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Effect of genotyping strategies 
on the sustained benefit of single‑step genomic 
BLUP over multiple generations
Milagros Sánchez‑Mayor1, Valentina Riggio2,3, Pau Navarro4, Beatriz Gutiérrez‑Gil1, Chris S. Haley2,4, 
Luis Fernando De la Fuente1, Juan‑José Arranz1 and Ricardo Pong‑Wong2*  

Abstract 

Background: Single‑step genomic best linear unbiased prediction (ssGBLUP) allows the inclusion of information 
from genotyped and ungenotyped individuals in a single analysis. This avoids the need to genotype all candidates 
with the potential benefit of reducing overall costs. The aim of this study was to assess the effect of genotyping 
strategies, the proportion of genotyped candidates and the genotyping criterion to rank candidates to be genotyped, 
when using ssGBLUP evaluation. A simulation study was carried out assuming selection over several discrete genera‑
tions where a proportion of the candidates were genotyped and evaluation was done using ssGBLUP. The scenarios 
compared were: (i) three genotyping strategies defined by their protocol for choosing candidates to be genotyped 
(RANDOM: candidates were chosen at random; TOP: candidates with the best genotyping criterion were genotyped; 
and EXTREME: candidates with the best and worse criterion were genotyped); (ii) eight proportions of genotyped 
candidates (p); and (iii) two genotyping criteria to rank candidates to be genotyped (candidates’ own phenotype or 
estimated breeding values). The criteria of the comparison were the cumulated gain and reliability of the genomic 
estimated breeding values (GEBV).

Results: The genotyping strategy with the greatest cumulated gain was TOP followed by RANDOM, with EXTREME 
behaving as RANDOM at low p and as TOP with high p. However, the reliability of GEBV was higher with RANDOM 
than with TOP. This disparity between the trend of the gain and the reliability is due to the TOP scheme genotyping 
the candidates with the greater chances of being selected. The extra gain obtained with TOP increases when the 
accuracy of the selection criterion to rank candidates to be genotyped increases.

Conclusions: The best strategy to maximise genetic gain when only a proportion of the candidates are to be 
genotyped is TOP, since it prioritises the genotyping of candidates which are more likely to be selected. However, the 
strategy with the greatest GEBV reliability does not achieve the largest gain, thus reliability cannot be considered as 
an absolute and sufficient criterion for determining the scheme which maximises genetic gain.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Genomic prediction (or genomic selection, GS) uses 
information that is derived from high-throughput geno-
typing of single nucleotide polymorphisms (SNPs) in the 
genetic evaluation [1]. It has been successfully imple-
mented in many commercial breeding populations from 
several livestock species and has significantly increased 
the accuracy/reliability of the estimated breeding values 
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(e.g. [2–8]). Other advantages that have been observed 
with GS are an increase in the intensity of the selection 
and shortening of the generation interval [9, 10].

Several methods that are defined by their assump-
tion on the prior distribution of the SNP effects have 
been proposed and implemented (for a review of meth-
ods see Gianola et  al. [11] and Gianola [12]), with the 
most popular ones being genomic best linear unbiased 
prediction (GBLUP) [13], and especially its subsequent 
development, known as single-step GBLUP or ssGBLUP 
[14–16]. The attractiveness of ssGBLUP is due to the fact 
that it allows to include information from genotyped and 
ungenotyped animals in a single joint analysis leading to 
better predictions in the genotyped animals and, to some 
extent, it propagates into the group of ungenotyped ones 
[14, 17].

Hence, an additional appeal of ssGBLUP is that it 
allows the option of not genotyping the whole group of 
candidate animals, which thereby reduces the cost of the 
selection scheme. However, this raises the need to deter-
mine the optimum set of candidates to be genotyped to 
ensure that a significant benefit from ssGBLUP is still 
achieved. In this study, the aim was to assess the effect of 
genotyping strategies, the proportion of genotyped can-
didates and the genotyping criterion to rank candidates 
to be genotyped on the cumulated genetic gain, when 
using ssGBLUP evaluation.

Methods
A simulation study was performed to assess the effect of 
genotyping strategies on the response to selection over 
multiple generations using ssGBLUP to account for not 
all candidates being genotyped. A total of 100 replicates 
were used.

