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Abstract
Objective. The efficacy of an adopted feature extraction method directly affects the classification of
the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt
to extract the dynamics of the multi-channel EMG signals in the time domain and on a
channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel
information to build a similarity matrix has not been taken into account. Approach. Combining
methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a
new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures
the spatio-temporal relationships of multi-channels EMG signals.Main results. Across four online
databases, we show that in terms of average classification error and standard deviation values, the
STW feature outperforms traditional features by 5%–17%. In comparison to the more recent deep
learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%–18%.
Also, STW showed enhanced performance when compared to the CNN+ LSTMmodel by
2%–14%. All differences were statistically significant with a large effect size. Significance. This
feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG
signals can enhance the classification accuracy in an explainable way when compared to recent
deep learning methods. Future work includes real-time implementation of the method and testing
for prosthesis control.

1. Introduction

The electromyographic (EMG) signal, recorded from
the stump muscles, is a valuable, rich, complex, and
dynamic source of information for prosthesis con-
trol. Research shows that providing natural EMG-
based feedback with different approaches including
grasp/wrist force and movement estimation [1–4],
continuous finger trajectory decoding [5], and dis-
crete movement classification [6, 7] could achieve
promising results for desirable control of the pros-
thesis. Machine learning is a candidate tool in map-
ping motor intent to prosthesis control [8–10].
Extracting reliable features from the EMG signals
plays a vital role in the control of upper limb pros-
theses with pattern recognition [8, 9, 11]. A wide
range of factors affect the accuracy of machine

learning-based methods [12–17]. The separability of
the features can have a greater influence on the per-
formance of EMG decoding than the type of the clas-
sifier [12–14]. Therefore, research on the develop-
ment and real-time testing of more robust features is
on-going.

Current EMG feature extraction methods suffer
from two intrinsic limitations:

(a) they are cross-sectional [18–21]; that is, they
cannot extract the inter-temporal dependencies
that exist between feature extraction windows;

(b) they merely concatenate features extracted from
individual channels [15, 22–24]; not capturing
the synergistic and spatial patterns of muscles
activity.

© 2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. The conventional EMG feature extraction approach that suffers from the lack of inter-temporal focus, between
windows, and the lack of spatial focus, between channels (left). The proposed STW approach with across-channel feature
extraction and considering the inter-temporal relationships between windows (right).

These limitations are depicted in the left side
of figure 1. Therefore, the development of feature
extraction methods that can capture the temporal
dynamics of the EMG signals in a spatially-aware way,
such as the one shown on the right side of figure 1, has
received increased attention recently [15, 21, 25–38].

To address the former, many hand-crafted
features [15, 25–27] and deep learning-based
approaches [21, 28–30] are introduced. The fusion
of time-domain descriptors (fTDDs) and deep long
short-term memory (LSTM) networks yield higher
classification accuracy than the conventional time-
domain (TD) features [19, 21, 39, 40]. Thesemethods
excel in extracting the temporal information by con-
catenating features. Hence, they are blind to spatial
information.

To address the second limitation, deep learn-
ing methods, e.g. convolutional neural networks
(CNNs), construct spatial feature sets and capture the
relationship between EMG channels [31–35]. Convo-
lutional structures do not typically consider within-
channel inter-temporal information of the EMG sig-
nals. Therefore, there has been a surge of research in
combining CNNs and LSTM to capture the spatio-
temporal features of the EMG signals [36–38]. How-
ever, the prohibitively large number of model para-
meters, e.g. 34–95 k in [41], 104 k in [32], and 30–549
k in [42], may impose a barrier in real-time imple-
mentation for myoelectric control. Traditional fea-
tures have been also used to extract spatial inform-
ation [15, 23, 43, 44] but that conversely leads to the
loss of temporal information.

Hand-crafted features such as the temporal-
spatial descriptors (TSDs) [15], fTDD [19], and time
domain with auto-regressive (AR) model paramet-
ers have been recently used to complement different
CNN and LSTM models [21, 45, 46]. Hence, they
can facilitate the adoption of recent deep learning
models for real-time clinical implementations given
their reduced computational burden in comparison
to deep learning models.

