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35 Abstract

36 Pre-packed columns have been increasingly used in process development and 

37 biomanufacturing thanks to their ease of use and consistency. Traditionally, packing 

38 quality is predicted through rate models, which require extensive calibration efforts 

39 through independent experiments to determine relevant mass transfer and kinetic rate 

40 constants. Here we propose machine learning as a complementary predictive tool for 

41 column performance. A machine learning algorithm, extreme gradient boosting, was 

42 applied to a large data set of packing quality (plate height and asymmetry) for pre-packed 

43 columns as a function of quantitative parameters (column length, column diameter, 

44 particle size) and qualitative attributes (backbone and functional mode). The machine 

45 learning model offered excellent predictive capabilities for the plate height and the 

46 asymmetry (90% and 93%, respectively), with packing quality strongly influenced 

47 by backbone (~70% relative importance) and functional mode (~15% relative 

48 importance), well above all other quantitative column parameters. The results highlight 

49 the ability of machine learning to provide reliable predictions of column performance 

50 from simple, generic parameters, including strategic qualitative parameters such 

51 as backbone and functionality, usually excluded from quantitative considerations. Our 

52 results will guide further efforts in column optimization, e.g. by focusing on 

53 improvements of backbone and functional mode to obtain optimised packings. 

54
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65 1. Introduction

66 Pre-packed chromatography columns are widely employed in process 

67 development and biomanufacturing. Their biggest advantage is to take away the 

68 burden of costly and time consuming packing procedures and associated 

69 validation protocols, ultimately ensuring a consistent product [1–4] . The 

70 production of pre-packed columns should be simple, cost-effective, and robust 

71 over the long term (decades) to ensure consistent quality of columns. 

72

73 The performance of pre-packed columns is assured by the manufacturer before 

74 the sale, with packing quality measured in terms of the height equivalent to a 

75 theoretical plate (HETP) and asymmetry. Both parameters are calculated from the 

76 response of the column following a pulse injection of a non-binding tracer, i.e. 

77 residence time distribution (RTD) experiments. The HETP corresponds to the 

78 column length over the number of theoretical plates (N), with efficient columns 

79 characterized by relatively large N and small HETP values. According to the 

80 general rate model, the RTD response of a “well-packed” column is a symmetrical 

81 Gaussian peak. To better assess packing quality, RTD experiments are usually run 

82 under conditions for which hydrodynamic dispersion is the dominant 

83 contribution to mass transfer (negligible intraparticle mass transfer, no 

84 adsorption). Under these conditions (reduced velocity of about 1 to 10), the HETP 

85 The minimum HETP value theoretically depends only on the properties of the 

86 tracer, the velocity of the mobile phase, and the size of the chromatographic 

87 particles [5]. However, the general rate model is unable to capture how the HETP 

88 is influenced by key factors of practical relevance such as column size (column 

89 diameter and length) or ease of packing across different chromatographic resins 

90 [6]. For example, Scharl et al. [7] qualitatively discussed the importance of 

91 material backbone on packing quality of a range of pre-packed columns. 

92 Deviations from symmetrical peaks are often observed in practice, with peak 

93 fronting or tailing associated with a number of non-idealities such as wall effects, 

94 inhomogeneous packing, inhomogeneous distribution of the solute over the bed 
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95 at the column inlet/distributor and/or at the outlet/collector, and dispersion in 

96 the extra column volumes [8–12]. Such deviations are measured through the 

97 asymmetry, an empirical parameter used to quantify the degree of peak skewness 

98 and employed to assess packing quality in tandem to the HETP [13].

99

100 Mathematical models to predict column performance and chromatographic 

101 processes, including the general rate model, are generally based on first principles. 

102 In particular, they include details of mass transfer phenomena and binding 

103 kinetics to describe peak profiles and breakthrough curves [14,15]. While the 

104 predictive power of these models is often excellent, they require extensive 

105 calibration efforts through independent experiments, e.g. to determine key model 

106 parameters such as mass transfer and kinetic coefficients [16,17]. Flow non-

107 idealities such as wall effects and distribution/collection of the fluid at the column 

108 inlet/outlet also require independent experiments for them to be accounted for in 

109 the models. These additional experiments are specific to the chromatographic 

110 system (external column volumes) and column (diameter, length) employed, 

111 therefore cannot be extrapolated to different systems or different columns. Finally, 

112 such models based on first principles do not take into account qualitative variables 

113 such as resin backbone and functional chemistry by design.

114

115 Machine learning (ML) could represent an alternative modelling approach to 

116 analyze and predict column performance. The main advantage of ML is the ability 

117 to extract information from large data sets using no or only minimum assumptions, 

118 eventually determining generalizable predictive patterns between multiple inputs 

119 (including quantitative, qualitative and categorical parameters), and the output 

120 variables [18,19]. A number of algorithms, e.g. support vector machine, decision 

121 tree, gradient boosting, and deep neural networks have been developed over the 

122 years, and have proved their ability in dealing with complex data problems in a 

123 practical manner [20,21]. ML has been applied to chromatography systems, with 

124 many successful applications e.g. in peak observation [22–24], retention 
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125 modelling [25–28], process optimization[29–31], and real-time process 

126 monitoring [32,33]. The main challenge associated to the application of ML is the 

127 availability of very large experimental data sets for the ML algorithm to draw 

128 meaningful correlations. 

