarantee there is that the intended meaning can be accurately recovered.

The more informative and fine-grained a system is, more complex it is. This situation is

schematically represented in Fig. 1. The dots in the figure represent semantic systems

ranked by their simplicity and informativeness. The region without dots are not reachable

because it would involve a degree of informativeness without its necessary cost for

simplicity in a human language. The model states that natural semantic systems reside in

the region represented by the gray dots, i.e. ones that make an optimal trade-off between

simplicity and informativeness. The languages may differ depending on how they make

the trade-off (how much they sacrifice simplicity for informativeness), but the variation is

constrained in that all languages lie in the optimal frontier represented by the blue dots.

The model has provided explanations for systematic cross-linguistic patterns in

lexical semantics across several domains of content words, including kinship terms (Kemp

and Regier, 2012), colour terms (Regier, Kemp, and Kay, 2015), and artefact terms (Xu,
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Figure 1: Trade-off between simplicity and informativeness (after Kemp, Xu, and Regier 2018)

Regier, and Malt, 2016). For example, Regier, Kemp, and Kay (2015) show that the

inventory of colour terms predicted by the model given the size of the inventory closely

tracks the actual cross-linguistic data of colour inventories (Cook, Kay, and Regier, 2005),

providing explanations for typological implicational generalisations suggested in earlier

literature (Berlin and Kay, 1969).

3 Existing Accounts

There is a distinct body of literature within formal semantics that concerns the explanation

of semantic universals in logical vocabularies. One of the earliest and most well-known

such explanations is the one put forth by Horn (1972) for the generalisation that natural

languages lack the connective NAND.3 Horn’s explanation is stated in terms of two

conditions, which can be roughly stated as follows, following the formulation given in
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Katzir and Singh (2013):

(1) a. Gricean Condition: Let X and Y be two inventories of logical operators in

the Aristotelian square of opposition (i.e., AND, OR, NOR, NAND) that cover

the same semantic space. If Y ⊂ X , X cannot be lexicalised.

b. Negation Condition: Let X and Y be two inventories of logical operators in

the Aristotelian square of opposition (i.e., AND, OR, NOR, NAND) that cover

the same semantic space. If X contains more instances of negation than Y , X

cannot be lexicalised.

The notion of semantic coverage is crucially defined by taking into account the possibility

of scalar implicature:

(2) Semantic Coverage: X COVERS z if z is either a member of X or the scalar

implicature of some member of X

To see how the above conditions explain the lack of NAND, let us first consider the

full inventory of Aristotelian four corners:

(3) {AND,OR,NOR,NAND}

From the perspective of the Gricean Condition, this inventory is sub-optimal. This is so

because, once we take scalar implicature into account, the same semantic coverage can be

achieved by an inventory with fewer operators, e.g., the one in (4) below:

(4) {AND,OR,NOR}

This is so because OR can implicate NAND given the presence of the stronger alternative

AND. The Gricean Condition thus states that (3) cannot be lexicalised given the presence

of (4).

Now, Horn argues that the Gricean Condition is necessary but not sufficient as an

explanation for the absence of NAND. To see this, consider another three-membered
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inventory as follows:

(5) {AND,NOR,NAND}

This inventory can achieve the same Semantic Coverage as (4) (and hence as the

four-membered inventory in (3)). This is so since NAND in (5) can implicate OR, given

the presence of the stronger alternative NOR. The Gricean Condition alone does not

distinguish between (4) and (5), which have the same number of operators and the same

Semantic Coverage. This is where the Negation Condition in (1b) comes in. Assuming

that NAND and NOR involve negation in its semantic representation, but OR and AND

don’t, the inventory in (4) involves one occurrence of negation but (5) involves two. Given

the Negation Condition, this makes (5) less optimal in comparison with (4).

The other two possible three-membered inventories do not achieve the same

Semantic Coverage as the four-membered inventory, even with scalar implicature:

(6) a. {AND,OR,NAND} does not cover NOR

b. {OR,NAND,NOR} does not cover AND

Similarly, inventories with fewer operators don’t achieve the Semantic Coverage of (3-5).

Thus, the combination of the Gricean Condition and the Negation Condition dictates that

the NAND-less inventory in (4) is the only lexicalisable inventory with the full semantic

coverage of Aristotelian four corners.

Katzir and Singh (2013) point out that Horn’s (1972) account does not extend to

broader typological patterns involving Boolean connectives outside of the four corners,

e.g. the lack of XOR. To address this issue, Katzir and Singh (2013) propose that

connectives involve primitive semantic building blocks and a restricted set of their

combinations, following Keenan and Stavi’s (1986) account of determiner meanings.

Specifically, they stipulate that a connective meaning may consist of a disjunction or a

conjunction and a negation optionally applied to it. This guarantees that no Boolean
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connective outside of the square can be lexicalised, including XOR. On top of this, the two

conditions in (1) operate on inventories consisting of the four corners that are in principle

allowed by the building blocks. This rules out e.g. the four-member inventory

{AND,OR,NOR,NAND}. K&S show that the relevant stipulation applies beyond

connectives and to any syntactic category and semantic type: logical operators across

categories and types are restricted to generalised disjunction and conjunction. This is

formalised in terms of an ordering-based perspective (Keenan and Faltz, 1985), i.e., by

positing infimum and supremum as semantic primitives and allowing negation over these

as an allowable operation.

Thus, Katzir and Singh’s (2013) account improves on Horn (1972) by enabling an

explanation of typological generalisations concerning connectives outside of the four

corners, while also showing that the explanation can be generalised to account for wider

lexicalisation patterns in logical vocabularies. However, an empirical issue still remains.