Founder population in linkage disequilibrium
To simulate a genome in linkage disequilibrium (LD), a 
founder population was simulated using a mutation–
drift-equilibrium algorithm as suggested by Meuwissen 
et al. [1]. Briefly, an initial population of n individuals is 
allowed to reproduce, with each individual producing 
two offspring (one male and one female). The genome is 
assumed to be divided into several chromosomes with 
biallelic loci that mutate at a given rate. As the popula-
tion develops over a large number of generations, new 
mutations appear and they are lost or they increase in 
frequency due to drift, resulting in a population with a 
genome with segregating linked loci in LD. Thereafter, 
the population is expanded to produce the founder popu-
lation, which is used to sample the haplotype of the base 
animals of the breeding population. In order to simulate 
the genome with a similar LD pattern as a typical farmed 
sheep structure, we assumed an initial population of 100 

individuals, which was allowed to reproduce for 10,000 
generations. The genome was composed of 26 chromo-
somes of one Morgan. Each chromosome had 500,000 
biallelic loci located equidistantly and a mutation rate of 
 10–6. Thereafter, the population had three generations of 
fivefold expansion and 4000 individuals of the last gen-
eration were randomly selected to be the founder popu-
lation. This founder population was later used to sample 
the genome of the base population of each replicate (i.e. 
the G(− 2) generation, see below). In the founder popu-
lation, approximately 5000 loci per chromosome were 
segregating at a minor allele frequency (MAF) higher 
than 0.05 (i.e. more than 130,000 loci across the whole 
genome).

Population structure
The breeding population was assumed to have discrete 
generations, with 900 individuals (300 males and 600 
females) per generation. At each generation, 30 males 
and 300 females were selected and mated, with each 
selected female having three offspring (1 male and 2 
females). All individuals were assumed to have one phe-
notypic record available for their genetic evaluation. The 
aim of the simulated population structure was to mimic a 
sheep breeding population with large paternal and small 
maternal families. The assumption of a litter size of 3 can 
be considered as a little unrealistic in a sheep population, 
but it was the minimum possible size in order to assume 
discrete generations while still being able to have selec-
tion pressure on both male and female candidates. How-
ever, the assumption of discrete generations means that 
the results would not be affected by differences in genera-
tion interval, and the observed differences between sce-
narios would be due only to the quality of the estimates. 
Hence, the decision of assuming discrete generations.

The first two generations (G(−  2), G(−  1)) were 
assumed to be the initial reference population, so all 
individuals were genotyped. Thereafter, nine additional 
generations were simulated (G0 to G8), with only a pro-
portion p of the individuals being genotyped. The selec-
tion scheme using ssGBLUP started at G0, therefore 
the comparison between strategies was done from G0 
to G8. For the selection period using the ssGBLUP, the 
candidates available for selection were a mixture of geno-
typed and ungenotyped individuals. All candidates were 
assumed to be phenotyped early in life so phenotypic 
performances were available at the time of their genetic 
evaluation and when the decision of which candidates to 
genotype was taken.

Genetic architecture
The genome was divided into 26 autosomal chromosomes 
(i.e., mimicking the sheep genome), each with 1000 loci 
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used as the SNP panel and 100 loci used as the quantita-
tive trait loci (QTL) affecting the trait. The genome of the 
animals in the base population (i.e., G(−  2)) was simu-
lated by randomly sampling haplotypes from the founder 
population, and in the following generations (i.e. G(− 1) 
to G8), an animal’s genome was sampled assuming Men-
delian inheritance given its parents’ haplotype.

To select the loci included in the SNP panel and the 
QTL, we calculated the frequency of all segregating loci 
at G0 and, within each chromosome, we selected 1100 
with the highest MAF. The distribution of MAF at G0 
for all loci selected across replicates is shown in Addi-
tional file 1: Fig. S1. Thereafter, 1000 loci were randomly 
assigned to be part of the SNP panel and 100 to be the 
QTL (i.e., across the genome, the SNP panel had 26,000 
loci and 2600 loci were QTL affecting the traits). This 
protocol means that the sets of loci used as QTL or as 
part of the SNP panel (used in the ssGBLUP evaluation) 
were different in each replicate.

The heritability of the trait was assumed to be 0.2 (i.e. 
the genetic variance was 20 and the environmental vari-
ance was 80). The additive effect for each QTL was sam-
pled from a standardised normal distribution and the 
favourable allele was assigned randomly with equal prob-
ability. The true breeding value (TBV) of each individual 
was calculated as the sum of the QTL effects, given its 
genotypes and the additive effect. The QTL effects were 
rescaled, such that the genetic variance in G(−  2) was 
20. The phenotype for each individual was simulated as 
the sum of its TBV and an environmental effect sampled 
from a normal distribution with a mean of zero and a 
variance of 80.

Simulating the genome of the base population (G(− 2)) 
by sampling from the permuted haplotypes of the 
expanded founder population ensured that all the repli-
cates had the same expected LD pattern, but still allow-
ing for the replicates to be independent from each other. 
The size of the founder population (in terms of number 
of animals and loci) was sufficiently large so that the 
permutation of the founders’ haplotypes resulted in all 
base animals having a unique genome structure (i.e. no 
pair of base animals, within or across replicates, had the 
same haplotype pattern). Furthermore, the loci assigned 
as SNPs or QTL (and their effects) were sampled within 
each replicate, further ensuring that replicates were dif-
ferent, and thereby, independent.