129

130 In this work, we consider a large data set of around 25,000 quality assurance 

131 experiments of pre-packed columns manufactured and tested under standardized 

132 conditions for a period of over 10 years [7]. We first examine the time series of the 

133 data set using correlation and autocorrelation analysis to ensure the data are self-

134 consistent and time-independent. We then employ ML methods to find a 

135 correlation between column performance (measured in terms of HETP and 

136 asymmetry) and qualitative as well as qualitative column variables, namely resin 

137 backbone, functionalization chemistry, column size (length and diameter) and 

138 particle size. The results are finally commented in relation to the main key 

139 variables affecting column performance.

140

141 2. Materials and Methods

142 2.1 Experimental Data Set

143 The data set employed in this work is a subset of that previously employed by 

144 Scharl et al consisting of 24,951 quality control runs of pre-packed small-scale 

145 columns over a period of about 10 years [7]. The data contain relevant column 

146 parameters (i.e. column length and diameter, particle size, backbone material, 

147 functional mode, and date of testing) together with reduced HETP (h) and 

148 asymmetry ( ). Column diameter and length ranged between 5 – 11.3 mm and 𝐴𝑠

149 10 – 100 mm, respectively, while particle diameter varied between 15 to 400 m.  𝜇

150 2232 experimental runs (approximately 10%) were removed from the original 

151 data set as they lacked one or more column parameter inputs, reducing the data 

152 set to a total of 22,359 tests. Columns with same attributes were manufactured 

153 and tested more than once over the ten year monitored, with some popular types 

154 examined hundreds of times (e.g. see table 1 in SI). All experiments having same 
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155 set of input features were treated as a single entry, with  and  averaged over ℎ 𝐴𝑆

156 the available runs for that column type. This step was necessary to prevent data 

157 leakage in the ML model, i.e. the use of same column type in both the training and 

158 testing data sets (see 2.3), as well as to prevent overfitting of the most popular 

159 column types over the ones infrequently produced. The standard error for  and ℎ

160  was always lower than 10%, indicating that the average  and  are 𝐴𝑆 ℎ 𝐴𝑆

161 representative output indicators of column performance for any given column 

162 type. After the averaging process, the data set contained a total of 546 independent 

163 runs.

164

165 All columns used to generate the data set were packed by slurry packing under 

166 vibration following a standardized procedure developed by the packing company 

167 (Atoll, now Repligen). The packing quality of the columns was evaluated using a 

168 standardised experimental set up and experimental protocol as reported in Scharl 

169 et al [7]. Briefly, the response of the column following an acetone or sodium nitrate 

170 injection was measured, and the resulting chromatographic peak analysed to 

171 extract  and . This simple experiment allowed to isolate the contribution to ℎ 𝐴𝑆

172 band broadening associated with hydrodynamic dispersion (which in turn 

173 depends on packing quality and extra column dispersion) as the tracers employed 

174 are both non-retained (i.e. zero retention factor), with practically same diffusion 

175 coefficients (  and  cm2/s for acetone [34] and sodium nitrate 1.2 × 10 ―5 1.3 × 10 ―5

176 [35] , respectively), and tested under reduced velocities comprised between 1 and 

177 20 for which the minimum HETP is obtained [14]. 

178

179 2.2 Extreme Gradient Boosting

180 Extreme gradient boosting (XGBoost) is a scalable ML system for tree boosting 

181 [36]. XGBoost is a decision-tree-based ensemble learning method [37] that 

182 provides a systematic solution to a given problem by combining the predictive 

183 power of several different or same ML algorithms. The algorithm used in XGBoost 

184 is the Classification and Regression Tree (CART ) [38] which employs a binary tree 
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185 that can be constantly segmented by data features, thus enabling dynamic growth 

186 of the tree. The characteristics of the input data will eventually fall into the leaf 

187 nodes n the tree, where each leaf node corresponds to a specific score, and the sum 

188 of the scores in all the leaf nodes computes the final prediction value of a certain 

189 feature, e.g., h or As. 

190

191 Essential details of the mathematical formulation of the XGBoost model are 

192 presented in the following, with additional details in the SI. For a given data set 

193 with n examples and m features , the tree 𝒟 = {(𝑥𝑖,𝑦𝑖)}|(|𝒟| = 𝑛,𝑥𝑖 ∈ ℝ𝑚,𝑦𝑖 ∈ ℝ)

194 ensemble model uses  additive functions to predict the output.𝐾

195

196 𝑦𝑖 =
𝐾

∑
𝑘 = 1

𝑓𝑘(𝑥𝑖),𝑓𝑘 ∈ ℱ#(1)

197

198 where  is the space of the regression trees. ℱ = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞:ℝ𝑚→𝑇,𝑤 ∈ ℝ𝑇)

199 The  represents the structure of each tree that maps an example to the 𝑞

200 corresponding leaf index.  is the number of leaves in the tree. Each  𝑇 𝑓𝑘

201 corresponds to an independent tree structure  and tree weights . More 𝑞 𝑤

202 mathematical details can be found from the original XGBoost paper [36]. 

