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Abstract: Immunisation of livestock with high quality vaccines is considered an essential approach
to controlling many animal diseases. The only currently available commercial vaccine to protect
cattle from East Coast fever (ECF), a tick-borne disease caused by Theileria parva, is an unconven-
tional “infection and treatment method” (ITM) involving administration of a combination of live T.
parva isolates, referred to as the “Muguga cocktail”, and simultaneous treatment with long-acting
oxytetracycline. Veterinary vaccine research and development typically involves studies designed to
demonstrate vaccine quality, safety, and efficacy; however, as there were no such purpose-designed
registration studies conducted for the Muguga cocktail, evidence for safety and efficacy is solely
based on that which is available in the clinical literature. An extensive systematic review was con-
ducted to analyse the evidence available in the literature in order to establish the safety and efficacy
of the Muguga cocktail vaccine. A combination of meta-analyses and narrative summaries was
conducted. A total of 61 studies met the criteria to be included in the systematic review. The majority
of studies demonstrated or reported in favour of the vaccine with regards to safety and efficacy of the
Muguga cocktail vaccine. Proximity to buffalo often resulted in reduced vaccine efficacy, and reports
of shed and transmission of vaccine components affected the overall interpretation of safety. Better
understanding of control options for this devastating livestock disease is important for policymakers
and livestock keepers, enabling them to make informed decisions with regards to the health of their
animals and their livelihoods.

Keywords: East Coast fever; cattle; Muguga cocktail; vaccine; safety; efficacy

1. Introduction

Pastoralist peoples in Africa inhabit some of the harshest environments in the world
where livestock provide both health and socioeconomic wellbeing to these communities [1,2].
In particular, cattle have diverse roles and make vital contributions to livelihoods and
economies in Africa; therefore, the ever-present threat of an often fatal, endemic, bovine
disease is a hindrance to this livestock resource, with requirement for sustainable preventive
solutions [3].

East Coast fever (ECF), caused by the apicomplexan parasite Theileria parva [4] and
transmitted by the brown ear tick Rhipicephalus appendiculatus, is a fatal disease of cattle
in eastern and southern Africa (see recent review by Nene et al. [5]). Around 50 million
cattle are at risk (including ten million calves annually), and mortality rates for untreated
ECF can reach 100% in nonendemic areas. The global economic impact on the livestock
industry is estimated at USD 596 million annually [6]. Control has relied mostly on regular
acaricide treatment [7] and antitheilerial drugs [8], but no effective conventional vaccine
has yet been developed, possibly due to an incomplete understanding of the necessary
immune mechanisms and how to stimulate them [5,9]. An atypical vaccination procedure,
known as the “infection and treatment method” (ITM), was developed in the 1970s [10–12].
This relies on infection of animals with a potentially lethal dose of live T. parva sporozoites
with concurrent treatment of long-acting oxytetracycline to control clinical symptoms.
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The subject of the current review is an ITM formulation based on three stocks of
T. parva: Muguga, Kiambu 5, and Serengeti transformed [12,13]. It had become evident
during development of the ITM that immunisation with one isolate of the parasite did not
necessarily confer immunity to challenge with other known isolates. However, an ITM
formulation based on three different stocks of parasite conferred immunity to challenge
with several heterologous stocks [12]. The three stocks (Muguga, Kiambu 5, and Serengeti
transformed) are known collectively as the Muguga cocktail, which has been used to
immunise cattle across broad areas of East Africa.

Although ECF-ITM has been available for almost four decades, its deployment has
been inconsistent due to various reasons. First, the complexity of manufacturing the
vaccine stabilate raised doubts as to whether consistent, commercial-scale batches could
be produced. Secondly, there were epidemiological concerns that the Muguga cocktail
would not induce protection against field strains found in all geographical situations.
Third, as immunisation with live parasites can result in persistently infected or carrier
animals, the possibility exists for the vaccine strains to be introduced into areas previously
free of them [14–17]. Fourth, there are significant logistical challenges in distribution of a
vaccine which requires storage in liquid nitrogen until administration into target animals.
Fifth, the product has not been taken up by a private commercial organisation, which
would be required to maintain sustainable distribution channels. Finally, there is the hope
of a more conventional subunit vaccine, for which research is ongoing, that would be
easier to manufacture and deliver (P. Spooner, personal communication). The institutional
history that has formed the backdrop to this fascinating story was recently documented by
Perry [3].

