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Abstract: The interaction of optical solitary waves in nematic liquid crystals, nematicons and1

vortices, with other nematicons and localised structures, such as refractive index changes, is2

reviewed. Such interactions are shown to enable simple routing schemes as a basis for all-optical3

guided wave signal manipulation.4

Keywords: nematic liquid crystals; nematicon; soliton; modulation theory5

1. Introduction6

The solitary wave is a ubiquitous nonlinear dispersive wave form, originally arising7

in water waves [1–3], but subsequently found to exist in a wide range of areas, including8

nonlinear optics [4–8], plasma physics [9] and biology [10,11]. A solitary wave is an9

isolated, most often hump-shaped wavepacket, which generally emerges as the infinite10

wavelength limit of a (nonlinear) periodic wave solution [2]. A special case of a solitary11

wave is a soliton, which is a solitary wave solution of a nonlinear dispersive wave12

equation which is integrable in a Hamiltonian sense through the method of inverse13

scattering [2,3]. Solitons exhibit “clean” interactions in that N of them interact with no14

change of shape or velocity, other than a phase shift. Conversely, solitary waves, in15

general, do not show “clean” interactions, with dispersive radiation generated upon16

collisions. The compact, hump-shaped form of solitary waves allow them to be modelled17

as particles, especially in their collisions and particularly for the integrable case of18

solitons for which no radiation is generated on interaction [12].19

Solitary waves stem from a balance between self-phase modulation (self-focusing)20

and dispersion (diffraction). As such, they can be generated in nonlinear optical media,21

such as optical fibres [4,6] and soft matter [7,13], for which nonlinear self-effects owing to22

an intensity dependent refractive index or self-phase modulation balances diffraction or23

dispersion. Nematic liquid crystals (NLC), a family of organic soft matter encompassing24

optical birefringence and positive uniaxiality in a fluid state with a large degree of25

orientational order, are an ideal medium in which to excite solitary waves due to the26

“huge” nonlinear response to optical forcing, many orders of magnitude larger than,27

e.g., in glass fibres [7,13,14]. This results in all-optical effects which can be observed28

at mW powers over millimetre distances [14], rather than the kilometers typical of29

communication fibres [4]. Since their indisputable demonstration in 2000 [14] there have30

been extensive studies, both experimental and theoretical/numerical, of nematicons (i.e.,31

solitary waves in NLC) and other optical solitary-type waves in NLC, such as optical32

vortices, see [7,8,15–19] for reviews of this work. The present paper is a synopsis on33

the interaction of nematicons and optical vortices with each other and with regions of34
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refractive index variations in NLC samples. The motivation behind such studies is the all-35

optical control of optical solitary wave trajectories towards applications, such as signal36

processing and all-optical waveguiding/routing [20–30]. Before describing specific cases37

of solitary wave interactions in planar NLC samples, the equations governing nonlinear38

optical wavepacket propagation will be summarised to set the examples in context.39

One of the main difficulties in the theoretical modelling of nematicon propagation40

and dynamics is the lack of any exact general solitary waves solutions of the NLC41

equations. The only exact solutions which exist are isolated ones for fixed parameter42

values [31], not suitable for modelling the general evolution of light beams in nematic43

liquid crystals. While the NLC equations can be solved using computational methods,44

analytical solutions give insights into the dynamics which are not available from numer-45

ical solutions. One powerful analytical tool is modulation theory [2], originally based46

on assuming a slowly varying wavetrain that is an exact solution of the underlying47

nonlinear dispersive wave equation, but with slowly evolving parameters. The basic as-48

sumption is that the wavetrain evolves on a slower scale than its wavelength; for slowly49

varying solitary waves, modulation theory (MT) essentially treats them as particles in50

a potential [12]. To extend MT to nonlinear dispersive wave equations without exact51

general solitary wave solutions, variational methods have proved to be useful, see [32]52

for an overview of these. The idea is that the unknown beam profile in approximated53

by some functional form, often a Gaussian in the case of light beams as the input laser54

beam has a Gaussian profile. The MT equations describing the evolution of a slowly55

varying beam can then be derived either from a Lagrangian formulation of the governing56

equations or from conservation equations [32]. In this Paper theoretical results derived57

using this extension of MT will be presented with pertinent experimental and numerical58

results, where appropriate.59

2. NLC Equations60

Let us consider the propagation of a linearly, extraordinarily polarized, coherent61

light beam of wavenumber k0, wavelength λ0 = 2π/k0, through a planar cell filled with62

fully oriented nematic liquid crystals. The beam is assumed to propagate down the cell63

in the Z direction, with its electric field E initially oscillating in the Y direction. The64

coordinate X then completes the coordinate triad. The refractive indices of the medium65

are n‖ for light polarized along the molecular director n̂ (long axis of the molecules)66

and n⊥ for fields polarized orthogonal to it. The molecular director n̂ corresponds to67

the optic axis of the positive uniaxial medium with n‖ > n⊥. A fundamental property68

of oriented NLC is the Freédericksz transition, whereby a threshold optical power (or69