The issue concerns inventories involving connectives in the four corners theoretically

allowed by the account. Nothing in Horn’s and K&S’s account outlined above precludes

an inventory from having a Semantic Coverage that is smaller than the Aristotelian four

corners. In fact, the account predicts that an inventory is lexicalisable if it is the most

optimal one from the point of view of the Gricean Condition and the Negation Condition,

i.e., it does not have a competing inventory that achieves the same amount of Semantic

Coverage either with fewer connectives or with the same number of connectives but with

fewer overall instances of negation. In particular, the following inventories are predicted to

be possible by Horn/K&S:

(7) a. {AND,OR} b. {AND} c. {OR}

Each of these inventories is the most optimal one in view of Horn’s two conditions among

the ones with the same semantic coverage. To the extent that the inventories in (7) are
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concerned, this is a welcome prediction, since all the inventories in (7) have been reported

to exist in the typological literature. For example, Mous (2004) reports that Iraqw

(Southern Cushitic, Tanzania) has the inventory of connectives in (7a). Wari’

(Chapacura-Wanam, Brazil) is argued to have only a conjunctive connective, thus having

the inventory in (7b) (Mauri, 2008). Finally, (7c) is reported to be the inventory of

connectives in Warlpiri (Pama-Nyungan, Australia) (Bowler, 2015).4

However, for the same reasons why the account predicts (7) to be possible, it also

predicts the following inventories to be possible:

(8) a. {AND,NAND}

b. {AND,NOR}

c. {OR,NOR}

d. {OR,NAND}

e. {NOR,NAND}

f. {NAND}

g. {NOR}

Each of these inventories is the most optimal combination of connectives from the point of

view of the two conditions in (1). In fact, aside from {NOR,NAND}, each inventory in (8)

is the only one that has the specific Semantic Coverage that it has (while {NOR,NAND}

has the same Semantic Coverage as {OR,NOR,NAND} due to the fact that NAND

scalar-implicates OR). To my knowledge, none of the inventories in (8) is reported in a

natural language. This can be taken to be a problem for Horn as well as for K&S.5

At this point, it may be clear to the reader that the accounts based on the two

conditions in (1) are similar to the informativeness/complexity trade-off model at its

conceptual level. The two conditions in (1) together amount to pressure from simplicity,

given a certain level of informativeness. This is so because both the number of

connectives—constrained by the Gricean Condition—and the number of

negation—constrained by the Negation Condition—can be taken to contribute to the

complexity of an inventory. Also, Horn/K&S’s notion of Semantic Coverage is intuitively

similar to the notion of informativeness in the trade-off model. When an inventory has a
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wider semantic coverage than another, then the former inventory can be said to be more

informative than the latter, since it allows speakers to convey more meanings than would

be possible in the latter inventory. Although Horn/K&S don’t explicitly discuss pressure

from informativeness, it is reasonable to assume that there is a general preference for an

inventory with more semantic coverage, given a certain level of complexity of the

inventory. In the next section, I will give a concrete reformulation of Horn/K&S’s account

within the trade-off model. The reformulation will directly incorporate the insights of

Horn/K&S’s two conditions as well as the assumption about the primitiveness of

conjunction, disjunction, and negation. However, it will also overcome the empirical issue

discussed above. This is due to the fact that the reformulation replaces K&S’s hypotheses

regarding constraints on lexicalisation with a new set of hypotheses that allow more

general comparisons between inventories with respect to their fitness for lexicalisation.

4 Informativeness/complexity Trade-off for Boolean

Connectives

Following the trade-off model, I hypothesise that inventories of Boolean connectives in

natural language optimise the trade-off between informativeness and simplicity, where

these two measures are defined as follows:

• Complexity of an inventory is measured by the sum of the number of symbols in

Propositional Logic containing ¬, ∧, and ∨ necessary to represent all connectives in

the inventory.

• Informativeness of an inventory is measured by the likelihood that the meaning

intended by the sender is accurately recovered by the addressee, given scalar

implicature.
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More precisely, the hypothesis is that natural inventories are PARETO-OPTIMAL with respect

to informativeness and complexity. An inventory is Pareto-optimal with respect to two

measures iff, given its value in one measure, there is no other inventory that improves on it

with respect to the other measure. Thus, an inventory L is Pareto-optimal with respect to

informativeness and complexity iff we cannot find another inventory L′ that is as simple as

L but is more informative than L nor another inventory L′′ that is as informative as L but

is simpler than L.

As suggested in the previous section, insights from Horn and K&S are incorporated

in these measures. In particular, in line with K&S, complexity is measured under the

assumption that negation (¬), disjunction (∨), and conjunction (∧) are the only primitive

semantic building blocks. Also, scalar implicature is taken into account in the

measurement of informativeness, following Horn/K&S’s idea that scalar implicature feeds

Semantic Coverage. However, unlike K&S, the model does not preclude any logically

possible Boolean connective from the set of in-principle lexicalisable connectives (though

I will consider restricting lexicalisable connectives to commutative ones in Sect. 4.3.2.).

For example, the connective XOR is included as an in-principle lexicalisable connective

that the model considers when it calculates the trade-off between informativeness and

complexity of various inventories.

In this section, I will introduce a formal model of Boolean connective inventories and

discuss in detail how their complexity and informativeness are measured. I take the exact

measurements adopted in this paper to be mere approximations guided by the insights

from Horn/K&S, as my goal is to show that the Horn/K&S account can be reformulated

within the trade-off model, while preserving their virtues and overcoming their limitations.