We address both limitations with a novel fea-
ture extraction method. Dynamic time warping
(DTW) was employed to efficiently capture the
nonlinear similarity between the EMG signals.
For the temporal aspect, we developed a novel
feature, named spatio-temporal warping (STW).
Figure 1 summarises the challenge and the proposed
approach.

2. Methods

Our STW approach has two building blocks. The first
is the DTW algorithm [47]. The second compon-
ent temporally fuses the extracted DTW features with
that of a previous time window and that of a global
trend. Figure 2 depicts this method.

2.1. Dynamic time warping (DTW)
The DTW method measures the similarity between
two sequences of different temporal dynamics. It
has been used in speech recognition [47], data min-
ing [48], gesture recognition [49], robotics [50], and
myoelectric control [51–53]. Previous research util-
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Figure 2. The flow diagram of the proposed STW feature extraction algorithm.

ising DTW in myoelectric control considered time-
series similarity across training and testing EMG
sequences from individual channels only. Using
DTW, we created a similarity matrix between all pairs
of EMG signals. DTW can also be applied across a set
of signals together.

Assume two temporal sequences of length l: a=
{a1,a2, . . . ,al} and b= {b1,b2, . . . ,bl}, representing
two EMG signals. We define D(a,b) as an l× l dis-
tance matrix between a and b, with Dij = (ai − bj)2.
In the case of Euclidean distance, we generally set
i= j, that is the distance along the same index from
the two time series. The path for the Euclidean dis-
tance is hence the one along the diagonal of the mat-
rix D, where i= j. Although, due to its simplicity and
efficiency, Euclidean distance is widely used in dif-
ferent approaches, it suffers from two main prob-
lems: first, it is not practical for situation that the
length of the sequences is not equal and second, it
is sensitive to time shifting. Finding an optimal path
using DTW can address these challenges. In the case
of DTW method, the distance is calculated through
a different warping path P generated by traversing
the matrix D along ordered pairs of positions: P =<
(e1, f1),(e2, f2), · · · ,(el, fl)> where ei ∈ [1 : l] and fi ∈
[1 : l] are the positions that make the warping path.
A valid warping path must satisfy the conditions
(e1, f1) = (1,1), (el, fl) = (l, l), 0 ≤ ei+1 − ei ≤ 1 and
0 ≤ fi+1 − fi ≤ 1 for all i< l.

A warping limit is typically imposed on the dis-
tances, that is |ei − fi| ≤ w.l, ∀(ei, fi) ∈ P∗. The value
of w is the maximum allowed warping path to devi-
ate from the diagonal. According to [54], the distance
D to any path P is given with DP(a,b) =

∑s
i=1 pi,

where pi = Dei,fi is the distance between element at
position ei of a and at position f i of b for the ith pair
of points in a proposed warping path P. Consider-
ing a space of all possible paths as P , then the DTW
path P∗ is the one that has the minimum distance:
P∗ =minP∈P DP(a,b).

We utilised the aforementioned distances between
all NC EMG signals, i.e. (NC× (NC− 1))/2 pairs,
as shown in figure 2. Inspired by [19, 25] the DTW
features of all pairs of first and second derivatives of
EMG signals were also computed. Hence, ourmethod
extracts 3 × (NC× (NC− 1))/2 features, in total.
All calculated DTWdistances were then concatenated
to form a features vector and passed through logar-
ithmic scaling for improved accuracy, similar to [55].

2.2. Spatio-temporal warping (STW)
We first multiplied the features vector extracted from
the current windows,DTW t , with that extracted from
the previous window DTWt−n. To account for the
long-term memory, our algorithm borrowed the cell
state (c) concept of the LSTM method. This was
the information highway that passes through all the
LSTM cells across all time steps to evolve a recursive

3
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Table 1. Details of the utilised EMG datasets.

Dataset Subjects Channels Samp. freq (Hz) Classes

DB1 27 10 (Otto Bock) 100 52
DB5 10 16 (2 MYOs) 200 53
DB7 22 12 2000 41
3DC 22 10 (3DC), 8 (MYO) 1000 (3DC), 200 (MYO) 11
SC-EMG 5 10 1000 7

representation of the features. It was therefore con-
tinuously updated within each cell. At the same time,
the contents of each cell were updatedwith aweighted
contribution of the cell state through the parameter
β. The selection of the parameter β was empirically
made with the objective of achieving the best classi-
fication performance across several datasets.

ft = DTWt ⊙DTWt−1 +βc (1)

where f t representing the extracted features from the
current time t, the symbol ⊙ denotes the element-
wise multiplication operation, and c indicates the cell
state.