electric voltage) is needed to rotate the NLC molecules and thus increase the refractive70

index when the initial n̂ is orthogonally aligned to the electric field [13]. Since large71

optical powers are never desirable as they could lead to heating, two main approaches72

can be adopted to overcome the optical Freédericksz threshold and adjust (maximize)73

the nonlinear reorientation. One is to pre-tilt the NLC molecules in the (Y, Z) plane at an74

angle θ0 with respect to the Z direction by the application of an external low-frequency75

electric field ELF, so that milliwatt power beams can rotate the molecular director n̂ and76

induce self-focusing [14]. A typical planar glass cell for the study of NLC solitary waves77

in the presence of an external voltage bias is sketched in Fig. 1(a); in this case a small78

pre-orientation δθ0 of the order of 1◦–2◦ is ensured when the planar surfaces are treated79

for molecular anchoring in order to overcome the electric Freédericksz transition. The80

alternative method is to chemically treat or mechanically rub the planar walls of the81

cell (parallel to the (Y, Z) plane in Fig. 1) so that the NLC molecules are anchored at a82

given orientation θ0 with respect to Z. Elastic forces then transfer the rotation into the83

bulk of the fluid dielectric, providing the homogeneous orientation of the sample. A84

beam propagating through the NLC and polarized with electric field in the principal85

(Y, Z) plane can then reorient the molecules by an additional angle φ from the pre-tilt,86

so that the total orientation of the molecular director to Z becomes θ = θ0 + φ. With87
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Figure 1. Sketch of planar NLC glass cells in the two main configurations. (a) Biased cell: The
orientation angle θ0 is the pre-tilt induced by the external voltage V across the cell thickness and φ

is the all-optical rotation of the induced dipoles (ellipses) in the plane of propagation (Y, Z). n̂ is
the molecular director (optic axis) parallel to the long axis of the elongated NLC molecules. (b)
Bias-free cell: the background orientation θ0 is obtained by anchoring the molecular director at
the planar boundaries parallel to (Y, Z). In both arrangements (a) and (b) the input light beam
undergoing nonlinear reorientation is an extraordinary-wave launched from the left with electric
field (double red arrow) polarized in the principal plane (Y, Z).

these assumptions and in the paraxial, slowly varying envelope approximation, the88

dimensional equations governing the propagation of an extraordinarily polarized light89

beam (electric field in the (Y, Z) plane) in a biased NLC sample (Fig. 1(a)) can be cast as90

[7,8,33]91

2ik0ne
∂E
∂Z

+ 2ik0ne∆
∂E
∂Y

+∇2E

+ k2
0

[
n2
⊥ cos2 θ + n2

‖ sin2 θ − n2
⊥ cos2 θ0 − n2

‖ sin2 θ0

]
E = 0, (1)

for the electric field of the beam and

K∇2φ +

[
1
4

ε0∆ε|E|2 + 1
2

∆εLFE2
LF

]
sin 2(θ0 + φ) = 0, (2)

for the reorientational nonlinearity [7,8,16,33]. Here, the θ-dependent extraordinary
refractive index of the NLC is

ne =

[
n2
⊥n2
‖

n2
‖ cos2 θ + n2

⊥ sin2 θ

]1/2

. (3)

An extraordinary wave undergoes walkoff of the Poynting vector, so that the energy
flux propagates in the (Y, Z) plane at an angle δ = tan−1 ∆ to the wavevector (i. e., the Z
direction in Fig. 1), where ∆ is given by

∆ =
∆ε sin 2θ

∆ε + 2n2
⊥ + ∆ε cos 2θ

. (4)

In the above equations, ∆ε = n2
‖− n2

⊥ is the optical anisotropy, ∆εLF is the low-frequency92

dielectric anisotropy and ε0 is the electrical permittivity of free space. In addition, K is93

the elastic (Frank) constant in the scalar approximation for which the strengths of bend,94

twist and splay deformations are taken equal [7,13]. Finally, the Laplacians ∇2E and95

∇2φ are in the transverse coordinates (X, Y).96
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The NLC equations (1) and (2) are highly nonlinear and so difficult to analyse.
However, for continuous-wave milliwatt power beams the light-induced response φ
is small, |φ| � |θ0|, so that the model can be expanded in Taylor series around θ0. In
addition, these equations can be recast in a dimensionless form to reduce the number of
parameters involved by using typical length scales LZ and W down and across the cell,
respectively, as well as an amplitude scale Ab for the electric field of the beam. Then

Z = LZz, X = Wx, Y = Wy, E = Abu. (5)

Here, (x, y, z) is the non-dimensional coordinate system and u is the non-dimensional
electric field of the beam. Suitable scales are [8,34]

LZ =
4ne

k0∆ε sin 2θ0
, W =

2
k0
√

∆ε sin 2θ0
, A2

b =
2Pb

πΓW2
b

, Γ =
1
2

ε0cne (6)

based on a Gaussian input wavepacket of power Pb, amplitude Ab and width Wb.97

The simplified non-dimensional equations governing beam propagation and the NLC98

response become99

i
∂u
∂z

+ iγ∆(θ0 + φ)
∂u
∂y

+
1
2
∇2u + 2φu = 0, (7)