This said, it is worth mentioning that informativeness-simplicity trade-off based on the

two measures along the lines of what I will introduce below has been independently shown

to track properties of quantifiers in natural language by Steinert-Threlkeld (2019).6
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Needless to say, the exact choice of the parameters should ideally be tested based on

further independent empirical evidence. In Sect. 5, I will discuss several specific issues

pertaining to the choice of parameters.

4.1 The Model of Boolean Connective Inventories

An inventory of Boolean connectives is any nonempty subset of the set CON of 16

Boolean connectives. These connectives are labeled as follows, with their semantics

defined as in the truth table in Table 1:

(9) CON =

 P,Q,TAU,←,→,↔,AND,ONLYP,ONLYQ,

NAND,XOR,NOTP,NOTQ,NOR,CONT


The set L of all possible inventories thus has 216 − 1 = 65, 535 members:

(10) L := Pow(CON)−∅

I will formally represent the semantics of each connective as a subset of the four-world

universe W := {w1, w2, w3, w4}. That is, for each connective c ∈ CON ,

JcK = {w ∈ W | column c has value 1 in row w in Table 1 }.

subsectionMeasuring Simplicity/Complexity

The complexity of an inventory is the sum of the (smallest) number of symbols in

Propositional Logic (PL) necessary to represent the connectives in the inventory. Here, I

take PL to be one that has three connectives: ¬, ∧ and ∨, and propositional letters p and q

for the left-hand side and right-hand side propositional argument. Although the account

should ideally be grounded in a theory of the cognitive complexity of Boolean concepts

(e.g., Feldman, 2000; Piantadosi, Tenenbaum, and Goodman, 2016), I will adopt a

simplistic measure of complexity here, inheriting K&S’s assumption that the the primitive

semantic building blocks consist of conjunction, disjunction, and negation. Table 2 lists

the PL translations of the 16 Boolean connective meanings.7
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P Q TAU OR ← → ↔ AND ONLYP ONLYQ NAND XOR NOTQ NOTP NOR CONT
w1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
w2 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0
w3 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0
w4 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0

Table 1: Truth table for all possible Boolean connective meanings

label formula length
P p 1
Q q 1

TAU p ∨ ¬p 4
OR p ∨ q 3
← ¬p ∨ q 4
→ p ∨ ¬q 4
↔ (p ∧ q) ∨ ¬(p ∨ q) 8

AND p ∧ q 3
ONLYP p ∧ ¬q 4
ONLYQ ¬p ∧ q 4
NAND ¬(p ∧ q) 4
XOR (p ∨ q) ∧ ¬(p ∧ q) 8

NOTQ ¬q 2
NOTP ¬p 2
NOR ¬(p ∨ q) 4

CONT p ∧ ¬p 4

Table 2: Propositional Logic representations of connectives and their length

Based on the length of the formulas, the complexity of an inventory is calculated by

simply summing up the length of the formulas in the inventory. Below are some examples:

C({AND, OR, NAND, NOR}) = 3 + 3 + 4 + 4 = 14

C({AND, OR, NOR}) = 3 + 3 + 4 = 10

C({AND, NOR, NAND}) = 3 + 4 + 4 = 11
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Note that the comparison between these inventories based on our measure of complexity

follows the one based on the Gricean Condition and the Negation Condition, discussed in

the previous section. These three inventories have the same ‘Semantic Coverage’ in the

sense of Horn/K&S, but {AND, OR, NOR} is simpler than {AND, OR, NAND, NOR } by

virtue of the fact that the former has fewer connectives in it, and {AND, OR, NOR} is

simpler than {AND, NOR, NAND} by virtue of the fact that the PL representation of OR is

shorter than that of NAND, due to the presence of ¬ in the latter.

4.2 Measuring Informativeness

Following Horn/K&S, our measure of informativeness takes into account scalar

implicature. Following K&S, I adopt Fox’s (2007) formulation of scalar implicature,

where the result of applying scalar implicature to p given a set A of alternatives is the

intersection of p with the the negation of INNOCENTLY EXCLUDABLE (IE) alternatives for p

in A. This is formally stated as follows:8

(11) a. ScalarImp(p,A) := p ∩
⋂
{ p′ | p′ ∈ IE(p,A) }

b. IE(p,A) :=⋂
{A′ ⊆ A | A′ is a maximal subset of A s.t. p ∩

⋂
{ p′ | p′ ∈ A′ } ̸= ∅ }

Given this formulation of scalar implicature, we derive the strengthened meaning of

connective c in inventory L, JcK+L , as the result of applying scalar implicature to the

meaning of c, JcK, with the whole inventory L as its alternatives:

(12) JcK+L := ScalarImp(JcK, JLK) where [[L]] := { [[c]] | c ∈ L }

The informativeness of an inventory L is then measured using notions of

communicative success, based on the speaker’s intended message (represented as a

particular possible world) w, the addressee’s interpretation w′, and the utility (u) of

interpretation w′ given w, as follows (Skyrms, 2010; Steinert-Threlkeld, 2019):
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(13) I(L) =

∑
w∈W

prior prob. of w︷ ︸︸ ︷
P (w)

∑
c∈L

prob. of uttering c given w︷ ︸︸ ︷
P (c|w)

∑
w′∈W

prob. of interpreting c as w′︷ ︸︸ ︷
P (w′|c) ·

utility of w′ given w︷ ︸︸ ︷
u(w,w′)

I assume this particular measure of informativeness since it has been independently shown

to lead to empirically accurate predictions of the trade-off model in other domains of the

logical vocabulary, i.e., quantifiers (Steinert-Threlkeld, 2019) and indefinite pronouns

(Denić, Steinert-Threlkeld, and Szymanik, 2020). Furthermore, as I will illustrate shortly,

the measure allows an intuitive characterisation of informativeness that penalises both

non-specificy in meanings and semantic overlaps between different expressions.