203

204 The regularized objective function defined for XGBoost, , can be written as:ℒ

205

206 ℒ = ∑
𝑖

𝑙(𝑦𝑖,𝑦𝑖) + ∑
𝑘

Ω(𝑓𝑘)#(2)

207 Ω(𝑓) = 𝛾 ∙ 𝑇 +
1
2𝜆‖𝑤‖2#(3)

208

209 Here  is a differentiable convex loss function that measures the difference 𝑙

210 between the prediction  and the target . The second  term prevents 𝑦𝑖 𝑦𝑖 Ω

211 unnecessary large trees by penalizing the complexity of the model, in turn 
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212 avoiding overfitting. The additional regularization term  helps smooth the 
1
2𝜆‖𝑤‖2

213 final learnt weights. The shrinkage parameter  is an additional design to prevent 𝛾

214 over-fitting. The   is utilized to multiply the score of each leaf node by a reduction 𝛾

215 weight during the iteration, which ensures that the influence of each tree is not 

216 too large, leaving more space for the tress generated later to optimize. 

217

218 XGBoost is also used to determine the relative importance of the input features. 

219 The definition of the relative importance is followed by the study of H. Friedman 

220 [39]. For a tree model whose number of terminal nodes is , the relative 𝐽

221 importance of a given input feature, , is calculated by the sum of the 𝐼

222 corresponding empirical improvements, , with  referring to a non-terminal 𝑖2 𝑡

223 node and  acting as splitting variable for that node. The  term is determined 𝑣𝑡 𝑖2

224 from the two sub-region   and , where  and  are the response means, 𝑅𝑙 𝑅𝑟 𝑦𝑙 𝑦𝑟

225 respectively, and  and  are the corresponding sums of the weights. In Python, 𝑤𝑙 𝑤𝑟

226 the contribution of each input features can be automatically transferred into the 

227 percentage version. 

228

229 𝐼2
𝑗 (𝑇) =

𝐽 ― 1

∑
𝑡 = 1

𝑖2
𝑡 (𝑣𝑡 = 𝑗)#(4)

230 𝑖2(𝑅𝑙,𝑅𝑟) =
𝑤𝑙𝑤𝑟

𝑤𝑙 + 𝑤𝑟
(𝑦𝑙 ― 𝑦𝑟)2#(5)

231

232 2.3 Data Pre-Processing and Model Implementation

233 Functional modes and backbone are two categorical features which cannot be 

234 operated by many ML algorithms directly. One-hot encoding was applied to 

235 transfer them into numerical values [40], with each feature normalized between 

236 0 and 1. All other numerical parameters were also normalized between 0 and 1 

237 before input into the ML model as most ML algorithms perform better or converge 

238 faster with features on relatively similar scale [41].
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239

240 An XGBoost regression model was created in Python 3.6 combining i) 

241 GridSearchCV (ten-folds) to select and determine the model’s hyper-parameters 

242 (e.g. learning rate, maximum tree depth, and minimum child weight) [42] and ii) 

243 XGBRegressor as the main package to process our data set [43]. The whole data 

244 set was then separated randomly into a training set (66.7%) and testing set 

245 (33.3%), with the training set utilized for training the ML model and the testing 

246 set used for inspecting the final model accuracy. Mean absolute error (MAE) [44] 

247 was used as the evaluation metric during model training. The final prediction 

248 precision of the model is reported by the mean absolute percentage error (MAPE) 

249 between the prediction results and the testing data set. The overall model 

250 prediction capability remained the same when changing initial seeding to 

251 randomly generate different training and testing data sets.

252

253 3. Results and Discussion

254 The main goal of this study was the identification of a general relationship 

255 between column parameters (column length, column diameter, particle diameter, 

256 functional mode, backbone material) and chromatographic performance (reduced 

257 HETP, and peak asymmetry, ) using ML algorithms as an alternative to classical ℎ 𝐴𝑠

258 rate models for chromatography. Classical rate models are derived from first 

259 principles and thus tend to be the preferred choice when it comes to the modelling 

260 of chromatographic separations. However, some of the parameters entering rate 

261 models often are either determined through empirical expressions (e.g. the 

262 Wilson Geankopolis correlation for the estimation of the mass transfer coefficient 

263 [45]) or simply adjusted to best-fit experimental results (e.g. diffusion or 

264 dispersion coefficients [46]). 

265

266 The introduction of a certain degree of empiricism in physical models is necessary 

267 to capture important elements of the model hard to describe in mathematical 

268 terms. For example, the three dimensional configuration of chromatographic beds 
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269 deviates from the theoretical close random packing limit [47], with the resulting 

270 bed arrangement strongly influenced by attributes linked to the material and 

271 column properties (e.g. Young modulus, friction factor, wall roughness) as well as 

272 the packing procedure itself [47,48] . For example, Knox demonstrated that 

273 hydrodynamic dispersion in columns packed with smooth non-porous glass beads 

274 is smaller than those measured in columns packed with porous glass [49]. Knox 

275 explained this result in terms of bed homogeneity, and speculated that smooth 

276 glass particles are able to form relatively regular packings, while porous glass 

277 particles are affected by greater interparticle friction forces, in turn resulting in 

278 particle bridging and the formation of pockets where local mixing occurs. These 

279 insights were demonstrated experimentally by Patel and coauthors [50], who 

280 confirmed that the A term in the van Deemter equation is primarily associated 

281 with radial heterogeneities in the bed. On the opposite front, Malkin et al. showed 

282 that submicrometer silica particles tend to pack close to the limit of a face centered 

283 cubic arrangement [51], resulting in reduced plate heights below 1. Khirevich et 

284 al. also reported that the local microscopic disorder in packings was highly 

285 correlated with eddy dispersion, directly affecting column performance [52]. 