The STWalgorithmpresented a dynamic normal-
ization mechanism; borrowing from neural machine
translation [56]. Attention mechanism provides
modeling of dependencies without considering their
distance in the input or output sequences. We used
this method within each cell to normalise the cur-
rent windows features and before adding it to the
aforementioned features to normalise the long-term
memory component. The final features representa-
tion is

fti =
fti∑
i fti

+ log

(
1+

ci∑
i ci

)
(2)

where the subscript i indicates the normalization
applied across features at time t.

2.3. EMG data sets
Five EMG datasets were utilised to test the perform-
ance of the proposed feature extraction algorithm as
described in table 1.

We used database-1 (DB1), database-5 (DB5),
and database-7 (DB7) of the Ninapro repository
[57–60], comprising respectively, 27 limbed-intact
subjects (52 movements), 10 limb-intact subjects (52
movements and rest) and 20 limb-intact and two
amputees (40 movements and rest). EMG signals
were recorded using 10 Otto Bock electrodes and two
wearable MYO armbands on the forearm in DB1 and
DB5, respectively. In DB7, 12 Trigno (Delsys, USA)
EMG sensors were placed on the limb. The third
EMG dataset [41] included data from 22 limb-intact
subjects each performing eleven hand/wrist gestures
using two armbands. The fourth dataset, that is select-
ive classification (SC-EMG), included data from five
traumatic long trans-radial amputees [61], each per-
forming seven classes of motion. Ten electrodes were

placed around the forearm at the point of the largest
diameter.

2.4. Feature extraction
The below features were extracted from windows of
150 ms at 50 ms increments:

• HTD: Hudgins’ TD feature set [18], comprising:
mean absolute value (MAV), MAV slope, zero
crossings (ZCs), slope sign changes, and waveform
length (WL).

• AR-RMS: The 6th-order AR coefficients and the
root-mean-square (RMS).

• LSF9: The lower sampling rate features defined in
[22], comprising L-scale, maximum fractal length,
the mean value of the square root, Willison amp-
litude, ZC, RMS, integrated absolute value, differ-
ence absolute standard deviation value, and vari-
ance.

• ATD: Combined AR with TD as defined in [60],
comprising MAV, WL, 4th-order AR coefficients
and log-variance (LogVar).

• STFS: Spatio-temporal features from [62], com-
prising integral square descriptor, normalised root-
square coefficient of first and second differential
derivatives, mean log-kernel, an estimate of mean
derivative of the higher-order moments per sliding
window, and a measure of spatial muscle informa-
tion.

• fTDD: The fusion of TD features from [19] with
six features representing the first three even power
spectrum moments, with an irregularity factor, a
sparsity measure, and the ratio of WL of the first
derivative to that of the second derivative. The step
size was 15.

• TSD: The temporal spatial-descriptors from [15].

To ensure a fair comparison, the dimensionality
of all feature sets was reduced to c− 1, where c is the
number of classes, using the spectral regression fea-
ture projection method [63].

2.5. Classifiers
The following classifiers were chosen: linear dis-
criminant analysis (LDA), extreme learning machine
(ELM), k-nearest neighbor (KNN), and support vec-
tor machines (SVMs). In the ELM classifier, one hid-
den layer with 1250 neurons was utilised. The para-
meters of SVMwere optimised for each dataset, as the
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Figure 3. The schematic architectures of the utilised deep learning models: (A) CNN model including two convolutional layers;
(B) LSTM network consists of two LSTM layers; (C) CNN+ LSTM structure with one convolutional layer and one LSTM layer.
The output of all models is connected to a softmax layer.

performance of SVM is susceptible to the kernel func-
tion parameter γ and the regularization parameter
C, while for KNN, the parameter K was empirically
set toK = 5. Additionally, three deep learning models
were also implemented; LSTM, CNN, and a combin-
ation of CNN and LSTM. These models are shown in
figure 3, designed empirically to reflect the best clas-
sification accuracy results using the raw EMG data.
Raw EMG inputs to models like CNN (or even CNN
+ LSTM) are more successful than the spectrogram
images [31, 41]. The RMS of raw EMG signals were
therefore calculated, generating NC scalar values for
each analysis window of 150 ms. These values were
then turned into pseudo-images by multiplying each
generated vector of size (NC × 1) by its transpose,
resulting in an NC×NC images. The images were
scaled logarithmically and then provided as inputs to
the CNN and CNN + LSTM models. For the LSTM
model, the rawEMG samples for each 150mswindow
of the NC channels were used as features.