I will assume flat priors and flat conditional probabilities based on the strengthened

meanings of the connectives. Thus, P (w) = 1
4

for every w ∈ W . P (c|w) is the conditional

probability of the speaker truthfully uttering c given that they know they live in world w.

With flat conditional probability, if w ∈ JcK+L , P (c|w) = 1
n

where

n = | { c′ ∈ L | w ∈ Jc′K+
L } | (i.e., the number of connectives that are true in w given their

strengthened meanings); otherwise, P (c|w) = 0. Similarly, if w′ ∈ JcK+L , P (w′|c) = 1
n

where n = |JcK+
L| (i.e. the number of worlds that make c true given its strengthened

meaning); otherwise, P (w′|c) = 0. As for the utility function u, I will assume a binary

function that assigns 1 if the intended message is correctly recovered and 0 otherwise.

That is:

(14) u(w,w′) :=

 1 if w′ = w

0 otherwise

I will consider a non-binary utility function in Sect. 5.

Given these assumptions, the informativeness value defined in (13) can be simplified

as follows, where L(w) := { c′ ∈ L | w ∈ Jc′K+L }:
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(15)

I(L) =
1

4

∑
w∈{w′|L(w′) ̸=∅}

∑
c∈L(w)

1

|L(w)|
1

|JcK+
L|

Intuitively, 1
|L(w)| can be understood as a factor that penalises overlap in meanings between

different connectives. Given a certain connective c and a world w, where the strengthened

meaning of c is true in w, the more connectives the speaker could use in w in addition to c,

there is less chance that c is used. This can lead to overall informativity loss, as will be

exemplified shortly. On the other hand, 1
|JcK+

L|
can be understood as a factor that penalises

non-specificity in meanings. The more worlds there are in which a connective can be true,

less likely it is that using the connective results in accurate communication.

Here are some examples that illustrate how informativeness is calculated according to

the parameters set out above. Suppose we have L = {AND,OR} as our inventory. We

have JANDK+L = {w1} and JORK+L = {w2, w3} (see Figure 2(a) for a depiction). In this

case, the informativeness value of L, I(L), can be calculated as follows:

i) If the speaker intends w1, then they can only choose AND to convey this

[P (AND|w1) = 1]. AND can only be interpreted to convey w1 [P (w1|AND) = 1].

Thus, the probability of communicative success given that the speaker intends w1 is

1.

ii) If the speaker intends w2, then they can only choose OR to convey this

[P (OR|w2) = 1]. OR can be interpreted to convey w2 or w3. The communication

will be successful only if the addressee interprets the message as w2

[P (w2|OR) = 1
2
]. Thus, the probability of communicative success given that the

speaker intends w2 is 1 · 1
2
= 1

2
.

iii) If the speaker intends w3, then they can only choose OR to convey this

[P (OR|w3) = 1]. OR can be interpreted to convey w2 or w3. The communication
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will be successful only if the addressee interprets the message as w3

[P (w3|OR) = 1
2
]. Thus, the probability of communicative success given that the

speaker intends w3 is 1 · 1
2
= 1

2
.

iv) If the speaker intends w4, then there is no connective they can use to achieve

successful communication.

We thus have I({AND,OR}) = 1
4
(1 + 1

2
+ 1

2
+ 0) = 1

2
.

Next, let us consider L′ = {AND,P,Q}. Here, we have JANDK+L′ = {w1};JPK+L′ = {w2}; JQK+L′ = {w3} (see Figure 2(b)). In this case, the situation is exactly the

same as above for (i) and (iv). Only, in (ii) and (iii), the speaker can use designated

connectives—P and Q respectively—and their messages will be fully recovered by the

addressee. Thus, we have I(L′) = 1
4
(1 + 1 + 1 + 0) = 3

4
. This exemplifies the fact that the

more fine-grained the set of strengthened meanings, the greater the informativeness, since

fine-grainedness of meanings contributes to higher likelihood that the speaker’s intended

message is correctly recovered by the addressee.

Finally, let us consider L′′ = {AND,OR,XOR}. In this case, scalar implicature does

not strengthen any of the connectives.9 That is, we have JANDK+L′′ = {w1};JORK+L′′ = {w1, w2, w3}; JXORK+L′′ = {w2, w3} (see Figure 2(c)). In this case, due to the

overlap in meanings, L′′ will have less informativeness than L. Concretely, if the speaker

intends w1, they can use AND and OR with 1
2

probability each. In the AND case, the

intended meaning is always correctly recovered. In the OR case, it is correctly recovered

with 1
3

probability. Thus, the probability of successful communication given that the

speaker intends w1 is 1
2
· 1 + 1

2
· 1
3
= 2

3
. Comparing this with case (i) in the calculation of

the informativeness for L above makes it clear that communicative success is less likely

under L′′ than under L when the speaker intends w1. Similar considerations apply in cases

where the speaker intends other meanings. The overall informativeness for L′′ turns out to
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be I(L′′) = 0.375. Thus, we see that adding an additional connective to L results in lower

informativeness value. This is an example of a case where the overlap in meanings results

in the overall informativity loss.10

Note further that this informativeness measure replicates the prediction of the

Fox/K&S model regarding the equivalence in Semantic Coverage between

{AND,OR,NOR} and {AND,NAND,NOR} due to the fact that the sets of strengthened

meanings of these two inventories turn out to be the same (see Figure 2(d)).

w1 w2

w3 w4

(a)

w1 w2

w3 w4

(b)

w1 w2

w3 w4

(c)

w1 w2

w3 w4

(d)

Figure 2: Strengthened meanings for (a) {AND,OR}, (b) {AND,P,Q}, (c)
{AND,OR,XOR} and (d) {AND,OR,NOR} and {AND,NAND,NOR}

4.3 Model Predictions

A Python script was written to generate the complexity and the informativeness values of

all 65,535 inventories of Boolean connectives, according to the measures given above.