286 Along the same line, Gritti et al [53] reported the outstanding performance of 

287 columns packed with core-shell particles, partly attributing these results to the 

288 propensity that these particles have to create homogeneous beds. More recent 

289 studies on 3D printed ordered beds further confirm the advantages of perfectly 

290 ordered packing, with simulated reduced plate heights below 0.1 for specific 

291 arrangements (e.g. octahedral particles in simple cubic configuration) of non-

292 porous stationary phases under non-retained conditions [54].

293

294 The concept of “goodness of packing” as proposed by Knox is strongly correlated 

295 to the A term of the van Deemter equation [55], with lower A values associated to 

296 lower reduced plate heights and hence higher chromatographic efficiency. 

297 According to the general rate model for chromatography, the A term can be 

298 expressed as [16]:
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299

300 𝐴 = 2𝜒𝑑𝑝#(6)

301

302 or in dimensionless terms:

303

304 𝑎 = 2𝜒#(7)

305

306 where  is the average particle diameter and  is the dispersivity of the stationary 𝑑𝑝 𝜒

307 phase. The dispersivity is a characteristic determined by the hydrodynamics in the 

308 column, in turn defined by type of particles and their packing. For a given column, 

309 the dispersivity can be determined through estimation of the plate height under 

310 conditions suppressing both axial diffusion (i.e. large velocity, negligible B term) 

311 and mass transfer and kinetic resistances (i.e injection of a small, fast diffusing 

312 non-adsorbing tracer, negligible C-term) for which the van Deemter equation 

313 reduces to:

314

315 ℎ = 𝑎 = 2𝜒#(8)

316

317 While this equation represents a relatively rapid method to assess the 

318 hydrodynamic properties of a given column, lack of correlations for the estimation 

319 of the dispersivity coefficient represents a limitation to predict band broadening 

320 due to axial dispersion. In particular, there exist no quantitative method to assess 

321 how the dispersivity depends on different column properties such as:

322 - backbone material and functional mode, closely related to the propensity 

323 of the particles to generate regular packing;

324 - column and particle diameters, i.e. the column to particle ratio, in turn 

325 determining the importance of non-homogeneities close to the column wall 

326 with respect to the rest of the column volume;

327 - column length and column diameter, which are associated to both bed 

328 compressibility [56], as well as defining the relative influence of extra-
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329 column dispersion effects, e.g. due to non-uniformity of the velocity profile 

330 resulting from non-idealities in the extra-column volumes.

331

332 Fronting or tailing deviations from the ideal symmetrical peak are often observed 

333 in chromatographic practice, negatively impacting the separation performance. 

334 Such deviation is often quantified through the asymmetry factor, , defined as the 𝐴𝑠

335 ratio between the width of the tailing end and of the peak front at 10% peak height 

336 [57,58]. Large asymmetry factors are associated with the heterogeneity of the 

337 column packing [59,60], making  another excellent descriptor for “goodness of 𝐴𝑠

338 packing”. However, search for a quantitative relationship between asymmetry and 

339 column parameters has been elusive so far. In this context, ML is an excellent tool 

340 to extract poorly understood links between variables such as the column input 

341 parameters and the asymmetry factor.

342

343 The data set of pre-packed column performance offers an opportunity to 

344 quantitatively analyse the dependence of the dispersivity on a range of qualitative 

345 and quantitative column attributes. The two performance parameters, h and As, 

346 are measured from the experimental response of an injection of a small non-

347 retained tracer (acetone or sodium nitrate). Same experimental and data analysis 

348 methods were used to generate the entire data set [7]. Only resins intended to 

349 separate proteins or other larger biomolecules were tested, ensuring much larger 

350 pores than that of the tracers. Such conditions ensure only the hydrodynamic 

351 dispersion is captured in the experiments and that the Van Deemter equation can 

352 be simplified into Eq. 8.

353

354 In short, we propose here to employ ML as a powerful alternative to traditional 

355 chromatographic models to investigate a correlation between the different 

356 column input parameters and the output performance parameters. ML is 

357 especially valuable in this context given the complexity of the problem described 

358 and the qualitative nature of some of the relevant variables such as column 
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359 backbone and functional mode. ML is also able to suggest the relative importance 

360 of the different inputs with respect to the outputs, thus helping the identification 

361 of the key descriptors for the performance parameters.

362

363 3.1 Time Series of Reduced Plate Height and Asymmetry

364 Column performance can change over time due to variations in the manufacturing 

365 line, e.g. improvement in the packing procedures, change of suppliers of raw 

366 materials, and ageing of the production line. Scharl et al. qualitatively observed 

367 that the plate height of the prepacked columns tested was stable over ten years 

368 [7]. However, any interdependence between h and As with time needs to be either 

369 identified or excluded in quantitative terms to avoid any input bias to the ML 

370 model. In other words, it is first necessary to determine if time represents an input 

371 variable to the ML model, as well as if sampling and testing of the columns changed 

372 significantly over time. Autocorrelation and partial autocorrelation analysis was 

373 employed onto the data set to address these two aims, respectively. In particular, 

374 the autocorrelation function (acf) aims to detect cross-similarities of a signal with 

375 itself at a different time (time lag) [61]. In this context, acf helps detect changes in 

376 the manufacturing line and in the quality assurance protocols employed over time. 