ν∇2φ− 2qφ = −2|u|2. (8)

Here, the dimensionless elasticity ν and pre-tilt parameter q (when present) are given by

ν =
8K

ε0∆εA2
bW2 sin 2θ0

=
πk2

0KΓW2
b

ε0Pb
, q =

4∆εLFE2
LF cos 2θ0

ε0∆εA2
b sin 2θ0

. (9)

Finally, the non-dimensional walkoff factor γ is

γ =
2ne√

∆ε sin 2θ0
. (10)

Note that the bias-free case (Fig. 1(b)) corresponds to q = 0. The model (7) and (8) is a100

focusing nonlocal, nonlinear Schrödinger (NLS) equation-type system with a refractive101

index increasing with the intensity |u|2. Typical (reference) experimental values are a102

beam with power Pb = 2mW, half-width Wb = 1.5µm and wavelength λ0 = 1.064µm103

in the near infrared for which Rayleigh scattering (intrinsic to NLC, [13]) is lower [7,8].104

For the standard NLC mixture E7, the elastic constant is K = 1.2 × 10−11N. These105

parameters give an elasticity ν = O(100), as in previous studies [8,35,36]. The high106

value of ν indicates that the medium is operating in the highly nonlocal regime, in that107

the elastic response of the NLC to light extends far beyond the beam waist [7,16,33].108

Noteworthy, beams governed in (2 + 1) dimensions by local NLS models are unstable109

and undergo catastrophic collapse above a critical power [6]. However, a nonlocal110

response with a large ν can stabilize (2 + 1)-dimensional light beams [7,8,16,33] because111

the NLC equation (2) is elliptic and so its solution depends on u in the entire domain.112

This mathematical argument pairs with the physical concept of nonlocality due to the113

elastic response of soft matter.114

It is of interest to note that equations of the same form as (7) and (8) arise in115

other areas in nonlinear optics and physics. Beam propagation in thermo-optic media116

is governed by the nematic system with q = 0 [37], e.g., in self-focusing lead glass117

[38,39] and colloidal suspensions with nano-particles to enhance light absorption [40].118

Finally, systems of equations resembling the NLC model (7) and (8) apply to astrophysics.119

Such systems include the Schrödinger-Newton equations, which are a simple model120

of quantum gravitation [41,42]. Solitary wave solutions of the Schrödinger-Poisson121

system, i. e., the NLC model with q = 0 in the director equation (8), have been used122
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to describe dark matter [43–45], the interaction between ordinary and dark galactic123

matter [46,47], N body systems of identical bosons with nonlocal interactions and dilute124

cold atom Bose-Einstein condensates, plasmas, electrons in semiconductors or metallic125

structures and water wave theory [43,48–50]. It should be noted that the NLC model (126

7) and (8) with q 6= 0 applies when the effect of boundary conditions in a finite thermo-127

optic cell is accounted for through the incorporation of a screened potential [43]. The128

Schrödinger-Newton equations also play a role in quantum hydrodynamics [43].129

3. Interacting Beams130

A simple manner in which to control a nematicon and its trajectory is to use a second131

one as a control beam, the interaction between the two being mediated by the nonlinear132

NLC response. Owing to the high nonlocality characterizing the medium, in fact, the133

wavepackets can “sense” one another without an apparent collision [51,52]. Let us first134

consider the interaction of two incoherent nematicons, with two non-interfering beams135

of electric fields u and v in relative proximity; neglecting walkoff, the NLC equations (7)136

and (8) can be extended to [53]137

i
∂u
∂z

+
1
2

Du∇2u + 2Auφu = 0, (11)

i
∂v
∂z

+
1
2

Dv∇2v + 2Avφv = 0, (12)

ν∇2φ− 2qφ = −2Au|u|2 − 2Av|v|2. (13)

If the two beams share the same wavelength, then the diffraction coefficients can be138

scaled to Du = Dv = 1, as can the coupling coefficients Au = Av = 1 [51,53].139

The simplest collisional case is in-plane interactions [51,52,54–60], with solitary140

waves attracting and periodically interleaving as they propagate in the principal plane.141

While stable, steady multipole vector solitary waves can exist if the nonlocality ν is142

large enough [55,56], in most other cases the long range attraction mediated by the143

medium results in the beams oscillating about each other in the plane, irrespective of144

their relative phase, at variance with NLS solitary waves [52,54,61]. In the local limit145

ν→ 0, the coupled NLC equations (11)–(13) reduce to coupled NLS equations. In-phase146

NLS solitary waves attract and out-of-phase NLS solitary waves repel [6], so the high147

nonlocality of NLC results in a significantly modified behaviour.148

The in-plane interaction of nematicons can be modelled using modulation theory,149

with good agreement with full numerical solutions of the coupled nematic equations (11)–150