Genetic evaluation and selection
The genetic evaluation was done using ssGBLUP, but 
scenarios using BLUP and GBLUP evaluations were also 
simulated for comparison. All three methods of selection 
were implemented using Henderson’s mixed model equa-
tion [18].

The assumed linear model is:

where y is the vector of phenotypes, µ is the overall 
mean, a is the vector of polygenic breeding values dis-
tributed as N(0,Gσ2a) with Z being the corresponding 
incidence matrix, and e the vector of residual deviations 
distributed as N(0, Iσ2e ) . G is the genetic relationship 
matrix associated with the method of evaluation, and I is 
an identity matrix. All candidates were assumed to have 
one phenotypic record available at the time of selection 
and genotyping, hence they could be in their own genetic 
evaluation or as a criterion to decide which candidates 
were to be genotyped.

The BLUP, GBLUP and ssGBLUP evaluation meth-
ods are defined by the G matrix used in the evaluation. 
For the BLUP evaluation, it is assumed that no genotype 
information is known for any animals and the relation-
ship matrix is the numerator relationship matrix ( A ) cal-
culated using pedigree information [18, 19]. For GBLUP, 
all individuals included in the evaluation are genotyped 
and the relationship matrix is the genomic relationship 
matrix ( G ) calculated using the SNP genotypes [20]. 
Finally, ssGBLUP assumes that only a proportion of the 
individuals are genotyped, so the calculation of the rela-
tionship matrix ( H ) combines pedigree and dense SNP 
information [14]. In this study, the G matrix was calcu-
lated using the second method proposed by VanRaden 
[20], and the inverse of the H matrix was calculated by 
joining the A matrix (including all individuals, genotyped 
and ungenotyped) with the G matrix (including the geno-
typed individuals only) as described by Legarra et al. [14]. 
In addition, prior to joining the A and G matrices to form 
H , the G matrix was adjusted to make it ‘compatible’ with 
the A matrix, as Gadj = a+ b ∗G , where a and b were 
calculated as in Legarra et al. [14].

The selection scheme simulated here assumed multiple 
discrete generations of selection. Hence, at a given gen-
eration, the genetic evaluation of the current candidates 
to be selected was done with a model including them plus 
all the information (phenotypes and available genotypes) 
of animals from previous generations (i.e., the phenotype 
and genotype information increased with the number of 
generations).

For the period of selection (G0–G8), the candidates 
were selected assuming standard truncation based on 
the genomic breeding values calculated using the linear 
model described above.

Scenarios compared
The ssGBLUP scenarios, which were compared here, 
included eight proportions of candidates being geno-
typed, three genotyping strategies to select the candidates 

y = µ+ Za + e,
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to be genotyped, based on two ranking criteria. In addi-
tion, the BLUP and GBLUP scenarios were also included 
as they are equivalent to the situations where none or all 
candidates are genotyped and can be considered as the 
respective lower and upper limit for the expected perfor-
mance of the ssGBLUP scenarios.

The proportion ( p ) of candidates being genotyped used 
in the ssGBLUP scenarios were 10, 20, 30, 40, 50, 60, 70 
or 80%. In addition, BLUP and GBLUP are equivalent to 
scenarios with 0 and 100% genotyped candidates, respec-
tively. The proportions of genotyped candidates were the 
same for males and females.

The three genotyping strategies were: (i) RANDOM, 
where the proportion of candidates to be genotyped 
were chosen at random from all those available; (ii) TOP, 
where the genotyped animals were the p proportion of 
candidates (within sex) with the best criterion; and (iii) 
EXTREME, where the genotyped animals were those 
with the best p/2 and worse p/2 criterion. The criterion 
used to select the candidates to be genotyped with TOP 
and EXTREME was either: (i) their own phenotypic per-
formance or, (ii) their estimated breeding values (EBV) 
calculated using BLUP evaluation which included the 
candidates’ own performance record.

The magnitudes for some other assumptions/param-
eters needed in the simulation that were related to 
population structure (e.g. size, male–female ratio, dis-
crete generations) and the genetic architecture  (h2, LD 
pattern) were fixed to a given value. This was done in 
order to focus the study on the main goal about testing 
the effect of genotyping strategy and the proportion of 
genotyped candidates on the performance of ssGBLUP 
in a population with large paternal families and small 
maternal families (as in sheep populations). We expect 
that the magnitude of these parameters should have a 
relative minor impact on the results and that the conclu-
sions drawn here should be general enough so that they 
may extrapolate to some degree the changes on these 
parameters.

Criteria for the comparison
The criteria used for the comparison between scenarios 
were the cumulative genetic gain ( g ), reliability ( r2 ) of 
the genomic estimated breeding values (GEBV) and the 
retained genetic variance σ2a.