The script and its output are available at https://github.com/wuegaki/connectives.

In the following two sections, I will discuss predictions of the model, first focusing on

those consisting of connectives in the Aristotelian four corners (i.e., AND, OR, NAND,

and NOR) (henceforth FOUR-CORNER INVENTORIES) and then extending the discussion to

all possible inventories consisting of 16 Boolean connectives.
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4.3.1 Four-corner Inventories

The predictions for four-corner inventories are summarised in Table 3. A plot of the

inventories with respect to informativeness and complexity are given in Figure 3. As can

inventory complexity informativeness
{AND,OR,NAND,NOR} 14 0.5
{AND,NAND,NOR} 11 0.75
{OR,NAND,NOR} 11 0.5833
{OR,AND,NOR} 10 0.75
{OR,AND,NAND} 10 0.5833
{NAND,NOR} 8 0.5
{AND,NOR} 7 0.5
{OR,NOR} 7 0.5
{AND,NAND} 7 0.5
{OR,NAND} 7 0.5
{OR,AND} 6 0.5
{NOR} 4 0.25
{NAND} 4 0.25
{AND} 3 0.25
{OR} 3 0.25

Table 3: Complexity and informativeness for four-corner inventories. Inventories that are
Pareto-optimal with respect to simplicity and informativeness are boldfaced.

be seen from the table and the plot, the model predicts four

inventories—{AND,OR,NOR}, {AND,OR}, {AND}, and {OR}—to be the

Pareto-optimal ones. As discussed in Sect. 3, all of these inventories are reported to exist

in a natural language. Furthermore, the current model overcomes one of the empirical

problems with the Horn/K&S account, as it predicts that no inventories other than the

above four are Pareto-optimal. For example, although the Horn/K&S account predicts

{NAND} to be an inventory that can in principle be lexicalised (see Sect. 3), the current

model rules out {NAND} since it is more complex than {AND} and {OR} which are

equally informative. In other words, our measure of informativeness is general enough to

compare the whole range of inventories (allowing us, for example, to equate the
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Figure 3: Four-corner inventories plotted with respect to informativeness and simplicity.
Pareto-optimal inventories are in gray.

informativeness of {NAND} with that of {AND} and {OR}) whereas Horn/K&S’s notion

of Semantic Coverage is not general enough to allow similar comparisons across

inventories.11

4.3.2 All Possible Boolean Connective Inventories

The generality of our model allows us to investigate its predictions with respect to all

65,535 possible inventories of Boolean connectives. The full output of the model is

plotted in Figures 4 and 5. As can be seen in Table 4(a), Pareto-optimal inventories in the

full model output do not track attested cross-linguistic patterns as well as those in the

partial output for four-corner inventories. On the one hand, the lack of NAND is still

correctly predicted since no inventory in Table 4(a) contains NAND. On the other hand, it

makes a number of problematic predictions, including the lack of OR in any

20



Figure 4: Plot of all 65,535 possible inventories of Boolean connectives with respect to
informativeness and complexity. Inventories in the Pareto-optimal frontier listed in Table
4(a) are in gray.

Pareto-optimal inventory.

In this context, it is worth noting another property of the inventories in Table 4(a):

every one of them involves a non-commutative connective (i.e., those connectives con such

that Jp con qK = Jq con pK) whereas connectives in the four corners are all commutative.12

With respect to the property of commutativity, the 16 Boolean connectives can be divided

into the following two classes:

(16) a. Non-commutative connectives

P, Q, NOTP, NOTQ,→,←, ONLYP, ONLYQ

b. Commutative connectives
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(a)
inventory complexity informativeness
{P,Q,AND,NOR} 9 1
{P,Q,→,AND} 9 1
{P,Q,←,AND} 9 1
{TAU,P,Q,AND} 9 1
{P,Q,AND,NOTP} 7 0.8125
{P,Q,AND,NOTQ} 7 0.8125
{P,Q,NOTP} 4 0.75
{P,Q,NOTQ} 4 0.75
{P,Q} 2 0.5
{P} 1 0.25
{Q} 1 0.25

(b)
inventory complexity informativeness
{OR,AND,NOR} 10 0.75
{TAU,OR,AND} 10 0.75
{OR,AND} 6 0.5
{OR} 3 0.25
{AND} 3 0.25

Table 4: (a): Pareto-optimal inventories among all 65,535 possible combinations of Boolean
connectives; (b): Pareto-optimal inventories among combinations of commutative Boolean
connectives (28 − 1 = 255 in total).

