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Evaluation of cross-sectional deformation in pipes using reflection of 1 

fundamental guided waves  2 

Chen Zhu1, Zhao-Dong Xu, A. M. ASCE2*, Hongfang Lu, A. M. ASCE 3, Yong Lu, F. ASCE 4 3 

Abstract: Ultrasonic guided wave technology has been successfully applied to detect multiple types 4 

of defects in pipes. However, cross-sectional deformation, which is a common defect, is less studied 5 

as compared to structural discontinuity defects in pipes. In this paper, the guided wave is employed to 6 

detect cross-sectional deformation. First, the effect of section deformation parameters on the reflection 7 

of guided waves is analyzed using a series of three-dimensional finite element (FE) models, and the 8 

deformation parameters affecting the reflection are examined in light of the physics of the guided 9 

waves based on the FE results. The results show that the reflection occurs at the start of the cross-10 

sectional deformation, while the subsequent gradual deformation region does not cause reflection. The 11 

reflection coefficient is dependent on the axial deformation severity and the mode conversion ratio is 12 

dependent on the circumferential deformation extent. Secondly, an experimental study was conducted 13 

to evaluate the guided wave reflection characteristics due to the pipe cross-sectional deformation in a 14 

realistic situation. Test pipes with local and overall deformation cases were manufactured, and the 15 

reflection from both types of deformation was investigated experimentally. The results show good 16 

agreement between the experimental measurement and FE prediction. Two quantitative parameters, 17 

namely axial deformation rate δ and circumferential deformation rate β are defined to represent 18 

the cross-sectional deformation, and these parameters are found to well correlate with the reflection 19 
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coefficient and mode conversion ratio. The ratio of δ/β is suitable to be used to judge the deformation 20 

type. 21 
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Reflection coefficient; Mode conversion ratio. 23 

Authors: 24 

1 Ph.D. Candidate, China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of 25 

Major Infrastructures, Southeast University, Nanjing 210096, China. E-mail: zhchen_cz@163.com  26 

2 Professor, China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major 27 

Infrastructures, Southeast University, Nanjing 210096, China (corresponding author). E-mail: 28 

zhdxu@163.com 29 

3 Associate Professor, China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of 30 

Major Infrastructures, Southeast University, Nanjing 210096, China. E-mail: luhongfang@seu.edu.cn 31 

4 Professor, Institute for Infrastructure and Environment, School of Engineering, The University of 32 

Edinburgh, Edinburgh EH9 3 JL, UK. E-mail: yong.lu@ed.ac.uk 33 



 

3 

 

Introduction 34 

Deformation defect is one of the major defects in pipelines (Shan et al. 2018), and such defect is 35 

mainly caused by excessive local stress (Ni and Mangalathu 2018). Typical pipe deformations such as 36 

dent and bulge reduce the transport efficiency and weaken the pipe structure’s normal load-bearing 37 

capacity. Stress concentration and section weakening caused by the abrupt change in its shape can 38 

make the deformed part prone to failure and leakage (Lam and Zhou 2016). Current methods for pipe 39 

deformation detection are primarily based on visual inspection (Lu et al. 2021). These methods require 40 

good visual conditions and access to the inside of the pipe, which is difficult to satisfy in some practical 41 

situations (Duran et al. 2003; Kim et al. 2003).  42 

Ultrasonic guided wave technology has been applied to the nondestructive testing of the plate, 43 

pipeline, rail, etc (Wang and Yuan 2005; Alleyne et al. 2001; Hayashi et al. 2004). It is owing to its 44 

advantages in local excitation and reception, full cross-section detection and long-distance detection 45 

capabilities. Compared with the damage identification methods that are based on the vibration modes 46 

of the structure (Xu and Wu 2007; Xu et al. 2011; Xu and Wu 2012; Wang et al. 2016), the ultrasonic 47 

guided wave technology does not require the installation of transducers for the entire length of the pipe, 48 

and damage over a long-distance along the pipeline can be detected by a single transducer on the pipe 49 

surface (Xu et al. 2021). In addition, guided wave technology is more sensitive to small defects, which 50 

overcomes the difficulties of detecting pipeline damage with traditional dynamics methods (Xu et al. 51 

2015; Xu et al. 2018; Ge et al. 2022). 52 

Ultrasonic guided wave technology uses the interaction of guided waves with the discontinuities 53 

in the geometry of the waveguide. The information related to damage characteristics can be extracted 54 
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from reflected guided waves. The interaction between guided waves and structural discontinuities has 55 

attracted wide attention in the research community. Demma et al. (2003;2004) carried out a systematic 56 

study on the interaction of guided waves with simulated rectangle corrosion damage in pipelines, and 57 

they investigated the effects of pipe size, defect size, guided wave mode, and frequency on reflection 58 

from the notches. Carandente et al. (2010) studied the reflection of T(0,1) (first order torsional mode) 59 

guided wave with simulated tapered step notch. They analyzed the effects of different contours and 60 

depths on the reflection coefficients. A method was proposed to evaluate the damage depth according 61 

to the damage circumferential range and the maximum reflection coefficient (Carandente and Cawley 62 

2012). Lovstad and Cawley (2011;2012) analyzed the effect of circular holes on T(0,1) reflection in 63 

the pipes to study pitting corrosion and proposed a method to evaluate the corroded area. 64 

Research on the assessment of pipeline deformation based on guided wave technology has been 65 

rather limited. In general, the pipe deformation may be divided into a) the overall deformation, such 66 

as bend, and b) the local section deformation, such as dent. For pipe bends, Demma (2001) studied the 67 

mode conversion of longitudinal and torsional modes due to the existence of bends in the pipe and the 68 

effects of bend radius and length. Verma B et al. (2014) used the L(0,2) (second-order longitudinal 69 

mode) to study bending pipes with different bending angles and bending radii. The transmittance and 70 

mode conversion laws of pipes with different bending angles were summarized, and the influence of 71 

bending pipes with different wall thicknesses on mode conversion was also examined. Zhang et al. 72 