The cumulative genetic gain was relative to G0 (i.e., 
TBV were rebased, so the mean at G0 is equal to 0 for 
all scenarios), corresponding to the first generation 
where some candidates were ungenotyped and ssGBLUP 
needed to be implemented. The reliability of the GEBV 
is the square of the Pearson’s correlation between the 
GEBV and the TBV in the candidate group at a given 
time of selection. The retained genetic variance at a given 

generation is the variance of TBV of all candidates born 
in that generation.

Because BLUP and GBLUP are equivalent to the sce-
narios with 0 and 100% of candidates being genotyped, 
they can be considered to be the respective lower and 
upper limit of the expected performance of ssGBLUP. 
Hence, a parameter denoted as Efficiency ( E ) was defined 
to compare the different scenarios using ssGBLUP. Basi-
cally, E is the proportion of the extra benefit of GBLUP 
over BLUP, which is realised on the ssGBLUP scenario 
(i.e., E =

(ssGBLUP−BLUP)
(GBLUP−BLUP)  ). Therefore, when E = 1 , it 

means that the ssGBLUP having a p proportion of geno-
typed candidates yields the same extra performance as 
when having all candidates genotyped. On the contrary, 
when E = 0 , the ssGBLUP has no advantage over BLUP 
evaluation where none of the candidates are genotyped. 
This E parameter was calculated for the cumulated 
genetic gain and the reliability at each generation (e.g. E 
for gain at generation x for scenario y, would be the extra 
gain of the scenario y over the BLUP scenario relative to 
the extra gain achieved with GBLUP).

Results
This study evaluated the performance of BLUP, GBLUP 
and 40 ssGBLUP scenarios across three genotyping strat-
egies, eight proportions of genotyped candidates, and 
two criteria for ranking the candidates to be genotyped. 
All the results for the different scenarios are in Additional 
file 2: Tables S1 to S8.

Benefit of GBLUP when all candidates are genotyped
The response to selection when assuming that all the ani-
mals are genotyped is shown in Fig. 1. Over the genera-
tions of selection, GBLUP performed substantially better 
than BLUP due to a greater reliability of the EBV. The dif-
ference in reliability between the two methods increased 
over generations, such that, at G8, the reliability with 
GBLUP was close to threefold the value observed with 
BLUP. However, the benefit of GBLUP remained rela-
tively constant over all generations with selection, with 
the genetic gain of GBLUP consistently between 23 and 
32% higher than that of BLUP. This reflected the fact that 
the genetic variance decreased faster with GBLUP.

Benefit of ssGBLUP when only a proportion of candidates 
are genotyped
The response to selection for the different scenarios of 
ssGBLUP when the proportion of the genotyped can-
didates were preselected based on their phenotype is 
shown in Fig. 2 (results for the scenarios where the gen-
otyping criterion was their EBV are in Additional file 2: 
Table S1). As expected, the cumulated genetic gain and 
the GEBV reliability increased as the proportion of 
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candidates being genotyped increased, which also coin-
cided with a greater loss of genetic variance. Figures 3 
and 4 show the Efficiency ( E ) on realising genetic gain 
for the ssGBLUP schemes using the candidates’ pheno-
type or EBV as the genotyping criterion, respectively. 
The E tended to be relatively consistent over genera-
tions, showing that the value of genotyping a propor-
tion of the candidates to attain the extra genetic gain 
expected from GBLUP does not improve or degrade 
with generations. The criterion to rank candidates to be 
genotyped had an impact on the performance of ssGB-
LUP, especially with TOP where the use of EBV resulted 
in 10% (average from values reported in Additional 
file 2: Tables S5 and S6) more Efficiency in genetic gain 
compared to using phenotype as the genotyping crite-
rion. The EBV as the genotyping criterion was also ben-
eficial with EXTREME at intermediate p (30–50%).

Within a given proportion of genotyped candidates, 
the TOP scheme consistently achieved the greatest 
genetic gain while RANDOM yielded the smallest one 
(see Figs. 3 and 4). TOP with EBV and p = 20% almost 
doubled the extra gain obtained with RANDOM (i.e. 96 
and 82% greater benefit with TOP based on EBV and on 
phenotypes, respectively). The behaviour of EXTREME 
tended to be in between, with its performance being 

closer to RANDOM with small p but becoming as good 
as TOP when p increased.