377 The partial autocorrelation function (pacf) instead aims to identify the possibility 

378 of confounding variables which are correlated to both variables [62]. In this 

379 instance, pacf aims to identify a correlation between time and performance 

380 parameters, in turn suggesting if a specific pattern of column types was 

381 manufactured over time. Additional details on acf and pacf are also provided in 

382 the SI.

383

384 The h and As time series were first resampled by averaging the data set in day 

385 intervals, irrespective of the other column parameters. Other than reducing noise, 

386 resampling is customary when autocorrelation analysis is executed over large 

387 time periods [58,61].

388
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389 Figure 1 shows the time series of the two performance parameters, h and As. Over 

390 the 10 year time considered, the  values varied between about 7.8 and 2.2, with ℎ

391 an average of around 4.5. Variability reduced significantly from 2011 onwards, 

392 with a slight decrease of plate height in 2012–2013. The asymmetry ranged 

393 between about 2 and 0.8, with average of 1.1. Similar to plate height, the scatter in 

394 the asymmetry over the first five years is larger than after 2011. According to 

395 Scharl et al. [7], industrial quality assurance tests require a column to have  ℎ

396 comprised should be smaller than 5 in industry, while the acceptable range for  𝐴𝑠

397 is between 0.8 and 1.6 [7]. The observed variability is a natural consequence of 

398 industrial manufacturing, yet the columns produced were within specifications in 

399 terms of both  and AS. ℎ

400

401 Figure 2 shows the results from the autocorrelation and partial autocorrelation 

402 analysis on  and  using lag time of days up to one year. Other lag times were ℎ 𝐴𝑠

403 also examined (i.e. weekly, monthly as well as over 2, 3 months) with no significant 

404 difference. For both  and , almost all of the acf and pacf coefficients lie within ℎ 𝐴𝑠

405 the 95% confidence interval. The low acf demonstrates that the dataset does not 

406 have a specific pattern with time, quantitatively confirming that the 

407 manufacturing line was stable over the ten year period here investigated [63]. In 

408 addition, low pacf rules out the existence of confounding variables such as certain 

409 patterns in terms of column sampling and testing over time. In other words, pacf 

410 analysis confirms that column manufacture was unbiased, excluding the 

411 possibility that a certain column type (e.g. having specific size and packed with a 

412 specific particle) was manufactured predominantly over other columns over time. 

413 Overall, acf and pacf demonstrate that all performance tests were time 

414 independent, making the data set solely dependent on the five input parameters 

415 of particle size, column diameter, column length, column backbone, and functional 

416 mode. 

417

418 3.2 Influence of column parameters on packing quality 
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419 XGBoost was utilized to assess the influence of the column parameters (i.e. the 

420 inputs to ML algorithm: particle size, column length, column diameter, functional 

421 mode, and resin backbone) on packing quality (i.e. ML outputs of  and ). Other ℎ 𝐴𝑠

422 ML algorithms such as artificial neural networks and decision-tree were also 

423 employed in a preliminary model assessment (refer to SI for additional 

424 information on ML models). XGBoost consistently provided the highest predictive 

425 precision, mainly due to its regularization and shrinkage terms (Eqs. 2 and 3) 

426 being capable of curbing over-fitting, the main cause of poor prediction.

427

428 Figure 3 summarizes the results obtained with the XGBoost model to predict the 

429 experimental data. In particular, Figure 3a and 3b compare the predicted  and , ℎ 𝐴𝑠

430 respectively, against the observed data of the testing data set. The predictions are 

431 in good agreement with the experimental results, where the mean absolute 

432 percentage error (MAPE) of predicted results to the observed values are 10% for 

433  and 7% for , with a few outliers in the 40% ~ 50% range. These acceptable ℎ 𝐴𝑠

434 errors confirm that the XGBoost model can be applied to this problem with good 

435 prediction accuracy. Figure 3c and 3d report the contribution importance, J (Eqs. 

436 4 and 5), of the various input parameters to predict the model outputs. 

437 Interestingly, column backbone resulted as the most important descriptor of 

438 packing quality, accounting for 68.4% and 77.0% for the prediction of  and , ℎ 𝐴𝑠

439 respectively. Functional mode was the second most significant descriptor for the 

440 estimation of packing quality, accounting for about 15% contribution importance, 

441 followed in various order by the other parameters (particle size, column diameter 

442 and column length). Violin plots were employed to further analyze the correlation 

443 between input features and column performance (Figure 4). A violin plot is an 

444 extension of a box and whisker plot, clearly recognizable inside the “violins”, 

445 decorated with a curve whose width is related to the probability density.

446

447 3.2.1 Resin backbone
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448 Resin backbone was the most influential parameter for the prediction of packing 

449 quality. The material making up the resin backbone can be either inorganic , 

450 synthetic polymer, or natural polymer. The nature of the material employed 

451 determines a number of properties such as surface roughness of the particles [64], 

452 particle size distribution (linked to the manufacturing method)[65], occurrence of 

453 microstructural defects, and other mechanical properties such as Young modulus 

454 and density [63,64]. All these factors impact column packing, either directly or 

455 indirectly, in turn influencing the homogeneity of the resulting chromatographic 

456 bed, i.e. packing quality. Johnson et al. examined a range of resin materials 

457 (agarose, cellulose, ceramic) through X-ray computed tomography (CT) and 

458 focused ion beam (FIB) [66]. They highlighted clear variations in the chemical, 

459 physical and mechanical properties of the different materials. Our analysis with 

460 the XGBoost model also confirms that resin characteristics strongly influence 

461 chromatographic performance.  