(2020) studied the detection of sizeable bending angle deformations of the pipeline caused by external 73 

force. The in-plane shear piezoelectric can obtain the shear deformation due to bending, and the sensor 74 

locations can deduce the bending direction in the pipeline. For local pipe dent, Na and Kundu (2002) 75 
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used the array ultrasonic transducer to excite the flexural mode guided wave in the underwater pipeline 76 

to detect the deformation damage, focusing on the effect of the different incident angles of ultrasonic 77 

transducers and frequencies on the received signal amplitude. Ma et al. (2014) studied the reflection 78 

of L(0,2) guided wave on dent deformation. They introduced an ellipticity parameter to evaluate the 79 

degree of deformation and studied the effect of deformation degree on reflection. However, the 80 

relationship between deformation parameters and the reflection characteristics has not been fully 81 

investigated. There is also no unified definition of the parameters that characterize the cross-sectional 82 

deformation in the pipe.  83 

This paper aims to investigate the guided wave reflection from cross-sectional deformation defect, 84 

and attempts to establish the relationship between reflection characteristics and geometric deformation 85 

parameters. The mode and frequency range selection are discussed in Section "Mode characteristics 86 

and frequency range of guided waves". Section "Finite element modeling" presents a numerical 87 

simulation study using finite element models. The analysis starts with the reflection from axisymmetric 88 

model in Section "Axisymmetric finite element modelling". The reflection from non-axisymmetric 89 

model is shown in Section "Non-axisymmetric finite element modelling". In light of the physics of 90 

guided waves and FE results, the deformation parameters affecting the reflection coefficients and mode 91 

conversion are discussed in detail in Section "Theoretical and numerical investigations of parameters 92 

affecting reflection". Section "Evaluation of the pipe deformation: FE and physical experiment studies" 93 

presents a comprehensive investigation into realistic deformation cases using detailed FE model in 94 

conjunction with physical experiment. Two deformation parameters are proposed to evaluate the 95 
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deformation degree and identify the deformation type. Finally, the main conclusions are given in 96 

Section "Conclusions". 97 

Mode characteristics and frequency range of guided waves 98 

Compared with the bulk wave, the guided wave has the characteristics of dispersion and multi-99 

modes, which increase the difficulty of interpretation (Lowe and Cawley 2006). However, if the 100 

complexity of guided waves is properly utilized, it can provide more information about the defect (Sun 101 

et al. 2018). Therefore, the choice of the excitation mode and frequency is critical for pipe inspection 102 

with guided waves. The properties of guided wave propagation and interaction with defects are 103 

complex, so the inspection parameters must be carefully selected. The dispersion curve is a crucial tool 104 

for selecting the appropriate excitation frequency. Fig. 1 shows a representative dispersion curve for 105 

different modes of the pipe used in this paper, drawn according to Gazis' theory (Gazis 1959). 106 

L(0,2) and T (0,1) are the two most widely used modes for practical inspection because they have 107 

almost no dispersion in the frequency range of interest, require simple excitation conditions, and 108 

possess good sensitivity to full-cross-sectional damage and enables a long-distance inspection 109 

capability. Besides, T(0,1) mode is entirely free of dispersion and its tangential displacement is 110 

insensitive to non-viscous fluid, so it is suitable for fluid pipeline damage detection (Lowe and Cawley 111 

2006). Therefore, in this paper, L(0,2) and T(0,1) modes are selected for pipeline deformation 112 

inspection. 113 

When a symmetric mode guided wave interacts with an axisymmetric damage, only the 114 

symmetric mode is reflected in the frequency range. For example, when L(0,2) interacts a symmetric 115 

defect, L(0,1) and L(0,2) guided waves will be generated, whereas T(0,1) guided waves will only 116 
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reflect T(0,1) guided waves at the cutoff frequency of T(0,2). This feature helps simplify the study of 117 

reflectivity. When a symmetric mode guided wave interacts non-axisymmetric damage, the mode 118 

conversion will occur, resulting in a nonsymmetric flexural mode. Therefore, the reflected flexural 119 

mode is an essential basis for judging whether there is a non-axisymmetric defect. Researchers have 120 

carried out a series of studies on this (Demma et al. 2003; Lowe et al. 1998) and established the 121 

commonly used incident wave mode conversion rules. Namely, L(0,1), T(0,1), L(0,2) are usually 122 

converted to F(1,1), F(2,1), …, F(1,2), F(2,2), …, F(1,3), F(2,3), …. With an increase in the incident 123 

wave frequency, there will be more corresponding high-order flexural modes.  124 

Fig. 2(a), (c) show representative mode shapes of the T(0,1) and L(0,2) modes. It can be seen that 125 

the tangential displacements and axial displacement are approximately constant through the thickness 126 

(green line in Fig. 2(a) and red line in Fig. 2(c) ). The F(1,2) mode is converted from T(0,1) mode, and 127 

both axial and radial components can be seen in Fig. 2(b). The F(1,3) mode is converted from L(0,2) 128 

mode, and the tangential component can be seen in Fig. 2(d).  129 

Finite element modeling 130 

FE models have been successfully applied to simulate the interaction of ultrasonic guided waves 131 

in various types of structural discontinuity defeats in pipes (Moreau et al. 2012; Benmeddour et al. 132 

2011). This paper creates a series of 3D models to study the interaction between the L(0,2) and T(0,1) 133 

modes and the deformation in pipes. The modeled pipes are 3-inch nominal bore schedule 40 pipes, 134 

with an outer diameter of 88.9 mm, and wall thickness of 5.5 mm. A 3-cycle Hanning window 135 

modulated tone burst with a center frequency of 50 kHz is used in the excitation signal. L(0,2) and 136 

T(0,1) modes are excited by imposing the displacement profile at one pipe end around the 137 
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circumference. Specifically, excitation of L(0,2) mode by applying axial displacement load to the 138 

nodes, excitation of T(0,1) mode by applying circumferential displacement load to the nodes, as shown 139 

in Fig. 4 (c) and (d). The positions of the receiver and defect deformation location are chosen so that 140 

the reflected signals from the deformation could be well separated from incident signals and reflected 141 

signals from the pipe end, as shown in Fig. 3. A mesh of 8-node hexahedral linear reduced integral 142 

element is used. For the whole model, 800 elements along the length, 48 elements around the 143 

circumference and 3 elements along the thickness are used, and this results in each element being about 144 