In order to be able to recommend the use of a vaccine in animal disease control strate-
gies, knowledge of the detailed characteristics and capability of the vaccine are required, in
addition to in-depth knowledge of the disease and its epidemiology [18]. Typically, official
vaccine registration involves thorough objective assessment, which includes the demonstra-
tion of both the safety and efficacy, with relevant regulatory approval granted [18]. The use
of field studies can allow the assessment of safety and efficacy under “real-life” conditions
and can identify reactions (including mortality) not otherwise observed in a laboratory
setting. However, the real-life nature of field studies presents an array of uncontrollable
variables, creating a challenge in attaining high-quality controlled efficacy data, whereas
the demonstration of safety is considered more reliable [18].

The Muguga cocktail was registered for use in cattle in Kenya, Tanzania, and Malawi
between 2007 and 2009. The construction of the base registration dossier and the registration
process were recently described by Peters et al. [19]. However, since no purpose-designed
registration studies had been carried out, the evidence for safety and efficacy used in the
dossier was based solely on a review of the readily available clinical literature. It has
been widely accepted that although the Muguga cocktail ITM procedure has a narrow
therapeutic index, animals receiving the vaccine apparently acquire life-long immunity to
subsequent disease (see review by Morrison and McKeever [9]). However, despite many
studies both in the laboratory and in the field, there has been no exhaustive systematic
review of the Muguga cocktail ITM clinical safety and efficacy.

The systematic review process aims to identify all relevant studies in order to address
a specific research question [20,21]. In systematic review of animal studies, meta-analysis
is intended to assess the overall size and direction of an intervention’s effect, as well as
examining possible sources of heterogeneity [22]. As it is an effective means of increasing
power, meta-analysis can be particularly beneficial in animal studies which are often
small and can, therefore, be underpowered [23]. Pooled estimates of the overall effect of
an intervention can result in alternative conclusions of the safety and or efficacy of an
intervention compared to qualitative assessment of individual studies [24,25].

This review seeks to establish the efficacy and safety of the Muguga cocktail vaccine
by examining the literature and collating and analysing all relevant studies. It is hoped
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that the review will then assist researchers, policymakers, and livestock keepers to make
informed decisions with regard to vaccine use in ECF control programs.

2. Materials and Methods
2.1. Protocol

Planned methods were documented a priori in a protocol detailing the proposed
approaches for the review. There is not yet a standard protocol format for the registration
of animal study systematic reviews [26]; therefore, a protocol format developed by de
Vries et al. [26], based on the Cochrane review protocol [27] and the preferred reporting
items for systematic reviews and meta-analyses (PRISMA) checklist [28], was used for this
review. This standardised protocol format is supported by Collaborative Approach to Meta
Analysis and Review of Animal Data from Experimental Studies (CAMRADES) and the
SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), the largest
supporting groups involved in systematic review of data from animal studies. The protocol
was completed at the beginning of the review process and was approved by both authors.
It was not possible to prospectively register/publish the protocol; however, it is included
in Supplementary File S1. The PRISMA checklist is also included, in Supplementary File
S2. This review did not require ethical approval.

2.2. Review Research Questions

The primary research question that formed the basis for the systematic review was

• What is the safety and efficacy of the Muguga cocktail vaccine?

A secondary research question was formulated following the population, intervention,
comparison, and outcome (PICO) scheme. Due to the live nature of the vaccine, there is the
requirement for concurrent treatment with long-acting oxytetracycline (OTC LA) to reduce
the severity of the vaccine reaction, and as such, the secondary question was

• What is the safety and efficacy of oxytetracycline?

The key elements of the research questions are detailed in reference to the PICO
scheme (Table 1).

Table 1. Key elements of the research questions as detailed by the PICO scheme.

PICO Scheme Question Elements

Population Cattle

Intervention Immunisation with the Muguga cocktail ITM vaccine

Comparison Nonimmunised (control) cattle

Outcome

Efficacy of Muguga cocktail vaccination (demonstrated as reduction in
mortality and/or reduction in severe reactors in immunised compared to

nonimmunised controls) and safety of Muguga cocktail and OTC
(demonstrated by lack or local or systemic reactions in animals or the

environment (including nontarget animals))

2.3. Eligibility Criteria

Studies from all dates were included. The search included peer-reviewed journal
articles, data from published research reports and unpublished research reports (from
expert sources), theses, conference proceedings, and field study reports. Challenge trials,
field trials, and observational studies were included.