462

463 Figure 4a and 4b present violin plots of h and As, respectively, over the eight 

464 different backbones tested. It is possible to observe that certain backbones have 

465 worse performance than others as measured by both of the two packing quality 

466 parameters h and As. For example, polystyrene-divinilbenzene (PS/DVB), 

467 inorganic support (IS) and dextran (DEX) have data widely distributed, with 

468 average h above 5 and average As above 1.2. On the other hand, agarose, cellulose 

469 and PVE hydrophilic (PVE) demonstrated consistent results (little data scatter) 

470 with average h and As well below the arbitrary thresholds of 5 and 1.2, respectively. 

471 This analysis clearly demonstrates the importance of backbone selection, e.g. 

472 during process or method development.

473

474 It is worth noting that inorganic support (IS) was relatively popular in the first 

475 three years of our data set, while polyvinyl-ether hydrophilic (PVE) matrices were 

476 little used at first, becoming more mainstream after 2011. This change in 

477 backbone population over time can partly explain the slight decrease of the 
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478 absolute value of h, as well as the reduced scatter of  and  observed from 2011 ℎ 𝐴𝑠

479 onwards (Figure 1).

480

481 3.2.2 Functional mode

482 Functional mode was the second most important parameter to predict packing 

483 quality. Figure 4c and 4d show the relation between  and  over the different ℎ 𝐴𝑠

484 functional modes. The influence of the functionalization chemistry on column 

485 packing is less intuitive than for chromatographic backbone. Stickel and 

486 Fotopoulos [67] reported the difference of the pressure-flow profiles between 

487 sepharose and phenyl sepharose, which was associated to the differing 

488 hydrophobic and electrostatic character of the resin beads. Electrostatic and 

489 hydrophobic interactions might promote local or temporary bonding of two or 

490 more particles into clusters, decreasing the degrees of freedom of the slurry, and 

491 thus influencing column packing [68]. Also, functionalization procedures can 

492 change the mechanical and surface properties of the beads, e.g. as a consequence 

493 of the different solvents, chemicals and temperatures employed for ligand 

494 immobilization. This in turn influences the packing process [69], ultimately 

495 determining packing quality.

496

497 The possibility of a correlation between column functionality and backbone was 

498 tested both qualitatively (mosaic plot in Figure 5) and statistically by employing 

499 the chi-squared test. The size of the mosaic tiles in Figure 5 is proportional to the 

500 number of chromatographic columns in the data set having a certain combination 

501 of backbone and functional mode. Some of the tiles are predominant over the 

502 others, e.g. agarose and methacrylate based materials are employed across affinity, 

503 ion exchange and hydrophobic interaction chromatography (AF, AIEC, CIEC, HIC, 

504 IMAC, MMC in Figure 5). Such columns are indeed ubiquitous in downstream 

505 processing of biopharmaceuticals. Other backbones find use in specific application 

506 domains, e.g. dextran is predominantly employed for SEC, and HCIC is purely 

507 carried out with cellulosic adsorbents. In addition, a number of combinations of 
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508 functional mode and backbone are not represented in the data set, indicating some 

509 resin materials do not find use for certain chromatographic modalities. A chi-

510 squared test of independence with 63 degrees of freedom, i.e. (8 backbones – 1) x 

511 (10 functional modes – 1), and with a sample size of  tests indeed showed a 546

512 significant relationship between the two input variables, 𝜒2(63, 𝑁 = 546)

513 . While a correlation between resin material and = 693, 𝑝 < 0.01

514 functionalisation is apparent, its influence in the ML model was eliminated by 

515 averaging all experimental results measured under the same input conditions (see 

516 section 2.1), especially important step to prevent same samples being present in 

517 both the training and testing set thus overestimating the accuracy.

518

519 3.2.3 Column length

520 The influence of column length on h is presented in Figure 4e. It is possible to 

521 observe that the median for , as well as its propensity to data scatter and ℎ

522 relatively large values (  above 10) increase with column length. This observation ℎ

523 can be explained by a combination of packing consolidation and wall effects. The 

524 former is relevant during column manufacture, i.e. when compression forces 

525 transfer through the packing via inter-particle friction as well as friction between 

526 particles and the column wall [70]. The uneven stress distribution created 

527 between particles in the bulk and at the periphery of the column negatively affect 

528 bed consolidation and packing homogeneity. The presence of the wall constrains 

529 the resin particles to pack in configurations with higher local porosity in the 

530 immediate vicinity of the column wall. The columns investigated in this work were 

531 small scale purification columns (column volume about 1 and 10 ml) with 

532 relatively large particle diameters (15 to 400 m) and small column diameters (5 𝜇

533 – 11.3 mm). The resulting column diameter to particle diameter ratio was in 

534 general around 80, down to 20 for some columns. In this context, Maier et al. [71] 

535 reported wall effect on axial dispersion can be observed even for columns with 

536 column dimeter to particle diameter ratio greater than 100. Reising et al. [72] and 

537 Fabrice Gritti [73] studied the dependence of fluid velocity with radial position, 
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538 and concluded that the velocity close to the column wall can be up to 2.2 times the 

539 bulk velocity, significantly contributing to band broadening and early 

540 breakthrough. Flow non-idealities arising from both uneven packing difficulties 

541 and wall effects scale with column length, with packing quality and column 

542 performance inversely related to it.