1.5 mm in the axial direction and 4mm in circumference direction. Accordingly, an iteration step time 145 

of 5e-8 s is used based on the stability criterion for explicit time integration analysis, as follows:  146 

  
8

L
λ<   (1) 147 

 0.8
g

L
T

V
∆ < ×   (2)  148 

where L  is the element length, λ  is the wave length, 
gV  is the group velocity. T∆  is the iteration 149 

step time. 150 

Axisymmetric finite element modeling 151 

Two axisymmetric deformation patterns are simulated using the FE model to analyze the 152 

scattering effect of guided waves and deformed cross-sections. As shown in Fig. 4(a), the arc slope 153 

model is used to analyze the scattering behavior when the radius changes gradually. The complete 154 

deformation model, shown in Fig. 4(b), is used to analyze the overall influence of the front and rear 155 

arc slope on the reflection. The deformation shape is set as an arc shape to be close to the actual pipe 156 

deformation situation. 157 
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Arc slope models 158 

The arc slope model is used to analyze the effect of gradual cross-section change in the reflection 159 

of guided waves. The change of section radius simulates the section deformation, and the change in 160 

radius is uniform on the cross-section at the same axial position. Both bulge cases in which the radius 161 

increases and decreases, respectively, as shown in Fig. 5, are modeled, and these correspond to the 162 

front and rear sections of the complete deformation model shown in Fig. 5(d). The arc slope model is 163 

modeled by creating two radius regions that are joined by an arc slope. The introduction and variation 164 

of the fillets of the connecting part have little effect on the reflection phenomenon. Therefore, we used 165 

the simplest straight line to represent the shape at the deformation. The pipe length is set to be 1.2 m 166 

with an arc region of 0.7 m from the excitation end of the pipe. 167 

Fig. 6(a) and (b) show the signals received for bulge-up and bulge-down cases. Only one reflected 168 

signal is seen in each case followed by the T(0,1) incident wave, which is reflected from the start of 169 

the arc. No reflection of the incident wave occurs at the other end of the slope. The amplitude and 170 

phase of the reflected wave are almost the same in both cases. It can be concluded that reflection occurs 171 

at the location of severe deformation, and no further reflection takes place in the subsequent gradual 172 

deformation region. 173 

Fig. 6(c) shows the received signal for the dent case (Fig. 5(c)). From Fig. 6(a) and Fig. 6(c), it 174 

can be seen that although the deformation directions are different (actually opposite), the reflectivity 175 

(magnitude of the reflection) of the guided waves is almost the same. This observation suggests that 176 

the direction of deformation is not a factor affecting reflectivity. 177 
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From Fig. 6, it can also be observed that when the guided wave interacts with a deformed position 178 

with a larger radius, the reflected guided wave is in phase with the incident wave. When the guided 179 

wave interacts with a deformed position with a smaller radius, the reflected guided wave is out of phase 180 

with the incident wave. This rule may provide a basis for determining the direction of deformation. 181 

The reflection coefficient (RC) is defined as the ratio of the reflected signal from the defect to 182 

that of the incident signal, and is calculated in the frequency domain. RC is an index that can be used 183 

to judge the severity of the defect. Fig. 7 shows the RC spectra of the T(0,1) mode and L(0,2) mode 184 

from arc steps with 20% and 50% maximum radial change, plotted against the ratio of the axial extent 185 

of deformation ( L ) to the wavelength ( λ ). It can be seen that L(0,2) and T(0,1) have the same trend, 186 

and the reflection amplitude of L(0,2) is higher than T(0,1). When /L λ  is less than 70%, the RC 187 

decreases significantly with the increase of /L λ , and then the trend of decrease tends to be smooth 188 

until almost a constant value.  189 

It can be concluded that the reflectivity is related to the maximum degree of deformation at the 190 

cross-section and the axial extent of the deformation. For the same maximum cross-sectional 191 

deformation, the reflectivity decreases with the increase of the deformation range in the axial direction. 192 

Conversely, the reflectivity increases for the same axial range as the maximum degree of the cross-193 

sectional deformation increases. Therefore, it can be inferred that the rate of change of cross-sectional 194 

deformation with the axial direction, /R L∆ , determines the RC. 195 

Arc deformation models 196 

To simulate the arc deformation of the pipeline shown in Fig. 5(d), a complete deformation model 197 

is used to analyze the overall influence of the front and rear arc slope on the reflection. The deformation 198 
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shape is set to an arc shape to resemble the actual pipe deformation situation closely. It can be deduced 199 

from the observations made in Section "Arc slope models" that when a guided wave interacts a 200 

complete axisymmetric deformation section, two waves will be reflected, from the front and rear 201 

sections of the deformation, respectively. Using the superposition method, the total RC of the 202 

deformation is obtained as 203 

 
( )i

f rRC R R e
φ∆= +  (3) 204 

where 
fR  and 

r
R  are the RC modulus of the front and the rear reflections from the deformation, 205 

φ∆  is the phase difference between the waves reflected from the two end sections of the deformation,  206 

given by 207 

 
4

2
L

kL
πφ
λ

∆ = =  (4) 208 

The two waves interact destructively when ( )= 2 1nφ π∆ +  and constructively when =2mφ π∆ , 209 

where, n  and m  are integers.  210 

Fig. 8 shows the RC spectrum from bulge deformation with 22.5% maximum radial change. When 211 

/L λ  is below 70%, RC decreases sharply as /L λ  increases. This may be explained by referring to 212 

Fig. 7, from which it can be seen that when /L λ  is below 70%, the RC of the reflection of the arc 213 

step decreases rapidly as the /L λ  increases. Therefore, the behavior of the overall RC is dominated 214 

by the axial extent of the deformation in this range, such that as L  increases, the deformation rate 215 

decreases. When /L λ  exceeds 70%, however, RC oscillates periodically due to interaction between 216 

two waves from the two end sections of the deformation, and the amplitude tends to decrease smoothly. 217 