Due to time constraints, only articles written in English were included. If abstracts or
full-text articles were not available, they were excluded. Where there was more than one
report of an individual study’s results, the preferred version only was included so as to
avoid duplication of results within analyses. Where there was discrepancy or ambiguity
in data and or interpretation of results, attempts were made to contact authors to seek
clarification, and discussion between the authors was initiated until agreement was reached,
including the decision to include or exclude unclear studies.
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2.4. Scoping Review

A preliminary search was carried out in March–April 2021 to trial search terms and
strings, and to gauge the volume of available evidence. Search terms were reformatted and
reassessed until a consensus was achieved.

2.5. Database Sources

A variety of electronic databases were used, including Web of Science, PubMed
(Medline), CAB Direct, and Google Scholar; these databases being considered to cover the
majority of veterinary literature [29]. As the geographic context of the systematic review is
in Eastern, Central, and Southern Africa, the African Journals Online database was also
searched, as it is a source of abstracts from more than 200 African journals and has links to
more than 80 full text articles [30].

2.6. Search Strategy

Literature searches were conducted for all available years in Web of Science, PubMed
(Medline), CAB Direct, Google Scholar, and African Journals Online in April 2021. Ref-
erences of relevant articles were searched (forwards and backwards citation tracking) to
identify articles that may have been missed.

Search terms were standardised across databases to ensure comparable searches.
Search terms were “East Coast fever OR ECF AND Muguga Cocktail OR Muguga AND
vaccine”. In the case of “ECF ITM vaccine OR Muguga cocktail”, this string yielded the
most studies, with the exception of African Journals Online (Table 2). Terms for outcomes
were not included in the search (e.g., efficacy, safety, mortality, reaction, reactor) as it was
thought that if they were not used clearly in eligible studies, it could result in studies being
missed in database searches [31].

Table 2. Database search terms and results.

Search Term Database Number of Results

ECF ITM vaccine

Web of Science 12
PubMed 12

CAB Direct 13
African Journals Online 1

Muguga Cocktail

Web of Science 24
PubMed 26

CAB Direct 27
African Journals Online 4

ECF Muguga vaccine

Web of Science 14
PubMed 16

CAB Direct 26
African Journals Online 5

ECF Muguga Cocktail

Web of Science 11
PubMed 13

CAB Direct 12
African Journals Online 3

ECF ITM vaccine OR Muguga cocktail

Web of Science 30
PubMed 33

CAB Direct 36
African Journals Online 0

Google Scholar 296

2.7. Study Selection

For all search terms, study titles were reviewed/screened for relevance to the Muguga
cocktail vaccine specifically. Relevant title abstracts were then reviewed (by one author,
F.A.) according to the selection criteria (Table 3), and articles were selected for full-text
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review. Full-text articles were reviewed by F.A. and a sample reviewed by A.P. to ensure
agreement on inclusion. Where the same data were presented in more than one study
article, only the most detailed version was included.

Table 3. Study selection criteria for ECF Muguga cocktail vaccine.

Domain Criteria

Date range All

Geographical scope Global

Type
Peer-reviewed journal articles, research reports including published and

unpublished field studies, theses, conference proceedings. Challenge
trials, natural infections, and observational studies.

Specific details Reported efficacy and safety of use of ECF ITM (Muguga cocktail) vaccine

Exclusions Abstract or full text unavailable

Language English only

2.8. Data Management

References were managed in referencing software Mendeley (version 1.19.8, Elsevier,
London, UK). For meta-analysis, studies were exported from Mendeley as a ris. file and
imported into review manager software RevMan5 [32].

2.9. Data Extraction

Data were extracted from all studies considered for inclusion in the systematic re-
view. Selected qualitative and quantitative metadata were extracted into a piloted Excel
spreadsheet format. Data extracted included author(s), citation, year of study, country of
study, cattle breed, production system, agro-ecological zone (AEZ), study type, randomisa-
tion, sample size, vaccine dose, oxytetracycline dose, vaccine efficacy (efficacy is generally
determined quantitatively by calculation as described in Thrusfield and qualitatively as
“the extent to which a procedure produces beneficial results under ideal conditions” [33]),
seroconversion, onset of immunity, duration of immunity, ECF diagnosis method(s), and
vaccine safety (safety is defined as “lack of local or systemic reaction, and in statutory
tests usually involves daily observations for a 14-day period post-vaccination” [19,34])
(Supplementary Files S3 and S4).