(13), a notable exception being the period of oscillation of the beams about each other [51,151

57]. This period difference greatly affects the beam phase for increasing z. A major result152

of this modelling is that nematicon trajectories are essentially determined by momentum153

conservation. Moreover, in the highly nonlocal limit, nematicons shed minimal radiation154

as they evolve [62], contributing minimal momentum to diffractive radiation. Although155

standard MT approximates solitary waves as point particles interacting under a potential156

[12], this was also extended to account for the non-point form of solitary waves [63],157

resulting in improved agreement with numerical solutions, albeit at the cost of increased158

complexity in the derivation of the MT equations and the equations themselves.159

As nematicons propagate in the bulk of a thick planar cell, typically with 100µm
between parallel glass plates, two interacting nematicons of equal power and size can
spiral about each other and form a rotating cluster in three dimensions, exhibiting
angular momentum as a whole due to their nonlocal interaction via the NLC [54,64–66].
Spiralling nematicons can be generated by the initial conditions

u = au f (ρu) eiψu , v = av f (ρv) eiψv , (14)
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Figure 2. Spiralling nematicons. The NLC planar cell is realized as in Fig. 1(b). Top left: Numerical
solution of nematic model (11)–(13) illustrating the mutual spiralling of two identical skew
nematicons launched out-of-plane (Y, Z). Top right: Artist’s rendering of the beam spots rotating
about one another at the end of the sample for increasing excitation. (a)–(h): Experimental results;
(a)–(b)–(e)–(f) Acquired images of beam evolution in (Y, Z) and (c)–(d)–(g)–(h) of the solitary wave
cluster in the transverse plane (X, Y) at the sample output, for input powers 2.1, 2.7, 3.3 and 3.9
mW, respectively.

where160

ρu =

√
(x− ξu)

2 + (y− ηu)
2

wu
, ρv =

√
(x− ξv)

2 + (y− ηv)
2

wv
,

ψu = σu + Uu(x− ξu) + Vu(y− ηu), ψv = σv + Uv(x− ξv) + Vv(x− ηv) (15)

at z = 0 in the two colour NLC equations (11)–(13), where f is the electric field profile161

of the beams, noting that the input wavepackets are usually Gaussian. The variables162

(Uu, Vu) and (Uv, Vv) are related to the angles at which the beams are inputted into the163

nematic cell and can be considered the input (x, y) “velocities” of the beams, with (ξu, ηu)164

and (ξv, ηv) the input positions of the beams. The spiralling of two skew nematicons165

about each other due to nonlocal, nonlinear attraction is illustrated in Fig. 2. This figure166

shows experimental results for two identical solitary waves launched and evolving167

out-of-plane and spiralling about one another for various input powers. The interacting168

beams are imaged in the observation plane (Y, Z), their output spots in the (X, Y) plane169

(Figs. 2(c), (d), (g) and (h)) at the end of the sample after they evolved in the down170

cell Z direction. The output spots appear to rotate as the beam power goes up and the171

effective angular momentum of the “two nematicon molecule” cluster increases, with an172

augmented angular velocity [64].173

Nematicon spiralling was theoretically investigated using MT based on the input174

beams (14) [66]. Both beam profiles were either Gaussian, f (ρ) = exp(−ρ2), or sech,175

f (ρ) = sech ρ. Good to excellent agreement was obtained between full numerical solu-176

tions of the NLC equations (11)–(13) and MT for the trajectories, with the Gaussian and177

sech profiles providing comparable results in the highly nonlocal limit, the agreement178

improving for increasing angular momentum of the input cluster [66].179
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These findings confirmed that, in the highly nonlocal limit, nematicon trajectories
are weakly dependent on the initial wavepacket profile [51,67]. It is important to under-
line that besides those based on the full nonlocal response of NLC, some studies rely on
simplified models as the NLC equation (13) can be solved in terms of a Green’s function
G as

φ = −2
∫ ∫

cell
G(x− x′, y− y′)

[
Au|u(x′, y′, z)|2 + Av|v(x′, y′, z)|2

]
dx′dy′. (16)

Since in (2 + 1) dimensions the Green’s function G is the modified Bessel function of180

order 0, K0, in general the solution (16) is not useful for analytical studies. For this181

reason, much work on light beam propagation in nonlocal, nonlinear media has adopted182

simplified responses for G, the most common being Gaussian and exponential. Of183

particular relevance to the present review, the in-plane interaction of two solitary waves184

was investigated by means of a Gaussian [68,69] and an exponential response [70], and185

their spiralling with a Gaussian [71]; such studies were in qualitative agreement with186

those based on the actual NLC response.187

At the end of this section, we deem appropriate to mention that a range of experi-188

mental and numerical studies were undertaken of self-guided beams interacting in other189

nonlocal media [72], particularly those with a self-focusing thermo-optic response [39,73].190