It can also be observed that at / =75%L λ , 125%, and 175%, the minima of the RC occur, and at 218 

/ =100%L λ  and 150%, the maxima occur. The maxima of the RC occur at / = /2L λ η  and the 219 



 

12 

 

minima occur at ( )/ = 2 1 / 4L λ η − , where η  is an integer. This is different from the reflection 220 

characteristic in the case of a notch, because the phase difference from two reflected waves of the 221 

deformation are not out of phase like what happens at a notch.   222 

Non-axisymmetric finite element modelling  223 

When axisymmetric guided waves interact with non-axisymmetric damage, the waveform mode 224 

conversion will occur. Non-axisymmetric FE deformation models can be used to study the deformation 225 

parameters that affect the mode conversion. In this section, 3D non-axisymmetric dent models are 226 

created to study the influence of deformation parameters on reflection and mode conversion. Fig. 9 227 

shows a representative FE model and the parameters defining the dent deformation.       228 

Fig. 10 shows the signal of L(0,2) mode and F(1,3) mode. There is no phase delay in the 229 

displacements at different angles on the circumference for axisymmetric modes when the symmetric 230 

mode guided wave is excited. For the reflection of the symmetric mode, the individual signals from 231 

the nodes are superposed. The resulting signal is the total reflection of the symmetric mode. For the 232 

reflection of the F(n, m) mode, the phase delay at each position on the circumference is determined by 233 

/ 2nθ π , where n is the circumferential order number, θ  is the angular distance from the center of 234 

the defect (Hayashi and Murase 2005). Therefore, a phase delay of / 2nθ π  is added to each signal 235 

before adding them. 236 

The relationship between RC of F(1,3) and the axial deformation range under a certain 237 

deformation depth has been investigated to analyze the deformation parameters that affect the mode 238 

conversion. Fig. 11 shows the RC spectra of the F(1,3) mode from arc steps with 33% and 66% 239 

maximum radial change versus the circumferential extent of the deformation. It can be seen that the 240 
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RC increases with maximum radial change and decreases with circumferential extent. When the 241 

circumferential extent is below 20% of the circumference, the RC of F(1,3) decreases sharply, and the 242 

decrease becomes smooth as the circumferential extent exceeds 20%. Besides, the absolute values of 243 

RC are different under the two cases, and is much larger under the 66% maximum radial change. 244 

Therefore, it can be inferred that the rate of change of cross-sectional deformation concerning the 245 

circumferential direction determines the RC of F(1,3). 246 

Theoretical and numerical investigations of parameters affecting reflection 247 

Relationship between reflection coefficient and deformation parameters 248 

Fig. 12 shows snapshots of the L(0,2) mode incident wave propagating along the pipe and 249 

interacting at the deformation from the FE simulation. It can be seen that when the guided wave 250 

interacts with the deformed region, most of the energy is transmitted and a few of it is reflected back, 251 

and the guided wave mode does not change. 252 

Referring back to Fig. 6, where the RC spectra of the L(0,2) and T(0,1) modes from arc steps with 253 

20% and 50% maximum radial change versus the axial extent of deformation to the wavelength have 254 

been shown. From the results, it is reasonable to consider L  and R∆  as two key parameters 255 

affecting the RC, and RC tends to be equal in the case of the same ratio of /R L∆ .  256 

A simplified deformation model is proposed herein for an axisymmetric deformation case, as 257 

shown schematically in Fig. 13. For generality, the deformation model includes two pipes of the same 258 

size, connected by an arc section. The axial extent of 2L  is assumed to be long enough so as to 259 

separate the reflections from the start and the end sections of the deformation. Due to the deformation 260 

of the section, the traditional plate theory cannot be applied. Considering longitudinal mode guided 261 
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waves have a high similarity to acoustic waves in fluids, because they manifest as axial displacement. 262 

Therefore, we used acoustic energy method in fluid medium instead to simplify the derivation of the 263 

reflection coefficient.  264 

Consider a sufficiently small volume element in the sound field, whose original volume is 0V , 265 

pressure is 0P , density is 0ρ , and velocity is v . The kinetic energy 
k

E∆  obtained by the volume 266 

element due to acoustic perturbation is (Kinsler et al 2000): 267 

 2

0 0

1
(

2
k

E V vρ∆ = ）  (5) 268 

In addition, due to the acoustic perturbation, the volume element pressure increases from 0P  to 269 

0P P+ , the volume changes from 0V  to V , so that the volume element has potential energy p
E∆ : 270 

 
0

v

p
v

E pdV∆ = −  (6) 271 

 
2 '

0dp c dρ=  (7) 272 

Eq. (7) describes the relationship between the slight change of pressure intensity dp  and the 273 

small density change dρ . For small-amplitude waves, 0c  is approximately a constant (Kim 2010). 274 

Considering that the mass of the volume element remains constant during compression and 275 

expansion, there is a relationship between the change in volume of the volume element and the change 276 

in density: 277 

 
2

0 0

0

c
dp dV

V

ρ
= −  (8) 278 

Substituting Eq. (8) into Eq. (6): 279 

  
0

2 20 0 0
0 02 2

0 0 0 0 0

( )
2

p

V V V
E c d p

c c

ρ

ρ
ρ ρ ρ

ρ ρ ρ
∆ = − =  (9) 280 

 
2 20

0 2 2

0 0

1
( )

2
k p

V
E E E v p

c
ρ

ρ
∆ = ∆ + ∆ = +  (10) 281 
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Eq. (10) represents the instantaneous value of the wave energy in the volume element, and if it 282 

is averaged over a period, the time average of the wave energy E∆  is obtained as: 283 

 
2

0

0 20
0 0

1 1

2

T p
E Edt V

T cρ
∆ = ∆ =  (11) 284 

The average wave energy in a unit volume is called the average sound energy density I , i.e., 285 

 
2

2

0 0 0

= =
2

apE
I

V cρ
∆

 (12) 286 

According to the energy relationship of the guided wave passing through the interface, the 287 

reflection coefficient 
I

r  and transmission coefficient 
I

t  are: 288 

 