2.10. Data Analysis

Studies were grouped based on the available evidence for safety and efficacy and
reviewed under the major subheadings (parameters) as considered relevant (and for the
most part, as detailed in a European dossier) (Table 4). As already mentioned, included in
the safety and efficacy of an ITM vaccine is the safety and efficacy of oxytetracycline LA,
the evidence for which was also synthesised in this review.

Included studies were assessed for bias using the Risk of Bias tool (RoB) created by
SYRCLE for animal intervention studies [35], based on the Cochrane Collaboration RoB
tool [36] and adapted for specific aspects of bias involved in animal intervention studies.
Biases addressed were selection, performance, attrition, detection, and reporting bias.

Where meta-analysis was possible, the overall effect (Z) was calculated, as well as
heterogeneity (I2) using RevMan5 software [32]. A p-value of <0.05 was considered sig-
nificant. Binary variables were analysed in this review; therefore, odds ratios (OR) were
calculated, along with their 95% confidence interval (CI). The weight of individual studies
was obtained by calculating the inverse of the variation of the intervention effect (the larger
the sample size of the study, the greater the weight). The use of a random- or fixed-effects
model was based on heterogeneity; a fixed-effect model (Chi2) was used where hetero-
geneity was low, and where there was high heterogeneity, a random-effects model (Tau2)
was used. Forest plots were generated as combined graphical and tabular presentation
of individual studies contributing to meta-analysis. Study outcome effect measure and
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outcome uncertainty (confidence intervals), as well as the weight, are presented on the
plot.

Table 4. Grouping of studies based on parameters relating to safety and efficacy issues.

Issue Parameter

Efficacy

Efficacy (quantitative) demonstrated by mortality rates

Efficacy in response to challenge (quantitative)

Efficacy based on Seroconversion as a measure of protection

Efficacy as a percentage

Onset of immunity

Duration of immunity

Efficacy (qualitative)

Efficacy in proximity to buffalo

Efficacy and storage temperature

Safety Safety (qualitative)

Shed and transmission

Safety and efficacy of OTC Safety and efficacy of OTC

Sensitivity analysis was conducted to determine robustness of observed meta-analysis
outcomes. This involved repeating primary analysis with an altered dataset to assess
whether there was an effect on the overall outcome effect.

3. Results

The number of returns for each search is included in Table 2, providing an overview
of the popularity of each term/string. Results of the literature search are presented in
Figure 1. A total of 402 studies were identified through the database searches and reference
lists. Duplicates were removed (n = 94), and 109 studies were excluded based on their
abstracts. Of the 199 full-text studies assessed for eligibility, 61 were included in the review.

Of the 61 selected studies for review, 54 specified the study country. Most studies
were conducted in Tanzania (n = 22), followed by Kenya (n = 14), Uganda (n = 6), Malawi
(n = 6), Zambia (n = 3), and Rwanda (n = 1). Single studies were conducted in Comoros,
Democratic Republic of Congo (DRC), and Burundi.

Of the 61, 26 studies did not specify the year in which the work was carried out. Of
the 35 that did specify year, the studies ranged from 1974 up to 2018.

3.1. Efficacy
3.1.1. Protection against ECF Mortality in Immunisation Trials

Of the 61 studies included for analysis in the systematic review, 18 described mortality
rates from immunisation field trials using the Muguga cocktail vaccine. Several of these
studies presented results for more than one trial [12,37–40]; in these instances, each trial
was included in analysis individually (identified with suffix a, b, c, or 1, 2, 3 in the case of
Radley 1975c [12] (it should be noted that the stabilates used in this study were the three
components of the Muguga cocktail but were not yet referred to as such)), resulting in
27 studies (a total of 30 studies presented controlled quantitative trial data; however, three
of these could not be included in meta-analysis due to inadequate or unclear data [40]
(trials a and c) [41]) for meta-analysis. The Uilenberg et al. [37] study presented three trials,
one of which was also reported by Schreuder et al. [42] and one by Uilenberg et al. [43];
only the one trial not otherwise presented was included in the analysis, thus avoiding
duplication of analyses.
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Figure 1. PRISMA flow diagram for article screening and inclusion (adapted from [28]). All 402 arti-
cles identified in the literature search were assessed as relevant. Ninety-four duplicates were removed,
as well as a further 109 articles, based on abstract content. On full-text assessment, 138 articles were
excluded, resulting in 61 articles to be included in the review.