The understanding and intuitive perception of nonlinear phenomena in reorientational191

soft matter, in fact, may benefit from the insight afforded by solitary waves in thermal192

media. For the latter scenario the governing equations are the Schrödinger-Poisson193

model (7) and (8), where φ denotes the temperature, with the walk-off factor and the194

pre-tilt set to zero, γ = 0 and q = 0. Employing lead-glass, it was reported in [39] that in195

(1 + 1)D two propagating solitary waves attract each other; in (2 + 1)D spiralling can oc-196

cur, with orbits dependent on the nonlocality. In local media the orbits of two interacting197

beams are elliptical, whereas in nonlocal media circular orbits, with tangential velocity198

independent of separation, are possible. The final comment is that the trajectories of the199

interacting nematicons can be controlled and varied by adjusting the separation and200

power of the beams.201

4. Refraction and Reflection of Self-Guided Beams at Interfaces202

A basic topic in optics is the refraction of plane waves of light at the interface203

between two dielectrics of different refractive indices, governed by Snell’s Law in the204

linear regime. Nematicons can be similarly refracted at interfaces which delineate NLC205

regions with different background orientations of the optic axis, resulting in unequal206

refractive indices. However, in spite of their particle-like behaviour resembling plane207

waves with a principal wavevector, since nematicons are extended nonlinear wavepack-208

ets in a nonlinear medium, their refraction and reflection can depart from those of linear209

light beams [74].210

Let us assume that two external low frequency electric fields (voltages) are applied211

across two regions of a planar NLC cell, as in the experiments of [28], and as sketched212

in the top panel of Figure 3. Two sets of electrodes apply the two bias voltages and are213

separated along the line y = µ1z + µ2, so that the beams refract in the (y, z) plane. The214

two biases generate a background director orientation φb which consists of the angle φbl215

to the left and φbr to the right of the interface, respectively. The non-dimensional NLC216

equations (7) and (8) are then modified to [28,75]217

i
∂u
∂z

+ iγ∆(φb)
∂u
∂y

+
1
2
∇2u + sin(2φb)φu = 0 (17)

ν∇2φ− 2qφ = − sin(2φb)|u|2. (18)

Here,

φb =

{
φbl , µ1z + µ2 < y,
φbr, y < µ1z + µ2

(19)
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interface

1
2

3

4

5

z

y

Figure 3. Top: Sketch of nematic cell with dielectric interface. The two regions of different refractive
indices are generated by two external voltages V1 and V2 applied across isolated sections of the cell.
The right sketch shows the incident (red), refracted (purple) and reflected (light blue) nematicons
at the interface. The beam path in the (y, z) plane is y = ξ(z). Bottom: Refraction/reflection of a
nematicon at a dielectric interface in NLC. The beam propagates from a more to a less optically
dense NLC region. 1. refraction: solid red line, 2. Goos-Hänchen type reflection: long-dash green
line, 3. total internal reflection with beam axis tangential at the interface: short-dash dark-blue line,
4. total internal reflection with beam axis in the denser medium: dotted pink line, 5. straight beam
path: dash-dot light-blue line. The interface is indicated by the thick straight solid line in black.
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Figure 4. Observation of a near-infrared 4.5 mW nematicon interacting with a voltage con-
trolled dielectric interface in NLC as it travels from the left to the right. Left: Refraction of
the nematicon going towards a denser region; Right: total internal reflection of the nematicon
propagating towards a less dense region at an incidence angle exceeding the critical value. The
opposite values of the applied voltage difference ∆V marked above the panels are consistent
with the opposite refractive index contrast imposed between the two dielectric regions in the
two cases. Reproduced with permission from Springer Nature. All rights reserved. [28], doi:
https://doi.org/10.1038/nphys427

and the non-dimensional bias q is

q =

{
ql , µ1z + µ2 < y,
qr, y < µ1z + µ2,

(20)

see (9) and the top panel of Figure 3. Note that the basic nematic equations (7) and (8)218

were modified as the background director orientation in the absence of the optical beam219

is now non-uniform, resulting in the sin 2φb coefficients which cannot be scaled out.220

For linear propagation from a more to a less optically dense medium, a light beam221

either refracts or undergoes total internal reflection (TIR). The refraction of a nematicon222

travelling from higher to lower refractive index regions shows a similar behaviour, but223

has to account for the nonlinear, extended profile of a self-guided solitary wave. Various224

cases of nematicons at the interface are illustrated in the bottom panel of Fig. 3 with the225

lines plotting the center-of-mass of the propagating wavepacket (see [75]). The usual226