2 22 2

2 1 12

1 1 1 1 2 1 12

1
/

2 2 1

ra iar

I

i

p pI R R R
r

I c c R R Rρ ρ
   − −

= = = =   + +   
 (13) 289 
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2
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4
/ 1

2 2 (1 )

ia iat

I I

i

p pI R
t r

I c c Rρ ρ
= = = − =

+
 (14) 290 

where 1R   and 2R   denote the acoustic impedance of the two media, and 12 1 2= /R R R  . Since the 291 

material at the deformation interface is uniform, the cross-section will affect the acoustic impedance. 292 

If we consider that the axial displacement is almost constant through the thickness and that the radius 293 

of the pipe is much bigger than the thickness, we can approximate the value of the reflection coefficient 294 

obtained at a step in a pipe by using the formula: 295 

 
2

12

1

=
A

R
A

 (15) 296 

where 1A  and 2A  are the cross-section area before the deformation part and after the deformation 297 

part, corresponding to the AB and AC, respectively, in Fig. 14. 298 

From the geometric relationship, it can be deduced that： 299 

 1=A d  (16) 300 

 2 1= sin( / 2 2 )A A π α⋅ − ∗  (17) 301 
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2

1

A

A
β =  (18) 302 

 

2

2

( 1)

( 1)
I

r
β
β

−=
+

 (19) 303 

The analytical and FEM simulation results are shown in Fig. 14. As can be seen, the numerical 304 

results are in good agreement with the theoretical predictions, especially for relatively high detection 305 

frequencies. The results verify the rationality of Eqs. (16)-(19) and the proposed model, and as the 306 

frequency increases, the numerical results gradually approach the analytical solution. This is because 307 

the theoretical formula is derived from an energy perspective and does not consider the 308 

dynamic/frequency effect on reflectivity. For the same detection frequency, the guided wave reflection 309 

coefficient increases monotonically with the increase of the deformation rate. The detection frequency 310 

also affects the reflection coefficient of the deformed echo. The reflection coefficient decreases with 311 

the increase of the detection frequency overall, and the frequency effect is more obvious in the lower 312 

frequency range. 313 

Relationship between mode conversion with deformation parameters 314 

As shown in Fig. 11, the RC spectra of the F(1,3) mode from non-axisymmetric deformation with 315 

33% and 66% maximum radial change vary with the circumferential extent of deformation. This 316 

suggests that C  and R∆  can be considered as two key parameters affecting the mode conversion.  317 

To understand more quantitatively as how these parameters affect the mode conversion, the effect 318 

of the deformation depth is investigated by varying the deformation depth for a fixed deformation 319 

angle and deformation axial extent. Similarly, the effect of deformation angle on the mode conversion 320 
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is investigated by varying the deformation depth for a fixed deformation depth and deformation axial 321 

extent. 322 

Fig. 15(a) shows the variation of mode conversion with the deformation depth at two specific 323 

deformation angles of 45º and 60º, respectively. It can be seen that, for the same deformation 324 

circumferential angle, the guided wave mode conversion ratio of (L(0,2) to F(1,3)) basically remains 325 

the same with the increase of the deformation depth. The overall amplitude at 60º circumferential angle 326 

is lower than that at 45º.  327 

Fig. 15(b) shows the variation of mode conversion with the deformation angle at two given 328 

deformation depths of 5mm and 6.7mm, respectively. It can be seen that, for the same deformation 329 

depth, the guided wave mode conversion ratio of (L(0,2) to F(1,3)) decreases monotonically with the 330 

increase of the deformation angle. This means that, while the mode conversion ratio is little affected 331 

by the deformation depth, it is affected markedly by the deformation circumferential extent. As the 332 

deformation circumferential angle increases, the mode conversion ratio decreases. Therefore, the mode 333 

conversion ratio may be regarded as a parameter for judging the degree of deformation concentration. 334 

According to the theory of guided wave propagation (Rose 2014), the displacement at any point 335 

on a hollow cylinder is formed by the superposition of guided waves of n modes (Murase et al. 2005).  336 

 
1

( , , , ) ( ) ( )exp( )nm nm nm

n m

u r z t A N r in ik z i tθ ω θ ω
+∞ +∞

=−∞ =

= + −  (20) 337 

where integer n denotes the circumferential order, ( )
nm

N r  , ( )
nm

A ω   are the function of the 338 

displacement distribution in the thickness direction and amplitude for the mth mode in the nth family, 339 

respectively, and 
nm

k  is the wave number. 340 
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L(0,2) mode at relatively low frequencies (≤300 kHz) is commonly used because of its high 341 

speed. This frequency range is usually below the cutoff frequency of the L(n,3) mode group; therefore, 342 

for excitation at L(0,2) mode, there mainly exists L(0,2) mode in a pipe, and consequently Eq. (20) 343 

can be simplified to: 344 

 ( , , ) ( )exp( )n n

n

u z t A in ik z i tθ ω θ ω
+∞

=−∞

= + −  (21) 345 

In actual situations, the number of receiving sensors is finite. Assuming N receiving positions in 346 

the circumferential direction at regular intervals 0θ , 347 

 0

2

N

πθ =  (22) 348 

 
2

( 1)
k

k
N

πθ = −  (23) 349 

Then the received displacement signals at =
k

θ θ ,
R

Z Z=  are: 350 

 
0

0

/2

0 0 0
/2

( , , ) ( , , ) ( ) ( )exp( )
k

k

R

k R k R n n k n R

n

u z t u z t r d r A f in ik z i t
θ θ

θ θ
θ θ θ ω θ θ ω

+∞+

−
=−∞

= = + −  (24) 351 

where 0r  is the outer diameter of the pipe, and  352 

 