The outcome effect measure for vaccination on ECF mortality is expressed as odds
ratio (OR); the pooled (black diamond) estimate of effect was observed to be 0.06 (95% CI:
0.04–0.09), and, as it did not cross the vertical line, shows a statistically significant effect
favouring vaccination. The test for overall effect (Z) corroborates the results by presenting a
p-value < 0.05. The studies were relatively homogeneous, with only 26% heterogeneity (I2)
(Figure 2). As the studies were considered homogeneous (I2 < 50%), a fixed-effect model of
meta-analysis was considered suitable.
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Figure 2. Forest plot showing comparison of mortality in Muguga cocktail (MC) vaccinated vs. nonvaccinated. The blue
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Sensitivity analysis was conducted by repeating the primary analysis, excluding the
study by Sitt et al. [44], based on the higher OR of 1 for outcome effect. In removing
this study, the OR for overall effect decreased slightly to 0.05 (95% CI: 0.03–0.08), and the
heterogeneity (I2) reduced to 6%.

Risk of Bias of Included Mortality Studies

For the eighteen studies that reported controlled quantitative data on ECF mortality,
risk of bias was assessed using a tool developed by SYRCLE [35] (Supplementary File S5).
It is not recommended that a summary score be calculated for studies so as not to assign
weight to individual domains. Instead, a conservative approach was taken by the authors
to provide an overall summary per study based on all domains. The majority of studies
were assessed as high risk of bias, with one study considered moderate risk, and one
considered low risk of bias.

3.1.2. Efficacy in Response to Experimental Challenge

Specific challenge studies are a key component of the measure of efficacy and are a
critical step in determining potency during manufacture of Muguga cocktail. Reactions in
immunised and experimentally challenged animals are based on clinical and parasitological
parameters combined to create a gradation, and have been classified by Anon [45] as
no apparent reaction (NR) (no schizonts detected and no clinical signs observed); mild
reaction (MR) (few schizonts detected, no fever or only low grade for a few days, and
otherwise clinically normal); moderate reaction (MOR) (schizonts detected, persistent fever
and transient clinical signs but recovers); severe reaction (SR) (high schizont parasitosis,
persistent fever >9 days, clear clinical signs and may recover or die).

It was possible to conduct a meta-analysis of nine studies (seventeen trials) describing
severe reactions to challenge in vaccinated and unvaccinated animals (Figure 3). As well
as reporting reactions to challenge, Atuhaire et al. [46] also recorded severe reactions
following vaccination, as a measure of vaccine viability. Severe reactions were compared to
the ECF reaction index scores [47]. Similarly, Melewas et al. [48] also reported reactors to
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immunisation (3.9%; 576 of 14,628). They did not report severity but did report that four
animals succumbed to anaphylaxis after immunisation (0.03%).
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Figure 3. Forest plot showing comparison of severe reactions in MC vaccinated vs. nonvaccinated. The blue boxes represent
the effect size (odds ratio) of each study—a bigger box indicates the study was weighted more, i.e., a larger sample size. The
black diamond represents the pooled OR of the studies.

The outcome effect measure for vaccination on severe reactions is expressed as OR: the
pooled estimate of effect was observed to be 0.06 (95% CI: 0.02–0.17), showing a statistically
significant effect favouring vaccination. The test for overall effect (Z) corroborates the
results by presenting a p-value < 0.05 (p < 0.00001). Heterogeneity (I2) for the studies
was 61%, where <50% is considered homogenous, and so a random effect model of meta-
analysis was suitable.

Sensitivity analysis was conducted by repeating the primary analysis, excluding
Bishop et al. [49] due to the higher OR of 1 for outcome effect. In removing this study, the
OR for overall effect reduced slightly to 0.05 and the heterogeneity (I2) reduced to 37%.
Similarly, reanalysis without Melewas et al. [48](OR = 0.88, CI: 0.20–3.76) also resulted in
the overall effect OR reducing slightly to 0.05 and the heterogeneity reducing to 56%.