543

544 The contribution of column length on As is reported in Figure 4f. No significant 

545 difference can be observed across the data, other than a minor decrease in the 

546 median asymmetry with column length. Asymmetry is heavily determined by 

547 extra column band broadening, i.e. related to all flow non-idealities present in the 

548 extra column volumes such as tubing, fitting, column distributor and collectors, 

549 pumps, valves etc. This effect becomes more prominent for smaller columns, as 

550 described by Kaltenbrunner et al. [74] who reported extra column volumes 

551 accounting for more than 90% band broadening in small columns.

552

553 3.2.4 Column diameter

554 According to ML results the contribution of column diameter to the prediction of 

555 h is 5.2%, while it is only 0.9% for  (Figure 3c), and no clear relationship can be 𝐴𝑠

556 observed between column diameter and the two performance output parameters 

557 (Figure 4g and 4h). All the three column diameters considered in this work fall in 

558 the same order of magnitude (5, 8 and 11.3 mm), thus hiding any potential 

559 correlation between column diameter and packing quality. Schweiger et al [3] 

560 analyzed the band broadening arising from the extra-column and in-column 

561 contributions of pre-packed columns with different column diameters, and 

562 concluded that an increase in column diameter can lead to an increase in peak 

563 width as caused by flow non-idealities in the flow distributor and collector. 

564 Experimental data for wider columns is required to identify and eventually 

565 quantify any possible relationship between column diameter and column 

566 performance.

567
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568 3.2.5 Particle diameter

569 The correlation between particle diameter and  is reported in Figure 4i. ℎ

570 Accordingly to the reduced form of the van Deemter equation (Eq 8), the 

571 magnitude of  is not dependent on particle diameter. ML results indicate that the ℎ

572 importance contribution of particle diameter to  is 10.7% (Figure 3c). In Figure ℎ

573 4i the median  slightly drops with particle size, possibly resulting from packing ℎ

574 difficulties with smaller particles, as also reported by Scharl et al. [7]. No trend 

575 between  and particle size could be observed (Figure 4j). 𝐴𝑠

576

577 4. Conclusions

578 Traditional statistical analysis (e.g. autocorrelation analysis, chi square analysis) 

579 and machine learning were applied to a large data set (546 different combinations 

580 of column features) of packing quality (reduced plate height, h, and asymmetry, 

581 As) for pre-packed columns manufactured with different column sizes (column 

582 length and column diameter) and packed with different resins (backbone, 

583 functional mode, and particle diameter) over a ten year period. 

584

585 Autocorrelation and partial autocorrelation provided a quantitative framework to 

586 analyze column quality over time. The results indicate that packing quality was 

587 indeed not correlated with time, indicating that column manufacture, sampling 

588 and testing was consistent over the ten year period. 

589

590 The XGBoost represented an excellent ML model to predict column performance, 

591 with mean absolute percentage error (MAPE) of 10% and 7% on h and As, 

592 respectively. According to the ML tool employed, column backbone contributed 

593 the most to its predictive capability. In other words, the resin material employed 

594 had the most significant impact on column performance. A trend between column 

595 length and performance was also observed, with  raising slightly as the length ℎ

596 increased, consistent with a larger contribution to band broadening due to wall 

597 effects and axial dispersion. 
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598

599 Overall, this work demonstrates the capability of ML to evaluate and predict 

600 column performance solely from the knowledge of some basic column 

601 characteristics (column length and diameter, particle size, backbone material, 

602 functional mode). These results could be employed to extrapolate the expected 

603 performance characteristics on new and existing columns types, help set QA 

604 protocols for new and existing manufacturing lines for pre-packed 

605 chromatography columns, or as a reference benchmark for columns packed 

606 traditionally in lab settings, especially for hard to pack columns such as PS-DVB 

607 and inorganic supports. The results presented here can guide further efforts in 

608 column optimization, e.g. informing potential inefficiencies in the packing process, 

609 and suggesting improvements of backbone and functional modes to obtain easy to 

610 pack resins prone to form ordered packing arrangements with high 

611 chromatographic performance.

612

613 More in general, ML provides a quantitative tool to describe complex problems 

614 with multiple input features, including categorical features such as resin backbone 

615 and functional mode. ML methods can also be employed in other chromatographic 

616 areas, e.g. for generating accurate retention models, resolving complex 

617 chromatography peaks and for searching column structures with improved 

618 performance.
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834 Figure Captions:

835

836 Figure 1 Time series of a) reduced plate height, , and b) asymmetry, , for pre-ℎ 𝐴𝑠

837 packed purification columns manufactured over the 10 year period monitored. 