0

0 0

, 0

( ) 2sin( / 2)
, 0

n

n

f n
n

n

θ
θ θ

=
=  ≠

 (25) 353 

There is no phase delay in the displacement of different nodes on the same circle for an 354 

axisymmetric mode. But for a flexural mode, the phase delay is determined by / 2nθ π , where n  is 355 

the circumferential order and θ  is the circumferential angle between the two nodes when taking the 356 

node on the same axis as the center of the defect as the reference point. Compensate / 2nθ π  for the 357 

tangential displacement of each node in the circumferential direction, and superimpose the 358 

compensated signals, the corresponding nth order bending mode signal can be obtained. In other words, 359 
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by multiplying a weight function of exp( )
E k

in θ− , the multi-mode guided wave can be separated. The 360 

displacement corresponding to the extracted nth order mode at =
k

θ θ , =
R

z z  is: 361 

 0 0( , , ) ( ) ( )exp( ( ) ( ) )
E

ext

n k R n n E k n R

n

u z t r A f i n n ik z i tθ ω θ θ ω ω
+∞

=−∞

= − + −  (26) 362 

Summing with respect to k gives 363 

 0 0 0

1

( , ) ( , , ) ( ) ( )exp( ( ) )
E E

N
ext ext

n R n k R n n n R

k

u z t r u z t r A f ik z i tθ ω θ ω ω
=

= ≈ −  (27) 364 

The extracted signal is shown in Fig. 10(b) previously is of the first-order flexural mode. Since 365 

the excitation signal is entirely symmetrical, the component of the excitation guided wave is almost 366 

invisible in the flexural mode signal. When a symmetrical guided wave interacts with a local 367 

deformation defect, a non-axisymmetric guided wave will be reflected, and its displacement 368 

distribution over the circumference is no longer a symmetrical circle. After the asymmetric part is 369 

superimposed, a flexural mode guided wave is generated. Since the symmetrical point about the center 370 

of the circle has a phase compensation difference of π , the phase of the symmetrical guided wave 371 

received by the symmetrical point is basically the same, so the symmetrical point has a negative phase 372 

relationship after phase compensation. Therefore, Eq. (27) can be re-written as 373 

 

/2

0 /2

1

/2

0 0 /2

1

/2

0 0 /2

1

0 0 /2

( , ) ( , , ) ( , , )
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L
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ext ext
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L

n L L N
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r f u z t u z t

r f A A

π
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θ ω ω ω θ θ
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θ ω
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+ +
=

+
=
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= +

= − − + −
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Eq. (28) shows that the circumferential displacement distribution affects the amplitude of the 375 

guided wave in the flexural mode. The more asymmetrical the displacement circumferential 376 

distribution is about the circle's center, the larger the flexural mode signal will be.  377 

Fig. 16 shows the circumferential distribution of the reflected displacement received under 378 

different circumferential deformation extent. It can be seen that, as the circumferential deformation 379 

extent increases, the overall amplitude of the displacement circumferential distribution does not change 380 

significantly, while the symmetry for the center of the circle gradually increases. On the other hand, as 381 

the deformation depth increases, the symmetry for the center of the circle does not change significantly, 382 

whereas the overall amplitude of the displacement gradually increases. This explains the phenomenon 383 

observed in Fig. 15 that the mode conversion decreases with the increase of the circumferential 384 

deformation extent. 385 

Evaluation of the pipe deformation: FE and physical experiment studies 386 

This section presents a more realistic deformation case study, using FE simulation in conjunction 387 

with experimental validation. 388 

FE predictions 389 

To study the effects of different types of pipe deformations on the guided wave reflection, both 390 

overall section deformation and local section deformation are considered here. Fig. 17 depicts the 391 

fabrication processes to simulate the local and overall deformations in two pipes. For the sake of 392 

convenience in manufacturing the cross-sectional geometry of the deformation, two identical steel 393 

pipes with an outer diameter of 20 mm, a wall thickness of 1 mm and length of 500 mm are chosen for 394 

the experiment, and the same dimensions are used in the FE simulation. 395 
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In Fig. 17(a), the pipe is fixed on a rigid plate, and a hammer head is pressed perpendicular to the 396 

circumferential surface of the pipe. The contact part of the hammer head is hemispherical of diameter 397 

8 mm. In Fig. 17(b), the pipe is also fixed on a rigid plate, and a steel bar (length 80mm, diameter 398 

8mm) is pressed tangent to the circumferential surface of the pipe. Thus, it is possible to increase the 399 

same depth of both dents with this setup by continuously applying a displacement load. 400 

Fig. 18 shows the FE computed variation of L(0,2) and F(1,3) reflection coefficients at a 401 

frequency of 230 kHz with the dent depth, for the two deformation types respectively. It can be seen 402 

that the L(0,2) and F(1,3) reflection coefficients from a local deformation are essentially linear 403 

functions with the dent depth. The L(0,2) and F(1,3) reflection coefficients from an overall deformation 404 

also approximate a linear function with the dent depth. As the depth increases beyond half of the radius, 405 

the increase in the reflection coefficients tends to ease.  406 

Comparing the reflection coefficients from the two deformation types, it can be observed that the 407 

L(0,2) reflection coefficient from the overall deformation is higher than that from the local deformation. 408 

This may be explained by the nature of the overall deformation, which leads to more cross-sectional 409 

area deformation, causing higher deformation severity. Meanwhile, the F(1,3) reflection coefficients 410 

from both types of the pipe deformation are almost identical, which means that the mode conversion 411 

rate from L(0,2) to F(1,3) from a local dent is higher than from an overall dent. This is also consistent 412 

with the conclusion in Section "Relationship between mode conversion with deformation parameters" 413 

that the mode conversion rate decreases with the increase of the circumferential extent of deformation. 414 

The mode conversion rate from overall deformation is higher than that from the local deformation. 415 



 

22 

 