As expected, the performance of ssGBLUP improved 
as the proportion of genotyped candidates increased, 
but the increment in performance as p increased 
occurred at a relatively slow rate. This was particularly 
true for RANDOM and EXTREME, where the benefit 
of ssGBLUP was almost linear with the proportion of 
genotyped candidates: genotyping x% of the candi-
dates achieved around x% of the observed extra gain of 
GBLUP over BLUP. The Efficiency of the TOP strategy 
increased slightly faster with an intermediate propor-
tion of genotyped candidates. For p = 30 and 50%, TOP 
realised 51 and 68% of the maximum extra gain achiev-
able with GBLUP, RANDOM realized 37 and 52%, and 
EXTREME realized 37 and 61% for the respective pro-
portions (see Fig.  3 and Additional file  2: Table  S5). 
The results for the three genotyping strategies become 
more similar at high p (~ 80%), which it is not surpris-
ing as they are expected to converge to the GBLUP 
performance when all candidates are genotyped (i.e. 
p  =  100%). These results are different from previous 
studies, which reported that most of the maximum gain 
could be achieved by genotyping a relatively small pro-
portion of candidates [21, 22].
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The GEBV reliability for the different ssGBLUP 
schemes expressed as Efficiency is shown in Figs. 5 and 
6. Similarly, as with the genetic gain, the improvement 
in reliability observed with the ssGBLUP schemes was 
almost linear with p, but the ranking of the genotyping 
strategies changed with EXTREME yielding the highest 
GEBV reliability, followed by RANDOM, and TOP being 
the strategy with the lowest GEBV reliability. The fact 
that RANDOM had consistently a greater reliability than 
TOP, seems contradictory considering that the simula-
tion assumed discrete generations, so the advantage of a 
scenario over another should only be due to the GEBV 
being better estimated.

To better understand the results, the GEBV reliabil-
ity of genotyped and ungenotyped candidates were re-
calculated separately (see Figs.  7 and 8). On the one 
hand, the reliability of the genotyped candidate group 
increased over generations (as with GBLUP), and the 
trends in the reliability between genotyping strate-
gies were the same but their differences were accentu-
ated and became even larger than when the reliability 
was calculated with both genotyped and ungenotyped 

candidates together: EXTREME had the highest reli-
ability, followed by RANDOM, and TOP had the 
lowest reliability (in fact the reliability of genotyped 
candidates with EXTREME was even greater than that 
observed with the GBLUP scheme). On the other hand, 
the reliability of ungenotyped candidates decreased 
over generations and the best genotyping strategy was 
RANDOM, followed by TOP and EXTREME. Across 
all scenarios, the GEBV reliability of genotyped candi-
dates was more than two or three folds the GEBV reli-
ability of the ungenotyped candidates.

A major difference between the genotyping strategy 
schemes was the proportion of genotyped candidates 
that were finally selected. TOP tended to have the 
highest proportion of candidates selected while RAN-
DOM had the lowest proportion of selected candidates, 
which were genotyped (Fig. 9). Hence, the highest relia-
bility of RANDOM seems to be achieved for candidates 
that have a low chance to be selected, and therefore, the 
lower gain is achieved compared with the TOP geno-
typing scheme.
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Discussion
In this study, we assessed the effect of genotyping strate-
gies and the proportion of genotyped candidates on the 
cumulated genetic gain when using ssGBLUP evaluation. 
The results from the simulation study showed that the 
greatest genetic gain over several generations of selection 
is achieved with TOP, followed by EXTREME and RAN-
DOM. The extra genetic gain of TOP over standard BLUP 
was almost double the value attained by RANDOM. The 
performance of EXTREME was close to RANDOM when 
the proportion of genotyped candidates was low, but it 
improved as the proportion increased. The choice of the 
genotyping criterion had an impact on the genetic gain of 
the ssGBLUP, with TOP that used EBV yielding a greater 
benefit than when phenotype was used as the genotyping 
criterion. However, when comparing their GEBV reliabil-
ity, the ranking of the strategies changed with EXTREME 
having the highest reliability, followed by RANDOM, 
with TOP being the strategy yielding the lowest reliabil-
ity. The ranking of the genotyping strategies showed the 
same trend when considering only the group of geno-
typed candidates. The reliabilities were re-estimated 
as the square of the Spearman’s rank correlation to test 
whether the results were due to any potential bias due 
to a scale effect. The results had the same trend as when 

using the Pearson’s correlation (i.e. EXTREME > RAN-
DOM > TOP), which suggests that the values on the reli-
abilities are not an artefact due to differences on the scale 
(results not shown).