Snell’s Law refraction is type 1. For angles of incidence larger than a critical value the227

nematicon undergoes TIR, types 2, 3 and 4. Type 3 is equivalent to linear TIR, with the228

beam reflected with its centre tangential at the interface. However, since the nematicon229

transverse profile can exist on both sides of the interface, the beam can penetrate the230

less optically dense region, turn around and re-enter the denser NLC: this is denoted231

as Goos-Hänchen TIR [76] in Fig. 3. Reflection type 4 illustrates TIR for which the232

nematicon bends towards the incidence region without its centre ’touching’ the interface,233

whilst its tail enters the less dense region. Figure 4 shows experimental results for the234

refraction from a less to a more optically dense medium and total internal reflection from235

a less to a more optically dense medium of a nematicon at an interface to illustrate these236

refraction and reflection regimes. The refraction of a nematicon going from a less to a237

more optically dense NLC region resembles that of linear waves [28,75].238

Modulation theory was developed to model nematicon refraction at interfaces,
as governed by the NLC equations (17) and (18) [75,77]. This model essentially treats
the nematicon as an equivalent particle in a varying medium (mechanical potential)
[12,78], the essential concept behind the term “soliton.” This work [75,77] found excellent
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agreement between these MT solutions and full numerical solutions of (17) and (18),
including the incidence angles separating the various refraction and reflection types
illustrated in Fig. 3. The pertinent initial conditions for this MT model are

u = a sech

√
x2 + (y− ξ)2

w
eiσ+iU(y−ξ), φ = α sech2

√
x2 + (y− ξ)2

β
. (21)

As for the initial condition (14) for spiralling nematicons, U is related to the input angle239

of the beam in the (y, z) plane and can be considered the input y “velocity” of the beam240

which is inputted at x = 0 and y = ξ at z = 0.241

The analysis of NLC self-confined beams refracting at an interface was further
extended to optical vortex beams (i.e., propagating vortices rather than those discussed
in [79]) based on the input wavepacket [80]

u = are−r/weiσ+iU(y−ξ)+iϕ, (22)

which is a vortex of (topological) charge one [6], with (r, ϕ) being plane polar coordinates242

and U and ξ having the same meaning as for the nematicon initial condition (21). In243

local media optical vortices are unstable to a mode 2 azimuthal instability, but they244

stabilize in sufficiently nonlocal media, such as nematic liquid crystals [81–83] and245

thermo-optic media [73], including dye-doped NLC [84]. Optical vortices share similar246

refraction/reflection at a NLC dielectric interface as nematicons, including Snell’s Law247

type and TIR. The major difference is that a vortex is less stable than a nematicon; hence,248

its deformation upon refraction can destabilise it, so that it easily breaks up into stable249

nematicons [80], as illustrated in Figure 5. This figure shows snapshot cross-sections in250

the (x, y) plane of the evolving vortex at various downcell distances z as it crosses the251

refractive index interface given by (19) and (20). The deformation of a vortex hitting the252

interface is clearly visible in Fig. 5(b), and increases as more of the vortex interacts with it,253

as in Fig. 5(c). This ultimately results in the destruction of the vortex, Figs. 5(d)–(f), and254

its break up into solitary waves. In later work it was found that the stability of an optical255

vortex propagating through a dielectric interface can be enhanced by a co-propagating256

coaxial nematicon as the latter acts as a waveguide and helps to keep the vortex together257

by confining a large amount of its high amplitude field distribution [85].258

As we did earlier, we note that self-focusing thermal media have also been exploited259

for analytical, numerical and experimental studies of solitary wave-vortex interactions.260

In [86–88] the authors used orthogonally polarized beams in a cylindrical medium,261

illustrating the propagation of a coupled bell-shape beam with a higher-order ring or262

doughnut-like vortex. At a critical power ratio stationary vector solitary waves can be263

excited, as confirmed by experiments in lead glass [86–88].264

5. Interaction of Localised Beams with Dielectric Perturbations265

The trajectories of optical solitary waves in NLC can also be manipulated by lo-266

calised perturbations— defects— of the refractive index, acting in a manner similar to a267

lens [7,89,90]. There are a number of techniques to generate refractive defects as the ori-268

entation of NLC molecules, and so the refractive index, can be controlled via numerous269

mechanisms, including applied electric fields [21,25,28,30,91–93], dye-doping [26,94–97],270

polymer dispersion/doping [98,99], external magnetic fields [100–102], disinclinations271

and topological structures [103,104] and other (incoherent) light beams [22,24,26,89,105].272

However, since a nematicon is a wavepacket with an extended profile, it can interact273

with the localised defect/lens even if its peak is somewhat distant from it, similar to274

the case of total internal reflection discussed in Section 4. As remarked before, NLC275

are a nonlocal, nonlinear medium for which the reorientation extends well beyond the276

beam waist forcing it. Let us consider a refractive perturbation of background director277

orientation φb(x, y, z) about the uniform pre-tilt θ0 in a region denoted by Ω. As the278

director orientation is linked to the extraordinary refractive index ne, see (3), a light beam279



Version March 2, 2022 submitted to Appl. Sci. 11 of 19

-40 -30 -20 -10  0  10  20  30  40
-40

-30

-20

-10

 0

 10

 20

 30

 40

(a)

x

y

 0

 0.1

 0.2

 0.3

 0.4

-30 -20 -10  0  10  20  30
 0

 10

 20

 30

 40

 50

(b)

x

y

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-40 -30 -20 -10  0  10  20  30  40
 20