2.6. Statistical analysis
The Wilcoxon signed rank test was applied to verify
the statistical significance of the achieved results, with

the results being considered significant for a p-value
smaller than 0.05. Finally, the size of differences
observed was measured using Cohen’s effect size d
for paired samples defined as the difference between
two group means divided by the standard deviation
[22]. A set of predefined thresholds of 0.2, 0.5, 0.8, 1.2,
and>2 are usually employed to equate the effect size
to small, medium, large, very large, and huge effects
respectively. Additionally, when reporting Cohen’s d
value for testing one method versus another, the dir-
ection of the effect was calculated by subtracting the
mean of the latter from that of the former. MAT-
LAB 2020awas utilised for all experiments on a laptop
with an i7 processor, 16 GB of RAM, and a GPU unit
(NVIDIA GeForce RTX 2060).

3. Results

3.1. Results of DB5 dataset
The average classification error rates across all
folds and subjects are shown in figure 4(a).
Furthermore, the corresponding bar plots with
standard deviation values are shown in figure 1
of supplementary materials (available online at

5
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stacks.iop.org/JNE/18/066028/mmedia). In terms of
the deep models, CNN + LSTM (noted with CNNL,
for brevity) showed a significantly better perform-
ance than the individual models of CNN and LSTM
(p< 0.001 for both tests, d= 3.15 for CNN vs.
CNN + LSTM and d= 3.55 for LSTM vs. CNN +
LSTM). CNN also significantly outperformed LSTM
(p< 0.001,d= 2.21). This finding indicates that the
temporal-spatial information captured by CNN +
LSTM extracts more information than the individual
CNN and LSTM, while the spatial information cap-
tured by CNN appears more important on this data-
set than the temporal information captured by LSTM.

In terms of the traditional hand-crafted feature
extraction algorithms, as it is clear in figure 4(a),HTD
and ARRMS were the worst performers on the 53
class problem in DB5, with all other methods signi-
ficantly outperforming them, except for LSTM.When
comparing HTD and LSTM, no difference was found
(p= 0.517, d= 0.10), which is in line with the find-
ings in [21].

We observed significant differences between LSF9
and ATD (p= 0.030, d= 0.26), and large differences
between LSF9 and STFS (p< 0.001, d= 0.80) and
LSF9 and TSD (p< 0.001, d= 0.80). These results
also show that fTDD achieved significantly lower
error rates than all other traditional and deep learn-
ing feature extraction methods, including CNN +
LSTM, except the proposed STW features that sig-
nificantly outperformed fTDD (p< 0.001,d= 2.64).
In contrast, STW significantly outperformed all other
feature extraction and/or learning methods, includ-
ing CNN+ LSTM, with all tests having d> 2. Overall,
the proposed approach yielded an average decrease in
classification error of 19.81%± 4.36% in comparison
to all other methods considered in this work. Addi-
tionally, it showed a significantly lower standard devi-
ation.

In addition to the classification accuracy metric,
we evaluated the proposed STW method in com-
parison with other hand-crafted feature extraction
algorithms using three othermeasurements including
Fscore, Recall, and Precision [64]. Results are illus-
trated in figure 3 of supplementarymaterials. Average
values for Fscore, Recall, and Precision, as well as stat-
istical tests, prove that STW can outperform all con-
ventional hand-crafted algorithms. Furthermore, to
perform a quantitative comparison; in terms of separ-
ability of clusters, between STW and other conven-
tional feature extraction methods, Davies-Bouldin
index (DBI) was used [65]. Averaged DBI values cal-
culated across test folds and all subjects are shown
in figure 4 of supplementary materials. As it is vis-
ible clearly, STW has achieved the lowest DBI values
which show its highest capability in feature discrimin-
ation criteria in comparisonwith other feature extrac-
tion methods.