Therefore, a single deformation parameter by a dent depth cannot sufficiently reveal the relationship 416 

between the deformation and the RC and mode conversion. 417 

Experimental validation 418 

A physical experiment was conducted to validate the theoretical and FE predictions. In the 419 

experiment, the pipe deformation was fabricated by a multipurpose servo-hydraulic universal testing 420 

machine, using the displacement control mode to create the desired deformation. A hammer formed 421 

the local deformation with a semi-circular head, and the overall deformation was formed by a steel bar, 422 

as illustrated in Fig. 19(a). With this setup, it was possible to increase the depth of both dents by 423 

applying successive distributive forces and obtain the ideal deformation case. Fig. 19(b) shows typical 424 

profiles for the two types of deformation.  425 

The experimental pipes were made of steel pipes with an outer diameter of 20 mm and wall 426 

thickness of 1 mm. Fig. 20 shows the setup for the guided wave experiment on the test pipes. During 427 

the test, the pipe was placed horizontally on a polyethylene foam sheet, from which the reflection can 428 

be negligible. The excitation signal was a 5-cycle Hanning window modulated tone burst generated by 429 

an arbitrary function generator (Tektronix AFG3022) and amplified by a high-voltage power amplifier 430 

(Pintech HA-205). The reflection signal was collected by a digital oscilloscope (RTB-2002). 431 

PZT transducers did the signal excitation and reception. 8 rectangle PZT transducers were used 432 

for the excitation and reception. These transducers are 12mm long and 4mm wide, and they were 433 

attached at equal intervals around the pipe wall. Due to the axial vibration from the transducer face 434 

and the frequency selection, L(0,2) mode was the dominant mode that was generated. The reflected 435 

L(0,2) mode wave was received by a transducer ring comprised of 8 rectangle PZTs. 436 
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Fig. 21 shows the comparison between FE predictions and experimental results for both 437 

deformation cases. It should be noted that when the deformation depth is less than 4 mm, the reflected 438 

signal was submerged in the noise and therefore was not measured. After the deformation reaches 4mm, 439 

good agreement between the FE predictions and tests results can be observed. The small difference in 440 

the amplitude of the reflection is probably due to the attenuation effect which is not simulated in the 441 

FE model but exists in the actual experiment.  442 

Characterization of the pipe deformation ratio 443 

Due to the complexity of pipeline cross-sectional deformation in practice, using parameters in 444 

one direction cannot sufficiently characterize the actual deformation. However, from the results under 445 

an axisymmetric deformation, it can be postulated that the reflectivity of the guided wave is positively 446 

correlated with the rate of change of the deformation. Thus, we propose a quantitative parameter, called 447 

axial deformation severity rate δ , to characterize the deformation severity extent in the axial direction, 448 

and similarly a circumferential deformation rate β  to characterize the deformation severity extent in 449 

the circumferential direction. The two severity parameters are defined as: 450 

 max min
=

D D D D

L
δ

− + −
 (29) 451 

 
max min

max min

=
D D

D D
β −

+  (30) 452 

Where, max
D  and min

D  are the maximum and minimum diameters after deformation. L  is the 453 

length of the deformation zone in the axial direction. Tables 1 and 2 list the geometric parameters of 454 

each test pipe with different degrees of local and overall deformations, along with the deformation 455 
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severity parameters calculated from the above equations. The relationship between the parameters δ , 456 

β  and the reflection coefficient of the reflected signals is analyzed.  457 

Fig. 22 shows the correlation between the deformation parameter δ  , β  and the deformation 458 

depth under the two types of deformation. It can be seen that the δ  and β  from both types of dents 459 

are approximately linearly related to the dent depth. The values of δ  under an overall deformation 460 

dent are higher than that under a local deformation dent, which is due to a greater change in the cross-461 

sectional area under an overall deformation. In general, the parameter δ  and β  reflects well the 462 

degree of deformation.  463 

Fig. 23 and 24 show the L(0,2) and F(1,3) varying with the deformation parameters δ  and β464 

from the experiment results. It can be observed that the parameters δ , β  are well correlated with RC 465 

of L(0,2) and F(1,3). The RC of L(0,2) and F(1,3) are approximately a linear function with δ , β  466 

respectively in two types of the dent deformation. Moreover, the ratio = /γ δ β  represents the degree 467 

of deformation concentration and its relationship with the mode conversion ratio curve can be used to 468 

judge the deformation type, as can be seen in Fig. 25. The amplitude of the mode conversion from a 469 

local deformation is significantly higher than that from an overall deformation. 470 

 max min= / =
D D

L
γ δ β +

 (31) 471 

Conclusions 472 

A quantitative study of the reflection of the guided wave from cross-sectional deformation in 473 

pipes has been carried out, using finite element modelling and experimental validation. A practical 474 

method of estimating the severity and the type of deformation has been proposed based on the 475 

relationship established from the numerical and experimental studies.  476 
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Based on the results, the following conclusions can be drawn. 477 

1) The reflection occurs at the start of the cross-sectional deformation, while the subsequent 478 

gradual deformation region does not cause reflection. The RC from an arc slope is dependent on the 479 

maximum radial change and axial length of the slope. In conjunction with a theoretical analysis using 480 

the wave energy theory, the RC can be regarded as an effective index to judge the severity of the 481 

deformation.  482 

2) The superposition approach can be applied to reconstruct the reflection coefficient of a 483 

deformation region by using the reflection and transmission characteristics of the slope up and slope 484 

down part. The RC oscillates periodically due to interaction between two waves from the two end 485 

sections of the deformation 486 

3) The mode conversion ratio is rarely affected by the deformation depth, but is affected by the 487 

deformation circumferential extent. As the deformation circumferential angle increases, the mode 488 

conversion ratio decreases. 489 

4) The FE simulation and experimental validation have been used to evaluate the deformation by 490 

guided waves for real deformation cases. Two quantitative parameters, namely an axial deformation 491 

severity degree and a circumferential deformation severity degree, are defined. For both types of 492 

deformation, it has been shown that the reflection coefficients of the L(0,2) and F(1,3) modes are 493 

approximately a linear function of axial δ  and β  respectively, whereas the mode conversion ratio 494 

(L(0,2) to F(1,3)) are linearly related with the circumferential deformation rate /δ β  and can be used 495 

to judge the deformation type.  496 
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It should be noted that the environmental variations on damage detection are not considered in 497 

this paper. Further studies will be needed for more complex deformation geometries and real 498 

monitoring situations. The reflection phenomenon difference between shape deformation and notch 499 

type of defects will also be studied. 500 
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Table 1 Soil parameters of a section of Shanghai Metro Tunnel 