Several published studies have reported the effect 
of genotyping strategies on GEBV reliability/accuracy 
using simulation or real data (e.g. [23–26]). Although 
they tend to consider GBLUP scenarios (where the aim 
of the genotyping strategy is to select the reference pop-
ulation to be genotyped and phenotyped, but all candi-
dates are assumed to be genotyped), it has frequently 
been shown that selection of the best candidates to be 
genotyped leads to the lowest accuracy/reliability on the 
candidates’ GEBV, with the EXTREME strategy having 
the highest accuracy/reliability. Such findings are con-
sistent with our results with respect to the ranking of the 
genotyping strategies in terms of their GEBV reliability. 
Early studies using the QTL mapping methodology have 
shown that selective genotyping can improve the power 
of QTL detection by improving the precision of their 
estimated effect [27]. Similarly, the impact of selective 
genotyping on the GEBV reliability can be explained by 
observing that the error variance of the regression coef-
ficient estimate when fitting a simple linear regression 
y = bx (where y and x are centered so their mean is zero) 
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is proportional to the inverse of x′x [28]. Then, select-
ing candidates to be genotyped from both tails of the 
distribution (as with EXTREME using own phenotype 
or EBV) would likely increase the proportion of geno-
typed individuals with opposite genotypes for the SNPs 
that are associated with the trait. This would increase 
the magnitude of x′x , thus leading to more precise SNP 
effect estimates (thus greater power of QTL detection) 
and, ultimately, improving the GEBV reliabilities. Con-
versely, selective genotyping from one tail of the distri-
bution (as with TOP) will select candidates which are 
more alike (i.e. having the same genotype for the relevant 
SNPs), thus reducing the magnitude of x′x and negatively 
impacting the GEBV reliabilities.

However, the observation that the greatest genetic gain 
is not achieved by the strategy with the highest GEBV 
reliability is counter-intuitive. Our simulations assumed 
discrete generations, so the differences in cumulated gain 
should only be due to how well the GEBV were estimated. 
A recent study assessed the effect of genotyping strategies 
under ssGBLUP scenarios similar to ours, where only a 
proportion of the current candidates are genotyped [21]. 
Under very different assumptions, the authors also found 
that their scheme, which is equivalent to TOP, yielded the 
greatest cumulated genetic gain, although the genotyping 

scheme did not lead to the highest GEBV accuracy. Simi-
larly, Granleese et al. [22] also studied the effect of geno-
typing with ssGBLUP, but they mainly assessed the effect 
of different genotyping proportions (assuming a strategy 
similar to TOP) and the benefit of genotyping male or 
female candidates. Such disparity between GEBV reli-
ability and genetic gain can be explained by the fact that 
the enhanced reliability from ssGBLUP is mainly on the 
genotyped individuals, and the genotyping strategy dic-
tates which candidates benefit from it. Whereas the gen-
otyping strategy has a significant impact on the GEBV 
reliability, the differences between the genotyped and the 
ungenotyped candidates are substantially larger than the 
differences between genotyping strategies. The reliability 
observed here across genotyping strategies were at most 
one-fold higher/lower between each other; but the reli-
abilities of genotyped candidates were two- to threefolds 
higher than that of ungenotyped candidates (see Figs. 7 
and 8).

Hence, when only a proportion of the candidates are 
genotyped, the optimality to maximise gain is not only 
about how much the GEBV reliability increases, but 
also which candidates benefit from the enhanced reli-
ability. For instance, on the one hand, a candidate with 
very poor performance/EBV probably would be too far 
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below the ranking order to have a significant chance to be 
selected, so attempting to estimate its GEBV with higher 
accuracy (by genotyping the candidate itself ) would likely 
not change any preliminary selection decision. On the 
other hand, a candidate with good performance/EBV 
would likely rank high, so genotyping the candidate to 
improve its GEBV reliability may prove beneficial when 
comparing with other candidates of similar selective 
advantage. In our study, the TOP scheme genotypes the 
candidates with the highest phenotype/EBV, meaning 
that they are also likely to have the highest genetic merit 
(so increasing the reliability of candidates with a high 
chance of having high GEBV and being selected). How-
ever, the genotyping protocols used with RANDOM and 
EXTREME mean that some genotyped candidates may 
have a poor genetic merit (and lower GEBV and less 
chance of being selected). Hence, the selected candidates 
chosen with TOP are more likely to be based on more 
reliable GEBV than with RANDOM and EXTREME with 
low p (Fig. 9 shows that TOP has a greater proportion of 
genotyped candidates that are selected, confirming that 
selection decisions were further aided with more accu-
rate GEBV). This would explain why TOP achieves the 
greatest genetic gain, although its GEBV reliabilities are, 
on average, lower than those obtained with RANDOM or 

EXTREME. The practical implication is that the overall 
GEBV reliability, when not all candidates are genotyped, 
is not an absolute and sufficient criterion for determining 
which scheme would maximise genetic gain over multi-
ple generations.