3.2. Results of the SC-EMG datasets
The average classification error results on the
SC-EMG datasets are shown in figure 4(b) for all
traditional hand-crafted and deep learning mod-
els (Bar plots of the results are provided in figure
1 of supplementary materials). In terms of the deep
models, it is interesting to see that, LSTM performed
better than CNN in terms of the average error rates
across all amputees. This could be in part attrib-
uted to the fact that the amputation affects muscles
morphology and synergy and hence the performance
of CNN is impacted by its capabilities in captur-
ing spatial information between signals which may
vary (i.e. warp) in timing as a result of amputa-
tion. In this direction, a recent work by Tallec and
Ollivier [66] shows that LSTM networks have the
capability to learn to warp input sequences. Despite
the differences in the average classification errors of
deep models, the Wilcoxon signed rank test though
revealed no statistically significant difference between
LSTM and CNN, LSTM and CNN + LSTM, and
neither between CNN and CNN + LSTM (p> 0.05
for all tests). In terms of the hand-crafted meth-
ods, fTDD performed significantly worse than TSD
(p< 0.001) while the proposed STW significantly
outperformed all other hand-crafted and deep mod-
els (d= 2.54,2.09,1.87,2.08,1.87,0.89, and 2.05 for
STW vs. HTD, AR-RMS, STFS, LSF9, ATD, TSD,
and fTDD, respectively, and p< 0.001 for all com-
parisons). The performance of the STW method
can be further justified by its ability to approximate
the warping path that best aligns the two signals of
interest in the time domain, supported by the DTW
stage. Such a path is a more representative of the
distance between the signals than what Euclidean dis-
tance can offer; despite nonlinear variations in speed.
The interested reader in referred to [47] where the
details of the DTWmethod can be found.

3.3. Results of DB7 datasets
The same pattern of results was observed for DB7
datasets. Average classification error rates are shown
in figure 4(c) as well as corresponding bar plots in
figure 1 of supplementary materials. To avoid repe-
tition, we used only an LDA classifier for decoding.
HTD and AR-RMS were performed worst. In com-
parison to HTD and AR-RMS, LSTM performed bet-
ter than both methods on DB7 datasets (p< 0.01
for both tests, d= 2.06 for HTD vs. LSTM, d= 1.15
for AR-RMS vs. LSTM). On the other hand, both
CNN + LSTM and CNN significantly outperformed
LSTM (p< 0.001 for both tests, d= 2.97 for LSTM
vs. CNN + LSTM and d= 2.36 for LSTM vs. CNN),
with CNN + LSTM also significantly outperforming
CNN (p< 0.001,d= 1.18). On the other hand, both
fTDD and the proposed STW significantly outper-
formed all other methods, including CNN + LSTM,
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Figure 4. Circular grid plot of classification error rates averaged across all folds using different classifiers and feature extraction
methods for the four data sets. Average classification error values represented by circles for DB5, SC, DB7, 3DC with MYO
armband, and 3DC with 3DC armband are illustrated in A–E, respectively. The values of errors are scaled with the size and colour
of the circles. For each subplot, the lowest and highest error values are presented by the smallest light blue and largest dark red
circles. For the cells, without circles, there was no analysis performed. CNN+ LSTM is noted with CNNL, for brevity.

while STW also significantly outperforming fTDD
(p< 0.001,d= 1.32).

3.4. Results of the 3DC dataset
The average classification values achieved for the 3DC
dataset are illustrated in figures 4(d), and (e) as well
as in figure 1 of supplementary materials. As two
different armbands including MYO and 3DC were
used in this dataset, separate analyses were conduc-
ted. Instead of raw EMG signals, extracted STW fea-
tures were fed into the deep models. KNN achieved

the lowest average classification error, but statistical
tests reveal no significant differences. Similar to the
SC-EMG dataset, LSTM could achieve the best per-
formance compared to CNN + LSTM, and CNN
in terms of average classification error rates. Wil-
coxon signed rank test revealed significant differences
between LSTM and CNN and also between LSTM
and CNN + LSTM (p< 0.001). With respect to the
3DC armband, similar results were obtained as LSTM
significantly outperformed CNN and CNN + LSTM
(p< 0.01).
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Figure 5. Average confusion matrices of the 10 participants across six folds for the DB5 dataset using different feature extraction
methods as input of the four classifiers. Confusion matrices achieved by using various feature extraction algorithms are shown in
different rows, respectively. The numbers above the confusion matrices indicate the CWS values achieved by feeding different
feature sets into the classifiers.