 30

 40

 50

 60

 70

 80

(c)

x

y

 0

 0.2

 0.4

 0.6

-40 -30 -20 -10  0  10  20  30  40
 120

 130

 140

 150

 160

 170

 180

 190

 200

(d)

x

y

 0

 0.2

 0.4

 0.6

 0.8

-40 -30 -20 -10  0  10  20  30  40

 160

 180

 200

 220

 240

 260

(e)

x

y

 0

 0.2

 0.4

 0.6

-40 -30 -20 -10  0  10  20  30  40
 200

 220

 240

 260

 280

 300

 320

 340

(f)

x

y
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Figure 5. Transverse profiles of |u| from the numerical solution of model (17) and (18) and the
initial conditions (22) with a = 0.15, w = 8.0 and V = 1.3 at z = 0, with ν = 200, ψbl = 0.8,
ψbr = 0.4, ql = 1.3, qr = 1.0, µ1 = 1.5 and µ2 = −20. (a) z = 0, (b) z = 20, (c) z = 40, (d) z = 120,
(e) z = 150, (f) z = 200. The NLC cell is biased as in Fig. 1(a). ©IOP Publishing. Reproduced with
permission. All rights reserved. [80], doi: http://dx.doi.org/10.1088/0953-4075/45/16/165403
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Figure 6. Comparison of nematicon trajectories y = ξ(z) nearing an elliptical region Ω of differing
refractive index in an NLC cell prepared as in Fig. 1(b). The initial condition is (25). Numerical
solution of (23) and (24): red line; solution of MT equations [27]: dashed green line. The initial
condition is f (ρ) = sech ρ, a = 2.5, w = 2.0, U = −0.1, ξ = −10.0 with ν = 200 and q = 2. The
defect parameters are u0 = 1, YΩ = 0, ZΩ = 20 and Ry = 5, Rz = 9. The boundary of Ω is given
by the pink line. Reproduced with permission from the American Physical Society. All rights
reserved. [27], doi: http://dx.doi.org/10.1103/PhysRevA.82.053843

can be refracted when passing through, or near, such a localised defect in ne and modify280

its trajectory. On adding this index perturbation, the NLC model (7) and (8) becomes281

i
∂u
∂z

+ iγ∆(θ0 + φb)
∂u
∂y

+
1
2
∇2u + 2φbu + 2φu = 0, (23)

ν∇2φ− 2qφ = −2|u|2. (24)

Note that the nonlinear term in the electric field equation is of the form ∆nu, where ∆n282

is the light-induced change in refractive index from its pre-tilt value.283

As stated above, the dielectric defect acts as a lens to modify the beam trajectory.
Nematicon refraction by localised index perturbations induced by an external electric
field (of constant value u0 inside the region Ω and 0 otherwise) was studied by full
numerical solutions of (23) and (24) and MT [27] using circular, elliptical and rectangular
domains Ω. The input beam was taken as

u = a f (ρ)eiσ+iU(y−ξ), ρ =

√
x2 + (y− ξ)2

w
(25)

with profile f (ρ) either Gaussian or sech, obtaining comparable results, as expected from284

previous studies on the role of the beam profile on nematicon propagation [67].285

The example of an elliptical refractive index change can illustrate the findings in
[27]. The defect can be generated by an applied low frequency electric field of the form

ub =

{
u0, Γ = (y−YΩ)2

R2
y

+ (z−ZΩ)2

R2
z
≤ 1,

0, Γ > 1,
(26)

providing the desired background orientation of the optic axis n̂. Figure 6 compares the286

nematicon trajectory y = ξ(z) as given by full numerical solutions of the NLC model (23)287

and (24) with the initial condition (25) and by modulation theory. It can be seen that MT288
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Figure 7. Evolution of |u| in the plane x = 0 as given by numerical solution of equations (23) and
(24) in a sample as in Fig. 1(b). The initial condition is (25) with f (ρ) = sech ρ, w = 3.0, U = −0.05,
ξ = 2.0 with ν = 400 and q = 2. The defect parameters are ab = 0.5, wb = 3.0, Yb = 0 and Zb = 30.
Reproduced with permission from the American Physical Society. All rights reserved. [106], doi:
http://dx.doi.org/10.1103/PhysRevA.85.013804

gives a good prediction of the nematicon trajectory as it is refracted by the index change.289

These results show that the trajectory of a nematicon can be controlled by adjusting the290

strength of the dielectric defect, much as adjusting a lens controls the path of light.291

The study of nematicon refraction in proximity to dielectric defects was extended
to nematicon paths interacting with the perturbation itself [106], based on the assumed
additional orientation

θb = abe−[(y−Yb)
2+(z−Zb)

2]/w2
b (27)

and the input wavepacket (25). If the beam waist is small compared with the defect width,292

then self-localisation is preserved and the solitary wave refracts much as for the case of293

propagation around the defect [27]. However, if the beam and defect have comparable294

sizes, then a large enough refractive index contrast can pull apart the nematicon, as295

apparent in Fig. 7, where the latter breaks up into two beams. These two beams are the296

counterparts of the caustics forming in the linear regime [106].297

The work summarized above was extended to experimental and theoretical studies298

in unbiased planar samples with a background director orientation θ0 varying across299

the transverse Y direction, but uniform in the down cell Z direction [107,108]. The NLC300

equations (23) and (24) govern such propagation with q = 0, since in the experiments301