Our conclusions on the ranking of the selection strat-
egies to maximise gain agree with those reported by 
Howard et  al. [21], but not when considering the effect 
of the proportion of genotyped candidates. Howard et al. 
[21] concluded that most of the benefit of the genomic 
evaluation over standard BLUP is achieved with a low 
proportion of genotyped animals. For instance, their 
cattle scenario with dense genotyping has some simi-
lar assumptions to our RANDOM and TOP scenarios 
based on EBV so the results from their Fig. 1 are, some-
what, comparable to our results for the cumulated gain 
at G8. Our results for TOP based on EBV in Efficiency 
to achieve extra cumulated genetic gain at G8 were 46, 
68, 82 and 89% of the maximum achievable with GBLUP 
when the proportions of genotyped candidates were 
20, 40, 60 and 80%, respectively (see Additional file  2: 
Table  S6). However, their TOP scenario realised sub-
stantially greater benefit averaging ~ 73, ~ 85, ~ 91 and 
~ 93% for the respective proportions (NB. their val-
ues that we report here are approximated as they were 
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calculated based on the visual inspection of their Fig. 1). 
In fact our results for TOP using EBV was much closer to 
their RANDOM scenario (i.e. ~ 45, ~ 57, ~ 75 and ~ 85%, 
respectively). Similarly, the results from Granleese et al. 
[22] were also as large as those reported by Howard et al. 
[21], where genotyping only 20% of the TOP candidates 
would yield as much as 80% of the maximum benefit 
obtained when all candidates are genotyped.

The disagreements between our results and those from 
Howard et al. [21] can be partly explained by differences 
in the assumptions made in our and their simulations. 
A likely reason may be related to their assumptions on 
overlapping generations and that any ungenotyped can-
didate which is selected is genotyped post-selection (our 
assumption was discrete generations and that selected 
ungenotyped candidates were not genotyped after selec-
tion). In a breeding scheme with overlapping generations, 
the genetic progress over time arises from two selection 
processes: (i) the gain from selecting the best replace-
ments; and (ii) the gain from culling the worst current 
parents. Hence, for a specific ssGBLUP scheme with a 
proportion p of genotyped candidates, their process of 
selecting replacements was done with p candidates being 
genotyped, but the culling process was effectively done 
with 100% of the parents being genotyped (as in GBLUP) 

regardless of the ssGBLUP scheme. The consequence 
of having all selected candidates being genotyped post-
selection makes the results for all schemes more alike and 
closer to GBLUP and thus increasing their relative per-
formance, which would explain why Howard et  al. [21] 
concluded that up to 73% of the maximum benefit from 
genomic prediction can be obtained by genotyping as lit-
tle as 20% of the candidates. However, if selected ungen-
otyped candidates were not to be genotyped at a later 
stage (in populations with overlapping generations), the 
enhanced GEBV reliability from the ssGBLUP evaluation 
would be restricted to only the genotyped parents. Then, 
the genetic progress from culling parents would depend 
on p , and the benefit of ssGBLUP at low p would be sub-
stantially reduced (as observed in our study). There were 
other notable differences in the assumptions between 
their and our simulations, which may explain some of the 
differences, and their impact on the response to selection 
needs to be properly assessed.

In practice, selected populations most likely have an 
overlapping population structure, so the post-selection 
genotyping of any selected ungenotyped animal would 
be an attractive decision to achieve the extra benefit 
reported by Howard et  al. [21]. However, such a deci-
sion may result in the actual proportion of candidates 
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being genotyped (and its cost) ending up to be substan-
tially higher than what the breeder may have originally 
planned. For instance, our simulation assumed a selec-
tion rate of 10% for males and 50% for females, meaning 
that the final proportion of genotyped candidates would 
need to equal at least these values. Then, for p = 10%, the 
final number of genotyped females would be at least (but 
likely higher) 5 times more than what it was originally 
planned. Similarly, examining the scenario from Howard 
et  al. [21], which assumes a cattle population with 20% 
of the animals being genotyped, the final proportion of 
genotyped candidates during the three generations of 
GS were 41.5% (1245 out of 3000) and 33.6% (1008 out 
of 3000) for their equivalent RANDOM and TOP strate-
gies, respectively (see their Table 1). This means that the 
number of animals to be genotyped could be twice as 
large as planned, and the associated cost would double 
too. Hence, from an economical point of view, the post-
selection genotyping of any ungenotyped selected candi-
date may be advisable in schemes with a high intensity of 
selection, to ensure that the proportion of selected candi-
dates which are still ungenotyped remains relatively low. 
Generally, this is the case for the selection of male candi-
dates, and genotyping of all selected males may prove an 
attractive cost benefit practice.