3.5. Class-wise standard deviation
Reporting average classification error or accuracy for
the off-line analysis is biased and the comparison
of results; achieved by a specific method, between
off-line and real-time schemes will not be fair. To
partially address this challenge, we used class-wise
accuracy standard deviations (CWS) [67]. Averaged
confusion matrices across all folds and subjects were
calculated and the standard deviation of the main
diagonal of the matrices was considered as CWS. In
this analysis, DB5 and 3DC were considered.

Averaged confusion matrices across ten subjects
and six folds using ELM, KNN, LDA, and SVM

classifiers for the DB5 dataset are illustrated in
figure 5. The proposed STW method could achieve
the lowest CWS values among all feature sets. The res-
ults of CWS analysis for the 3DCdataset are presented
in figure 6.

3.6. Windows size
For the DB5 and 3DC, we varied the feature extrac-
tion window size from 50 to 250 ms. The average
classification error rates across all folds and sub-
jects for DB5, 3DC with 3DC armband, and 3DC
with MYO armband are shown in figures 7(a)–(c),
respectively. Results show the classification errors
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Figure 6. Average confusion matrices of the 22 participants across eight folds for the 3DC dataset using STW feature extraction
method as input of the four classifiers: ELM, KNN, LDA, and SVM. Confusion matrices achieved for 3DC and MYO armbands
are shown in A, and B, respectively. The numbers above the confusion matrices indicate CWS values achieved by feeding the STW
feature into the classifiers.

decrease with larger windows, as expected. How-
ever, the results also show that varying the window
size had a medium to large effect between consec-
utive windows, which could potentially indicate the
robustness of the method against varying window
sizes.

3.7. Computation time
The computation time for each of the feature extrac-
tion methods, except deep learning models, was cal-
culated on randomly generated data with 150 samples
across ten dimensions; equivalent to 150 ms with ten
channels sampled at 1000 Hz. The time required to
extract the featureswas registered and the analysis was
repeated 1000 times. Average results are displayed in
table 2.

3.8. Comparison with other studies
To evaluate the proposed STW method against
recently published state-of-the-art features and clas-
sifiers a comprehensive comparison is performed
on DB1 of the Ninapro database. For a fair com-
parison, a similar train-test approach was selected
according to the [58, 68] in such a way that repe-
titions 1, 3, 4, 6, 8, 9, and 10 were selected to
train the classifiers, and repetitions 2, 5, and 7 were
used to evaluate methods. Moreover, the length of
the window was selected equal to 200 ms. Aver-
age classification accuracy achieved by STW + SVM
in comparison with previous traditional features as
well as deep learning models is reported in table 3.
Moreover, averaged DBI values achieved by conven-
tional feature extraction methods and the proposed
STW algorithm are illustrated in figure 4 of sup-
plementary materials. Results show that STW has
achieved the lowest DBI value in comparison to other
methods.

4. Discussion

We presented a new hand-crafted feature extraction
algorithm that borrows concepts from deep learning
models and mixes these with the spatial informa-
tion concept implemented by DTW. DTWwas previ-
ously utilised in the literature of myoelectric control
to compare training and testing templates [51–53],
but it was not used to capture the spatial similarity
concurrentwith temporal information. The proposed
STW feature was achieved by mixing spatial informa-
tion with a long and short-term memory component
with an attention normalization step. The STW fea-
ture outperformed the state-of-the-art feature extrac-
tion and learning algorithms such as STFS, LSF9,
LSTM, CNN, and CNN+ LSTM across several data-
sets. Our results corroborate the recent literature that
the traditional features, e.g. HTD and AR-RMS, can
no longer compete with new features [7, 13, 19, 23,
25, 45].