Stratum 
Thickness 

（m） 

Unit weight

（kN/m3) 

Cohesion 

(kPa) 

internal 

friction 

angle

（φ） 

Coefficient 

of ground 

spring 

Fill ①1 1.9 18 - - - 

Sandy silt ②3-1 1.9 18.6 5 30.5 20 

Sandy silt ②3-2 4.2 18.3 5 30.5 20 

Sandy silt ②3-3 4.7 18.3 4 31.5 20 

Silty clay ④ 5.3 17 14 12.5 2 

Clay ⑤1-1 3.8 17.6 15 13.5 2 

Clay ⑤1-2 8 17.9 15 13.5 2 

 

Table 2 List of numerical simulation cases 

No. Heating curves Duration Burial depth Spalling 

A1 HC 4h shallow � 

A2 HC 4h medium � 

A3 HC 4h deep � 

AS1 HC 4h shallow  

AS2 HC 4h medium  

AS3 HC 4h deep  

B1 RABT 4h shallow � 

B2 RABT 4h medium � 

B3 RABT 4h deep � 

BS1 RABT 4h shallow  

BS2 RABT 4h medium  

BS3 RABT 4h deep  
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Fig. 1. Group velocity dispersion curves for a steel pipe (outer diameter 88.9mm and wall thickness 5.5mm). 2 
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(a) (b) 

  

(c) (d) 

Fig. 2. Displacement mode shapes in a steel pipe (outer diameter 88.9mm and wall thickness 5.5mm) at 50kHz for 4 

(a) T(0,1) and (b) F(1,2); 230kHz for (c) L(0,2) and (d) F(1,3). 5 
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 7 

Fig. 3. Geometry of pipes without and with local deformations. 8 
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(a) (b) 

Fig. 4. FE models of pipe with cross-sectional deformation: (a) arc slope model; (b) axisymmetric deformation model. 10 
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(a) 13 

 14 

(b) 15 

 16 
(c) 17 

 18 

(d) 19 

Fig. 5. Schematic of (a) bulge: arc slope-up; (b) bulge: arc slope-down; (c) dent: arc slope-down; (d) arced bulge. 20 
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 22 

(a) 23 

 24 

(b) 25 

 26 

(c) 27 

Fig. 6. Time domain signal for (a) bulge: slope-up; (b) bulge: slope-down; (c) dent: arc slope-down. 28 
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  30 

Fig. 7. Variation of the L(0,2) and T(0,1) mode reflection coefficients with the ratio of the axial extent of deformation 31 

to the wavelength. 32 
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 34 

Fig. 8. Reflection coefficient for axisymmetric bulge deformation of varying axial extent. Results are for T(0,1) 35 

incident on a 3 inch pipe at 45kHz and =10R mm∆ (22.5% radius). 36 
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(a) (b) 

Fig. 9. Modelling of pipe with cross-sectional dent deformation: (a) FE non-axisymmetric deformation model; (b) 38 

Schematic of a non-axisymmetric dent.  39 
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 41 

 42 

Fig. 10. Typical processed reflected signals from the FEM model ( max =45C °  , =14.5mmR∆  ); (a) Order 0 43 

(axisymmetric) signals; (b) Order 1 signals. 44 
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  47 

Fig. 11. Variation of the F(1,3) mode reflection coefficient with the percentage of the circumferential extent of 48 

deformation: (a) 33% and (b) 66% maximum radial change. 49 
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(a) (b) (c) 

Fig. 12. Snapshots of the contour for total displacement magnitude at different time from FE results: (a) incident 52 

L(0,2) mode before interacting with deformation; (b) incident L(0,2) mode at the deformation; (c) reflected L(0,2) 53 

mode from the deformation. 54 
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 56 

Fig. 13. Schematic of deformation case to explain reflection and transmission characteristics at the deformation 57 

section.  58 
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 61 

 62 

 63 

Fig. 14. Variation of the L(0,2) mode reflection coefficient with the rate of the axial extent of deformation. 64 

  65 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

20

40

60

80

100

R
ef

le
ct

io
n

 c
o
ef

fi
ci

en
t 

(%
)

Axial deformation rate 

 Numerical-70kHz

 Numerical-130kHz

 Numerical-160kHz

 Analytical



 

15 

 

  

(a) (b) 

Fig. 15. Variation of the mode conversion ratio with the (a) deformation depth; (b) circumferential extent of 66 

deformation. 67 
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(a) 

   

(b) 

Fig. 16. Angular profiles of L(0,2) resulting from the detection signals at 230kHz for dent (a) with different 69 

circumferential extent 45°, 60°,75°; (b) with different deformation depth 0.15R, 0.35R, 0.5R. 70 
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 72 

 73 

Fig. 17. Schematic of two types of deformation manufacturing processes. 74 
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 76 

Fig. 18. Reflection coefficients for both types of deformation in 20mm diameter, 1mm wall thickness steel pipe at 77 

230kHz as a function of dent depth.  78 
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(a) 81 

 82 

(b) 83 

Fig. 19. Fabrication of pipe deformations (a) fabrication Setup; (b) typical local and overall deformation profiles 84 

(dent depth=8.5mm) 85 
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 87 

Fig. 20. Photo of the inspection system setup 88 
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(a) (b) 

Fig. 21. Comparison between FE (lines) and experiments (square dots) with cross-sectional deformation for the 90 

L((0,2) mode (a) Variation in RC of deformation with local deformation depth; (b) Variation in RC of deformation 91 

with overall deformation depth 92 
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(a) (b) 

Fig. 22. Variation of deformation parameters with dent depth (a) axial deformation rate δ  ; (b) circumferential 94 

deformation rate β . 95 
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 97 

Fig. 23. Variation of the L(0,2) mode reflection coefficient with the deformation severity rate δ . 98 
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 100 

Fig. 24. Variation of the F(1,3) mode reflection coefficient with the deformation rate β . 101 
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 103 
Fig. 25. Variation of the mode conversion ratio with the deformation rate γ . 104 
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