Granleese et  al. [22] also reported optimistic conclu-
sions about the benefit of ssGBLUP at low p assuming 
overlapping generations, but the main reason is not the 
same as in Howard et  al. [21] since the selected ungen-
otyped candidates were not genotyped post selection. 
A more plausible explanation for their benefit at low p 
may be that their simulation approximates the genetic 
effect/genomic evaluation with the infinitesimal model 
(whereas our simulation assumed a finite number of loci 
in LD and a true ssGBLUP evaluation). This assumption 
ignores changes in the LD pattern and the size/struc-
ture of the reference population, thus the GEBV reli-
ability remains fairly more constant over generations and 
genotyping scenarios. Such discrepancies in assump-
tions resulted in different trends for the GEBV reliabil-
ity of genotyped and non-genotyped candidates, thus 
the difference between these two groups are greater in 
our study. In fact, the ratio of reliabilities for the group 
of genotyped to non-genotyped candidates reported 
by Granleese et  al. [22] was 0.155 [ (0.71/0.57)2 , see 
their Table  2] compared to 0.242 observed in our TOP 
scheme with p = 20% and EBV as the preselection crite-
rion [ (0.451/0.186) using the average of reliabilities val-
ues shown in Additional file 2: Table S7], which explains 
why we observed much less benefit at low p. Conversely, 
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our assumption of a finite number of loci in the genome 
has shown faster decline in the genetic variance than that 
observed in real selection programmes [29], thus further 
studies may still be needed to better assess the true ben-
efit of ssGBLUP at low p.

Hence, if only a proportion of the candidates is to be 
genotyped, the consensus conclusion (from this study 
and that from Howard et  al. [21]) dictates to prioritise 
the genotyping of candidates which are more likely to be 
selected. This raises the need of a priori EBV which can 
serve as a criterion to rank the candidates, such that the 
best ones are genotyped (of course, from a simpler evalu-
ation with lower reliability to justify the following ssG-
BLUP evaluation). Our results showed that using EBV 
from univariate BLUP to rank candidates to be genotyped 
can significantly improve the genetic gain of TOP com-
pared to when using the candidates’ own phenotype. The 
Efficiency of TOP using EBV was up to 17% greater than 
that of TOP using phenotypes with p = 30%, but it was 
closer to 10% with other values of p , except for p = 80%. 
The same trend was observed with EXTREME but at 
lower scale. Hence, the use of a selection index to com-
bine information from more than one trait (EBV or phe-
notype) (as in [21]) may further improve the beneficial 
effect of ssGBLUP when selective genotyping is applied, 

depending on the accuracy of the index to predict the 
true genetic effect of the trait of interest. However, phe-
notypes (from the trait itself and/or from correlated 
ones) may not be available for the candidates themselves 
(they may be expressed late in life or not measured for 
any reason). Parental information (e.g., phenotypes, EBV/
GEBV) may be used to inform the genotyping process, 
but as the candidates are not genotyped (and not phe-
notyped) yet, the ranking of candidates to be genotyped 
would basically identify the best families to be genotyped 
(as all candidates from the same family will have the same 
parental score). Genotyping individuals from a few fami-
lies may not be the best strategy even if they are the best 
ones. Performance of genomic prediction declines when 
the candidates belong to families that differ from those 
included in a training population [30], and it is expected 
to worsen within a ssGBLUP framework. In addition, 
restrictions on selected candidates per family to control 
inbreeding also undermine the Efficiency of the ssGBLUP 
scheme. Hence, in practice, if phenotype information is 
not available when the decision of genotyping is to be 
taken, a mixture of the TOP and RANDOM strategies is 
likely to be the only possible option, where the best fami-
lies are selected but few individuals within the family are 
selected at random. This could have a serious impact on 
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the Efficiency of the scheme and, the proportion of geno-
typed candidates may need to be much higher in order 
to ensure a significant impact of the genomic prediction 
in the selection scheme. Clearly the availability of can-
didates’ own performance records (phenotypic records 
on the trait of interest or other trait(s) genetically cor-
related to the former one) are needed to ensure that the 
genotyping criterion can distinguish candidates from 
the same family so that efficient strategies can be imple-
mented when only a proportion of the candidates are to 
be genotyped.

Conclusions
When only a proportion of the candidates are to be 
genotyped, TOP is the best strategy to ensure that 
genetic gain is maximised, since it prioritises the 
genotyping of candidates which are more likely to be 
selected. However, in this study, the Efficiency of ssG-
BLUP on realising the extra genetic gain of GBLUP 
does not improve as fast with proportion of genotyped 
candidates as reported in other studies. The choice of 
EBV rather than phenotypes to rank candidates to be 
genotyped improves the extra genetic gain of ssGB-
LUP using TOP. Since in our study, where not all can-
didates were genotyped, the highest genetic gain was 

not achieved by the strategy with the greatest GEBV 
reliability, the latter parameter cannot be considered 
as an absolute and sufficient criterion to determine 
which scheme would maximise genetic gain over mul-
tiple generations. Hence, to assess the best strategy to 
maximise gain in a specific situation, any feasibility 
study should not be restricted to quantifying the gain 
in GEBV reliability for the alternative schemes, but also 
their expected genetic progress.
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for all ssGBLUP scenarios. Table S8. Proportion of genotyped candidates 
that were selected as parents for all ssGBLUP scenarios.
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