LSTM and CNN were significantly outperformed
by their combination of CNN + LSTM on DB7 and
DB5 which in turn demonstrates the power of the
spatio-temporal feature learning. Also, CNN signi-
ficantly outperformed LSTM, which in turn indic-
ates that the significance of the spatial information
captured by CNN and CNN + LSTM. Interestingly,
LSTM could only compete with HTD and AR-RMS
features, which is in line with previous results from
the literature suggesting that LSTM could poten-
tially function in a better way when mixed with
hand-crafted features [21].When considering the sig-
nificantly large number of models parameters for
LSTM, CNN, and CNN + LSTM [32, 41, 42], STW
only extracts a small number of features making it
more suitable for future real-time implementations.
This is further supported by the computational time
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Figure 7. Average STW classification error rates with
different windows sizes; 50–250 ms, achieved by ELM, LDA,
KNN, and SVM classifiers. (A) Average classification values
for DB5 dataset. (B) Average classification error rates for
3DC dataset using 3DC armband. (C) Average classification
error values for 3DC dataset using MYO armband.

requirements for STWwhich falls within the range of
the hand-crafted features, as shown in table 2.

The fTDD feature, with a step parameter of 15,
showed a good performance on many datasets. This
means that fTDD should save the extracted features
from the previous 15’th window to achieve this per-
formance, which may impact the controller delay
during real-time tests. However, the design of STW
allows looking back at any of the features from any
window. This paper showed the simplest example
of looking at the feature extracted from the preced-
ing window only, which makes STW more attractive
for real-time implementations than CNN + LSTM,
CNN, LSTM, and fTDD.

Table 2. Time required to extract handcrafted features reported as
average± standard deviation.

Feature set Time (ms)

LSF9 0.8053 ± 0.0620
TSD 0.4940 ± 0.0411
STFS 0.4986 ± 0.0381
STW 0.4248 ± 0.0632
ATD 0.2115 ± 0.0237
HTD 0.1421 ± 0.0180
AR-RMS 0.1660 ± 0.0509
fTDD 0.0125 ± 0.0354

Table 3. Comparison of the proposed STWmethod with previous
works on DB1 dataset.

Method 200 ms

Traditional-RF [58] 75.3%
AtzortNet [69] 66.6%
GengNet [31] 77.8%
RNNModule with raw-signal [68] 79.8%
CNNModule with raw-image1 [68] 83.5%
CNNModule with feature-signal-image1 [68] 86.3%
Hybrid CNN-RNN with raw-image1 [68] 84.7%
Hybrid CNN-RNN with feature-signal-image1
[68]

86.7%

Attention-based hybrid CNN-RNN with raw-
image1 [68]

84.8%

Attention-based hybrid CNN-RNN with feature-
signal-image1 [68]

87.0%

STW+ SVM 87.3%

Research shows how to extract optimal per-
formance [70] and mine a trillion time series sub-
sequences using DTW and the potential use of DTW
for real-time problems [71, 72]. A previous study con-
ducting 35 million experiments, on 85 datasets, with
dozens of rivalmethods concluded that nearest neigh-
bor DTW (NN-DTW) is very hard to beat. When
NN-DTW can be outperformed, it is typically by a
very small margin and at the cost of a huge effort
in coding/complexity of implementation, and a large
time and space overhead [54]. All of this make DTW
an attractive algorithmic choice for our analysis in this
paper. However, previous research utilising DTW in
myoelectric control only considered time-series sim-
ilarity across training and testing EMG sequences or
templates from individual channels [51–53]. In com-
parison, we utilise DTW as a spatial feature extrac-
tion step to calculate the warped similarity between
multiple EMG channels and then temporally evolve
the estimated similarity across time while considering
long and short-term memories.