838

839
840
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841 Figure 2 Autocorrelation (acf) and partial autocorrelation (pacf) analysis of 

842 reduced plate height, , and asymmetry, . a) Acf of ; b) pacf of ; c) acf of ; d) ℎ 𝐴𝑠 ℎ ℎ 𝐴𝑠

843 pacf of . The blue shaded areas correspond to 95% confidence interval.𝐴𝑠

844

845
846
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847 Figure 3. XGBoost prediction results for a)  and b)  over the testing data set. ℎ 𝐴𝑠

848 Variable importance contributions of c)  and d)  are reported. The importance ℎ 𝐴𝑠

849 is calculated based on the improvement of the performance measured by each 

850 attribute split points, weighted by the number of the observations the node is 

851 responsible for. The importance contributions, named by Gain in XGBoost (refer 

852 to Eq 4&5), were transferred into percentage. 

853

854
855
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856 Figure 4. Violin plots of  and As against input parameters (backbone, functional ℎ

857 mode, column length, column diameter, particle diameter). a)  vs backbone ℎ

858 (PS/DVB: polystyrene divynilbenzene; IS: Inorganic support; MET: Methacrylate; 

859 AGR: Agarose; POL: Polymer grafted; DEX: Dextran; CEL: Cellulose; PVE: 

860 polyvinyl-ether hydrophilic). b)  vs backbone. c)   vs functional mode (CIEC: 𝐴𝑠 ℎ

861 cation exchange chromatograph; AF: affinity chromatography; HA: hydroxyl-

862 apatite chromatography; AIEC: anion exchange chromatography; HIC: 

863 hydrophobic interaction chromatography; SEC: size-exclusion  chromatography; 

864 IMAC: immobilized metal affinity chromatography; MMC: mixed-mode 

865 chromatography; FA: fluorophore adsorption chromatography; HCIC: 

866 hydrophobic charge induction chromatography). d)  vs functional mode. e)  vs 𝐴𝑠 ℎ

867 column length. f)  vs column length. g)  vs column diameter. h)  vs column 𝐴𝑠 ℎ 𝐴𝑠

868 diameter. i)  vs particle diameter. j)  vs particle diameter.ℎ 𝐴𝑠

869
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872 Figure 5. Mosaic plot of the combinations of functional mode and backbone 

873 material tested. The size of the tiles represents the relative frequency of each 

874 combination. PS/DVB: polystyrene divynilbenzene; IS: Inorganic support; MET: 

875 Methacrylate; AGR: Agarose; POL: Polymer grafted; DEX: Dextran; CEL: Cellulose; 

876 PVE: polyvinyl-ether hydrophilic; CIEC: cation exchange chromatograph; AF: 

877 affinity chromatography; HA: hydroxyl-apatite chromatography; AIEC: anion 

878 exchange chromatography; HIC: hydrophobic interaction chromatography; SEC: 

879 size-exclusion  chromatography; IMAC: immobilized metal affinity 

880 chromatography; MMC: mixed-mode chromatography; FA: fluorophore 

881 adsorption chromatography; HCIC: hydrophobic charge induction 

882 chromatography. 

883

884

885
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Figure 1 Time series of a) reduced plate height, h, and b) asymmetry, A_s. 
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Figure 2 Autocorrelation (acf) and partial autocorrelation (pacf) analysis of reduced plate height, h, and 
asymmetry, A_s. a) Acf of h; b) pacf of h; c) acf of A_s; d) pacf of A_s. The blue shaded areas correspond 

to 95% confidence interval. 
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Figure 2 Autocorrelation (acf) and partial autocorrelation (pacf) analysis of reduced plate height, h, and 
asymmetry, A_s. a) Acf of h; b) pacf of h; c) acf of A_s; d) pacf of A_s. The blue shaded areas correspond 

to 95% confidence interval. 
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Figure 4. Violin plots of h and As against input parameters (backbone, functional mode, column length, 
column diameter, particle diameter). a) h vs backbone (PS/DVB: polystyrene divynilbenzene; IS: Inorganic 

support; MET: Methacrylate; AGR: Agarose; POL: Polymer grafted; DEX: Dextran; CEL: Cellulose; PVE: 
polyvinyl-ether hydrophilic). b) A_s vs backbone. c) h vs functional mode (CIEC: cation exchange 

chromatograph; AF: affinity chromatography; HA: hydroxyl-apatite chromatography; AIEC: anion exchange 
chromatography; HIC: hydrophobic interaction chromatography; SEC: size-exclusion chromatography; 

IMAC: immobilized metal affinity chromatography; MMC: mixed-mode chromatography; FA: fluorophore 
adsorption chromatography; HCIC: hydrophobic charge induction chromatography). d) A_s vs functional 

mode. e) h vs column length. f) A_s vs column length. g) h vs column diameter. h) A_s vs column diameter. 
i) h vs particle diameter. j) A_s vs particle diameter. 
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Figure 5. Mosaic plot of the combinations of functional mode and backbone material tested. The size of the 
tiles represents the relative frequency of each combination. PS/DVB: polystyrene divynilbenzene; IS: 

Inorganic support; MET: Methacrylate; AGR: Agarose; POL: Polymer grafted; DEX: Dextran; CEL: Cellulose; 
PVE: polyvinyl-ether hydrophilic; CIEC: cation exchange chromatograph; AF: affinity chromatography; HA: 
hydroxyl-apatite chromatography; AIEC: anion exchange chromatography; HIC: hydrophobic interaction 

chromatography; SEC: size-exclusion chromatography; IMAC: immobilized metal affinity chromatography; 
MMC: mixed-mode chromatography; FA: fluorophore adsorption chromatography; HCIC: hydrophobic 

charge induction chromatography. 
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