TAU, CONT, OR,↔, AND, NAND, XOR, NOR

In the earlier literature, Gazdar and Pullum (1976) and Gazdar (1979: 74-78) have

hypothesised that connectives that are in principle lexicalisable in natural language are

restricted to the commutative class in (16b). Gazdar (1979) in particular has shown that

this constraint is derived once we take connectives as a function that takes a set (rather

than a tuple) of truth values as its argument, following an earlier suggestion by McCawley

(1972). Following these authors, I take it as a viable hypothesis that natural language

connectives are always commutative although I have to leave open the exact explanation

for the existence of this constraint.13

As such, the prediction of the model only for inventories containing the commutative

connectives in (16b) is also considered. The Pareto-optimal inventories among the

combinations of the commutative connectives are listed in Table 4(b). These inventories

seem to track the attested pattern more accurately than those in Table 4(a). The only

unattested inventory in Table 4(b) is {TAU,OR,AND}, which is arguably ruled out for

independent grounds: TAU is non-lexicalisable in natural language because it

systematically derives a trivial meaning, i.e., tautology. There is growing evidence in
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formal semantics that systematically trivial meanings resulting from logical vocabularies

leads to ungrammaticality (e.g., Barwise and Cooper, 1981; von Fintel, 1993; Gajewski,

2002; Fox and Hackl, 2007; Chierchia, 2013; Del Pinal, 2019). Given this link between

semantic triviality and ungrammaticality, a sentence containing TAU would always be

ungrammatical, regardless of the clauses it coordinates. This would explain the lack of

TAU in the grammar of any natural language.14

4.4 Interim Summary

The Horn/K&S account of the lack of NAND can be reformulated within the

informativeness/complexity trade-off model due to Kemp and Regier (2012); Regier,

Kemp, and Kay (2015); Kemp, Xu, and Regier (2018). According to this model,

inventories of connectives in natural languages reside in the Pareto-optimal frontier of

their complexity (measured as the number of Propositional Logic operators necessary to

express the connective meanings) and informativeness (measured in terms of the notion of

communicative success, given scalar implicature).

In this section, we first considered the prediction of the model with respect to those

inventories only containing connectives in the Aristotelian four corners (Sect. 4.3.1). Not

only does the model predict the four empirically attested inventories—{AND, OR, NOR},

{AND, OR}, {AND} and {OR}—to be Pareto-optimal among the restricted class of

inventories, but it also overcomes the problem with Horn/K&S in ruling out unattested

inventories, e.g., {NOR}, as sub-optimal. We then moved on to consider the broader

prediction of the model (Sect. 4.3.2) with respect to possible combinations of Boolean

connectives in general, not just those in the Aristotelian corners. Although the

Pareto-optimal inventories among the full set of inventories (65,535 in total) do not seem

to track the empirical patterns accurately, restricting the overall domain of inventories to
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those containing commutative connectives allows us to make empirically plausible

predictions.

5 Alternative Parameter Settings

The model proposed in the previous section relies on a number of parameter choices and

assumptions, e.g., a precise definition of complexity and the utility function involved in the

calculation of informativeness. Since the goal of this paper is to reformulate the

Horn/K&S account within the trade-off model and discuss its advantages, these

parameters have been generally chosen on the basis of theoretical simplicity and/or

similarity to the assumptions made in Horn/K&S. Nevertheless, ideally, different choices

of parameters should be compared based on the empirical validity of their predictions and

tested based on independent evidence. In this section, I will briefly discuss three notable

issues pertaining to the choice of parameters, although detailed empirical investigations

have to be left for another occasion.

Scalar implicature Following Horn/K&S, our measure of informativeness takes into

account scalar implicature as a crucial ingredient. Scalar implicature is indeed necessary

to derive empirically correct predictions. This can be illustrated by considering the

informativeness of the following inventories in models with and without scalar implicature.

(17) {OR,AND}

(18) a. {OR,NOR} b. {AND,NOR} c. {AND,NAND}

As shown in Table 3, these inventories have the same informativeness value (= 0.5) if they

are calculated on the basis of the strengthened meanings resulting from scalar implicature.

This makes (17) more optimal than those in (18), given its relative simplicity. On the other

hand, without scalar implicature, the informativeness value for (17) (= 0.325) will be
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lower than that for those in (18) (= 0.5), making the inventories in (18) Pareto-optimal

among the four-corner inventories. To my knowledge, none of the inventories in (18) is

attested in the typological literature. Hence, scalar implicature is an important ingredient

of the current model in deriving the empirically correct predictions (see also fn. 8 for a

note on the choice of the particular implementation of scalar implicature).

Utility function In Sect. 4.2, the utility function has been defined as a binary function,

returning 1 if the speaker’s intended message is accurately recovered by the addressee, and

0 otherwise. However, we could also conceive of a more nuanced version of utility

function with a partial value assigned to partial communicative success. Such a weighted

utility can be defined as follows:

(19) a. u(w,w′) = 1
1+d(w,w′)

[d(w,w′): the ‘distance’ between w and w′]

b. d(w,w′) =


0 if w = w′

2 if (w = w1 and w′ = w4) or (w = w4 and w′ = w1)

1 otherwise

Intuitively, the weighted utility function assigns 1 if the intended meaning is completely

recovered by the addressee, 1/2 if only the truth value of one of the coordinates is correctly

recovered, 1/3 if the truth value of neither coordinate is correctly recovered.

The prediction of a model with the weighted utility is similar to the one based on the

binary utility function discussed in Sect. 4, but with several intriguing differences, as can

be seen in the list of Pareto-optimal inventories among inventories containing only the

binary connectives in Table 5. In particular, with the weighted utility, empirically

unattested inventories {OR,NOR} and {AND,NAND} turn out to be Pareto-optimal

among the class of commutative connectives, although they aren’t if the binary utility is

used.