A similar processing step was also suggested in
the fTDD algorithm in [19], as fTDD also fuses the
features extracted from the current analysis windows
(from all channels) with the same features extracted
from a previous window while leaving the choice of
the previous window temporal index as an empirical
parameter for the user to optimise. In comparison
to fTDD, we restricted the design of this stage to
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fuse the features extracted from the current set of
windows at time step t with those coming from the
nearby set of windows (1st previous, or 2nd previ-
ous, or 3rd previous, etc) to account for the short-
term memory component. To simplify the real-time
design of the algorithm, we connected each module
to the first previous module. This approach limited
the focus of the method to short-term memory. Fur-
thermore, a comparison of TSD and fTDD reveals
that there is instability in terms of classification accur-
acy (figure 4). There are three main reasons for this
issue. First is that DB5 and DB7 are from intact
limbed people (except two subjects from DB7). The
SC-EMG dataset includes data from five trans-radial
amputees. In fact, the original paper, which proposed
TSD, showed that TSD can outperform fTDD on data
from amputees. This could be related to the change
of the morphology of the signals after amputation
and the fact that the temporal patterns of EMG sig-
nals become harder to separate. The second reason is
related to how TSD and fTDD features are extracted.
fTDD focuses on the short-term temporal compon-
ent only while TSD considers both temporal and spa-
tial components. This issue motivated us to develop
STW to enjoy the best of both of these methods and
provide more robust performance across all data-
bases. Moreover, TSD does not extract the inter-
temporal dependencies that exist between feature
extractionwindows. The third reason is about the step
size parameter in the fTDD algorithm, which should
be optimised for data from amputees. As shown in
figure 2 of supplementary materials, the average clas-
sification error rates are decreased with increasing the
step size. This parameter plays a key role in achiev-
ing acceptable accuracy. In this feasibility study, we
used a fixed step of 15. However, our proposed STW
method can outperformboth TSD and fTDD features
for intact subjects as well as amputees with only one
step.

In figure 4, we have evaluated the proposed STW
method in comparison with the conventional meth-
ods as well as deep learning models for DB5, DB7,
and SC-EMG datasets. Raw EMG signals were used
to evaluate the performance of the deep learning
models, whereas, conventional feature sets and STW
were considered as inputs for traditional classifiers.
Figures 4 and figure 1 of the supplementary mater-
ials show that the combination of the STW fea-
ture and traditional classifiers outperforms the com-
bination of other feature and traditional classifiers
as well as the decoding of raw EMG signals with
deep learning classifiers. For the 3DC dataset, we
decided to use only STW as input for both traditional
classifiers and deep learning models. We aimed to
investigate whether using the proposed STW feature
as input for deep learning models can outperform
the combination of the STW feature and traditional
classifiers. For the MYO dataset, the results show that

feeding an SVM with the STW feature achieves the
lowest classification error rate (8.06± 6.22%). For the
3DC armband results, the combination of the STW
features and the LSTM decoder resulted in the lowest
error rate (5.10± 6.35%).

Attention mechanisms relating to different pos-
itions of a single sequence have become an integral
part of sequence modeling and transduction mod-
els in various tasks, allowing modeling of depend-
encies without regard to their distance in the input
or output sequences. A softmax function is usually
employed for attention weights. We computed the
attention component by dividing the extracted fea-
ture by their total sum to ensure that all features sum
up to unity.

The major difference between the proposed
method and LSTM is that LSTM learns a recur-
rent feature representation from the data, while STW
extracts a set of hand-crafted DTW features. Addi-
tionally, STW blocks have a simpler design than
LSTMand aremore suitable for real-time implement-
ations.

One possible limitation of this study is that the
DTW algorithmmay prove too complex for real-time
implementation and may require additional hard-
ware for parallel processing. Our results show that the
time required to extract STW features is smaller than
LSF9, TSD, and STFS features. Additionally, whether
using an advanced machine learning method could
enhance the quality of prosthesis control in real-life
settings is an open question and falls outside the scope
of this study. It is worth mentioning that in this study
we investigated a wide range of TD features and did
not evaluate spectral or time-frequency features as
their enhanced separability compared to the TD fea-
tures is unknown and furthermore, it has been shown
that TD features can outperform time-frequency fea-
tures [73]. Furthermore, beyond computational com-
plexity, we do not envisage any challenges in using the
STW method for high-density EMG. As for the out-
liers, we did not investigate STW because the utilised
databases are almost outlier-free, as they are recorded
in controlled laboratory conditions.

In conclusion, we proposed a new paradigm
for grasp level control of prosthetic hands.
We demonstrated the feasibility of decoding
EMG signals in both able-bodied and below-
elbow amputees. Our algorithm warrants fur-
ther investigation with real-time, user-in-the-
loop experiments with people with upper-limb
difference.

Data availability statement
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loaded from https://github.com/RamiKhushaba.
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