[107] the NLC molecules were pre-tilted by the physical treatment of the glass plates302

(Fig. 1(b)). The modulation theory used to model the experiments was based on the303

beam and director distributions304

u = a f (ρ)eiσ+iU(z)(y−ξ(z)), ρ =

√
x2 + (y− ξ(z))2

w

θ = α f 2(µ), µ =

√
x2 + (y− ξ(z))2

β
. (28)

Here, a and w are the amplitude and width of the beam and α and β are the amplitude305

and width of the director response to the optical forcing. The variable ξ(z) is the y306

position of the nematicon peak as it travels down the cell with z increasing, y = ξ(z) as307
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Figure 8. Left panel: Nematicon trajectories for an unbiased NLC sample (see Fig. 1(b)) with
background angle θ0 varying in Y from 0o at Y = 0µm to 90o at Y = 600µm. Experimental data:
symbols; MT results: solid lines. Right panel: Extraordinary refractive index ne and walkoff
angle δ = tan−1 ∆ across nematic cell. The red squares are the experimentally measured walkoff.
Reproduced with permission from Springer Nature. All rights reserved. [107], doi: 10.1038/s41598-
017-12242-5
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Figure 9. Evolution in (x = 0, y, z) of coupled optical vortex and solitary wave near a Gaussian
refractive defect (white ellipse) in an unbiased NLC sample. (a) Vortex beam alone and (b) vortex
with co-propagating nematicon. Reprinted with permission from [113] ©The Optical Society.

it evolves in the (y, z) plane with fixed x = 0, and U(z) is the nematicon y “velocity”,308

physically the angle it makes with the z direction in the (y, z) plane. We underline that the309

beam profile is not specified above. It was found that if the length scale of the refractive310

index change is larger than the beam width, then the MT results are independent of311

the profile and the MT equations reduce to momentum conservation equations for312

the wavepacket trajectory ξ(z), as for interacting nematicons [51]. This is important313

since, as stated in Section 4, there are no known exact nematicon solutions on which314

to base modulation theory. Fig. 8 compares experimental and MT results (momentum315

conservation) for the nematicon trajectory, with an excellent match. These investigations316

of nematicon refraction in a sample with a transverse varying background director317

orientation were also carried out in samples with background director distribution θ0318

varying longitudinally (in the down cell direction Z), with perfect agreement between319

measurements and MT results [109].320

As discussed in Section 4, an optical vortex beam is a much less stable entity than a
nematicon, so when it interacts with a dielectric defect it can be destabilised and break
up into individual beams [80]. A co-propagating coaxial nematicon can stabilise an
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optical vortex in a uniform NLC sample, as demonstrated both experimentally [36]
and theoretically [110,111], as was also found experimentally and theoretically for co-
propagating solitary waves and optical vortices in thermal nonlinear optical media
[86–88]. It was found that a refracting vortex can also be stabilised by a co-propagating
co-polarized nematicon which acts as a graded-index waveguide and routes the vortex
[112,113]. Fig. 9 illustrates the stabilising effect of such a coaxial nematicon on a vortex
as the combined wavepackets propagate through an elliptically shaped dielectric defect
of the form

θb = abe−
[
(y−Yb))

2+(z−Zb)
2
]
/w2

b . (29)

Figure 9(a) shows the evolution of a vortex beam (charge 1) alone: its destruction by way321

of the index defect can be clearly appreciated. Fig. 9(b) displays the evolution of the same322

vortex co-propagating with a co-polarized nematicon, resulting in vortex stabilisation323

despite its interaction with the defect.324

6. Conclusions325

In this review we have tried to present a descriptive synopsis of recent results on the326

study of interacting self-confined optical solitary waves in reorientational nematic liquid327

crystals, outlining the main analytical approaches based on modulation theory. Despite328

the non-exhaustive character of the review, it is apparent that nematicons and other329

solitary waves in this specific type of soft matter have triggered a conspicuous amount330

of research interest and scientific effort, stimulating the development of theoretical,331

numerical and experimental approaches motivated by the sensitivity of liquid crystals332

to quite diverse perturbations, from light to voltage, magnetic fields, temperature,333

doping, etc. Beyond the specific topics summarized hereby, additional and recent334

endeavours have been carried out at the frontiers of self-localized light in nematic335

liquid crystals, including, e. g., Pancharatnam-Berry geometric phase and spin-orbit336

(spin-optical) solitary waves [114–117], thermo-reorientational nonlinear competition337

and multi-hump supermode solitary waves [118–126], to cite a few. Such phenomena338

involve the interaction of optical solitary waves in NLC with polarization evolution and339

scattering, competing self-focusing and defocusing responses, etc. Given the resultant340

complexity, they seem to deserve their own dedicated review, which is underway.341
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