Although the notion of utility is not relevant for the Horn/K&S’s account, weighted

25



inventory complexity informativeness
{OR,AND,NOR} 10 0.875
{TAU,OR,AND} 10 0.875
{OR,NOR} 7 0.75
{AND,NAND} 7 0.75
{TAU,AND} 7 0.75
{TAU,OR} 7 0.75
{OR,AND} 6 0.625
{TAU} 4 0.604
{OR} 3 0.5

Table 5: Pareto-optimal inventories predicted on the basis of the weighted utility function
in (19) among combinations of commutative Boolean connectives.

utility along the lines of (14) has been employed for independent purposes (e.g., Jäger,

2007; Steinert-Threlkeld, 2019). Further investigation is required to assess the empirical

validity of a particular choice of utility functions and the distance metric.

Prior The flat prior assumed in the model is also important for it to predict the correct

lexicalization patterns. To see this, consider the comparison between {AND,OR} and

{AND,NAND} again. It can be shown that I({AND,NAND}) > I({AND,OR}) if

2 · P (w4) > P (w2) + P (w3). That is, with such a non-flat prior, the model makes an

incorrect prediction that {AND,NAND} is more informative than {AND,OR}. This fact is

potentially crucial for the theoretical interpretation of the model, as it may suggest that its

success is dependent on its encapsulation with a restricted set of priors (Fox and Katzir,

2021), as opposed to its integration within a domain-general probabilistic model of

communication that in principle allows non-flat priors.
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6 Conclusions

In this paper, I have reformulated an existing explanation of the cross-linguistic absence of

NAND due to Horn (1972) and Katzir and Singh (2013), by employing the

informativeness/complexity trade-off model (Kemp, Xu, and Regier, 2018), which has

been proposed as a general model for semantic universals. According to the reformulated

account, inventories of connectives in natural languages optimise the trade-off between

informativeness (measured in terms of the notion of communicative success, given scalar

implicature) and complexity (measured in terms of the number of symbols required to

express the connective meanings in Propositional Logic).

Within the restricted class of inventories consisting of connectives in the Aristotelian

four corners (AND, OR, NAND, and NOR), the model makes empirically accurate

predictions: it predicts that none of the possible inventories that make the optimal

trade-offs involve NAND. Moreover, it predicts all and only empirically attested

inventories (i.e., {AND}, {OR}, {AND,OR} and {AND,OR,NOR}) to be the optimal

inventories in the class. This is an improvement over Horn (1972) and Katzir and Singh

(2013), who predict some of the unattested inventories to be in principle realisable in a

natural language.

The model is generalisable to all possible combinations of 16 Boolean connectives

(66,535 in total). The empirical validity of the full prediction of the model with respect the

66,535 inventories seems to be mixed. On the one hand, none of the inventories that are

optimal in the relevant sense includes NAND, giving further support to the idea that its

cross-linguistic absence is explained in terms of the general notion of informativeness and

complexity. On the other hand, the optimal inventories include those that contain

connectives that are arguably non-existent in natural language, such as the material

implication→. However, if we restrict our attention to the class of inventories that contain

27



commutative connectives (255 in total), the Pareto-optimal inventories turn out to be

precisely the four attested inventories plus one unattested inventory {TAU,OR,AND},

which is arguably ruled out given an independent restriction against logically trivial

meanings.

Overall, the current paper provides a proof of concept for an account of semantic

universals in the domain of connectives based on the informativeness/complexity trade-off

model. Along with similar recent studies in other domains of logical/functional

vocabulary (Steinert-Threlkeld, 2019; Carcassi, 2020; Denić, Steinert-Threlkeld, and

Szymanik, 2020; Enguehard and Spector, 2021), the current paper offers a promising

prospect for the explanation of cross-linguistic universals in logical vocabularies within

the trade-off model, motivating further research in the domain. Particularly interesting

issues include empirical underpinnings of parameters affecting the model and the extent of

their domain-specificity, as well as the model’s compatibility with grammar-internal

explanations of semantic universals (e.g., Romoli, 2015).
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Denić, Caroline Heycock, Luca Incurvati, Simon Kirby, Mora Maldonado, Floris

Roelofsen, Giorgio Sbardolini, Matt Spike, Mark Steedman, Shane Steinert-Threlkeld,

Jakub Szymanik, as well as two anonymous LI reviewers for helpful comments and

discussion. All errors are my own. This work is supported by UKRI Future Leaders

Fellowship (MR/V023438).
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1In this context, it is also worth mentioning that Chemla, Buccola, and Dautriche

(2018) and Enguehard and Chemla (2021) have successfully extended a semantic

constraints on content vocabularies—connectedness—to logical vocabularies/operations,

i.e., quantifiers and exhaustification.
2While writing up the current paper, I was made aware of a closely related study by

Enguehard and Spector (2021), who independently propose an account of the

lexicalisation gap in the ‘O-corner’ in the square of opposition in the quantificational

domain, based on the notion of informativeness/cost trade-off. In contrast to Enguehard

and Spector (2021), who fully integrate their analysis within (a version of) the Rational

Speech Act model, my goal in the current paper is to show that a fairly conservative

reformulation of existing accounts by Horn (1972) and Katzir and Singh (2013) employing

the trade-off model provides a satisfactory account of the lexicalisation pattern in the

domain of connectives. One major difference between my analysis and Enguehard and

Spector (2021) is that my analysis crucially assumes that negation adds to the complexity

of inventories while Enguehard and Spector do not rely on this assumption. At the same

time, the scope of the analysis is also different. Whereas I consider all possible

combinations of Boolean connectives, Enguehard and Spector only demonstrate a

comparison of two inventories: {A,E, I} and {A,E,O}. See also Carcassi and Sbardolini

(2021) for a related analysis based on a version of update semantics and a tradeoff between

cognitive complexity and use complexity. I would like to leave a more extensive

comparison of the current analysis with these alternative accounts to another occasion.
3The same generalisation specifically in the domain of connectives is also noted by

Zwicky (1971: 124) while the broader generalisation about the lack of a lexical operator

corresponding to the O-corner in the square of opposition is discussed by Löbner (1983);
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Hoeksema (1999); Jaspers (2005); Seuren (2006), and von Fintel and Matthewson (2008).
4It should be noted that connectives in Warlpiri under Bowler’s (2015) analysis

achieves the semantic coverage of {AND,OR} based on recursive exhaustification of OR.

See also fn. 8.
5One might attempt to defend Horn/K&S by saying that, e.g., {NAND} should be

ruled out because of the presence of {OR}. After all, NAND and OR are comparable in

their ‘semantic coverages’ in that both of them are true in exactly three ‘rows’ in a truth

table. Note, however, that Horn/K&S’s definition of Semantic Coverage is stated in terms

of the specific corners of the square of opposition, and not in terms of the number of rows

in a truth table. Thus, according to this definition, {NAND} and {OR} have separate

Semantic Coverages. One might also point to various kinds of ‘unnaturalness’ of the

inventories in (8). E.g., some of them involve a negated connective without having its

positive counterpart. However, constraints based on such ‘naturalness’ are not part of

Horn/K&S’s theory par se. In contrast, my proposal to be discussed below can provide a

principled explanation of their absence based on the informativeness/complexity trade-off.
6 However, crucially, the lack of O-corner quantifiers, e.g., ‘NALL’ meaning ‘not all’,

is not explained by the properties of natural language quantifiers considered by

Steinert-Threlkeld (2019).
7Parentheses are not taken into account in the length measure in Table 2. The rationale

for this is that the relevant notion of complexity only concerns the number of primitive

elements in the formula, and that properties of the hierarchical structure of the

combination of primitive elements do not by themselves contribute to complexity. It turns

out that including parentheses in the length measure changes the prediction of the model

slightly. The list of Pareto-optimal inventories will not include the inventories containing

NOR. That is, Pareto-optimal inventories among 65,535 combinations of connectives will

be those 10 inventories in Table 4(a) without the top one, and Pareto-optimal inventories
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among combinations of commutative connectives will be those 4 inventories in Table 4(b)

without the top one. This result is interesting in view of the relatively questionable

empirical status of NOR as a lexical item in many languages (Gazdar, 1979; von Fintel and

Matthewson, 2008).
8As far as I can see, it is not crucial for our purposes to define scalar implicature in this

particular fashion. One may, for example, derive scalar implicatures as a combination of

the primary implicature and the secondary implicature as in Sauerland (2004). However,

we would presumably derive different predictions if scalar implicature is allowed to apply

recursively, strengthening e.g., {OR,P,Q} into {AND,P,Q} (Fox 2007; Bowler 2015; cf.

Singh et al. 2016; Bar-Lev and Fox 2020). It may also be possible to incorporate scalar

implicature directly into the model of informativeness by assuming communicative agents

according to the Rational Speech Act (RSA) model (e.g., Frank and Goodman, 2012). I

would like to leave detailed investigation of the consequences of adopting different models

of scalar implicature to a different occasion.
9This is so since the presence of XOR makes AND not innocently excludable relative to

the prejacent OR.
10Consequently, the maximal inventory containing all 16 connectives does not have the

highest possible informativeness value due to the abundant overlaps in meanings. It in fact

has the informativeness value 0.46875, which is lower than e.g., I({AND,OR}) = 0.5.
11Another point worth mentioning concerns the prediction with respect to the inventory

{AND,OR,NOR,NAND}. Although the Horn/K&S account predicts this inventory to

have the same Semantic Coverage as {AND,OR,NOR}, our model predicts

{AND,OR,NOR,NAND} to be less informative than {AND,OR,NOR}. This is because

our model of scalar implicature predicts neither OR nor NOR to be strengthened in

{AND,OR,NOR,NAND}, due to the fact that the set of innocently excludable alternatives

to OR among {AND,OR,NOR,NAND} is just {NOR}, and similarly that to NAND is
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{AND}.
12I am very much indebted to Moysh Bar-Lev for discussion on this point.
13It is also conceivable that non-commutative connectives are inherently more complex

than commutative ones, given that the former are order-sensitive while the latter aren’t.

However, it is not straightforward how order-sensitivity can be incorporated as part of the

complexity measure as currently defined.
14One might consider an alternative constraint that restricts the set of lexicalisable

connectives to those where both sentential arguments are RELEVANT to the truth value of

the whole sentence, as e.g., formalised in Fox (2008: 250, (11)). This would rule out P, Q,

NOTP, NOTQ, TAU, and CONT. It turns out, however, that running the trade-off model as

defined above on inventories consisting of combinations of 10 remaining connectives does

not eliminate unattested inventories. The Pareto-optimal inventories given the 10

connectives are {OR,AND,ONLYP,NOR }, {OR,AND,ONLYQ,NOR },

{OR,AND,NOR }, {OR,→,AND,ONLYQ }, {OR,←,AND,ONLYP },

{OR,AND,ONLYQ }, {OR,AND,ONLYP }, {OR,→,AND }, {OR,←,AND },

{OR,AND }, {OR }, and {AND }. This shows that the constraint in terms of relevance in

the sense above, taken together with the trade-off model, is not sufficient in predicting the

typological generalisations. I thank an anonymous reviewer for suggesting this possibility.
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