Risk of Bias of Severe Reaction Studies

For the nine studies that reported controlled quantitative data on severe reactions to
challenge, risk of bias was assessed (Supplementary File S6). Overall, the studies were all
considered as high risk of bias.

3.1.3. Efficacy Based on Seroconversion as a Measure of Protection

Although the presence of serum antibodies does not necessarily reflect protection
against ECF, it does indicate exposure to the parasite. Some studies have accordingly used
seroconversion as an indicator of vaccine response.

Ten studies presented seroconversion rates. Anon [50] observed very high rates of
seroconversion by 30 days—93.9% in those given 1:80 vaccine dose, and 84% seroconversion
with 1:100 dose. Anon [51] described 95% seroconversion with batch FAO-2 and 100% with
FAO-1, by day 45 in both batches.

Atuhaire et al. [46] reported 35 of 41 immunised (85.4%) seroconverting, and Ki-
raithe [52] reported 69% seroconversion in vaccinated calves in Mutara and 83% in Ole
Naishu (compared to 6.2% and 3.1% of controls, respectively). Kazungu et al. [53] reported
significantly higher seropositivity in vaccinated cattle compared to unvaccinated. Six of the
381 (1.6%) cattle in the study were seronegative, one of which was vaccinated. A significant
positive association between seropositivity and time since vaccination was reported.
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Martins et al. [54] observed 60% seropositivity by 180 days in calves vaccinated
between 1–2 months of age, and 80% seropositivity when vaccinated over two months of
age, i.e., suggestive of relatively good rates of seroconversion. Mbassa et al. [55] compared
storing the vaccine at −70 ◦C for six weeks and six months. They showed that even when
stored at −70 ◦C for six months, all immunised animals that were tested (n = 38) had
seroconverted by day 30, i.e., 100% seroconversion in the tested group.

Patel et al. [56] observed a range of seroconversion rates in 62 immunised animals,
from 75% to 87%, with a mean of 82%. Turasha [57] also reported a range of seroconversion
rates, from 55.6% to 79.4%, with a mean of 69.2%. The report described mean prevaccination
seroprevalence of 19.9% compared to 69.6% post-vaccination, remarking on good overall
seroconversion [57].

Tenesi [58] observed 93% seroconversion post-vaccination (increased significantly
from 46% prevaccination), compared to 42% seroconversion in control animals. Wesonga
et al. [59] presented seroconversion rates for several study sites in Kenya; in Mutara,
prevaccination seropositivity was 3%, compared to 69% in post-vaccination, and for Ole
Naishu, there was 1.6% seropositivity prevaccination compared to 83% post-vaccination.
In control animals for Mutara, 4.7% were seropositive at day zero compared to 6.3% at day
35, and in Ole Naishu, there were 3.1% seropositive controls at both day zero and at day 35.
The study, therefore, demonstrated a high proportion of seroconversion after vaccination
in Ole Naishu (80–90% considered acceptable) and lower than acceptable seroconversion
in Mutara.

3.1.4. Efficacy as a Percentage (Quantitative)

Seven studies described Muguga cocktail vaccine efficacy as a percentage. Four studies
described the fraction of severe reactors in control and vaccinated groups to calculate
vaccine efficacy, as described by Thrusfield [33]. One study calculated efficacy as proportion
of positive animals to total number of animals, and two studies did not state how efficacy
was calculated.

Kiraithe [52] observed 97.8% and 78.4% efficacy in two separate ranches in Laikipia
County, Kenya. Vaccine efficacy was calculated using incidence rate, as described in Dohoo
et al. [60]. Similarly, Lynen et al. [61] described 97.6% efficacy in preventing ECF cases
and 97.9% efficacy in preventing ECF deaths. Martins et al. [54] reported 97% efficacy
in Tanzanian pastoralist systems, with significantly fewer cases of ECF in the vaccinated
group compared to the unvaccinated. More recently, Tenesi [58] reported vaccine efficacy
of 89.4% in Narok County, Kenya.

Magwisha et al. [62] reported overall efficacy of 70%, based on the proportion of posi-
tive animals (n = 853) to total animals (n = 1216), whereby antibody titre post-immunisation
≥20 PP was considered the threshold for protection. This is a somewhat tenuous link to
efficacy; as already stated, seroconversion does not equate to efficacy per se, but rather
indicates a vaccine response.

Following success in Malawi, Tanzania, and Zambia, the Muguga cocktail vaccine
was trialled in Uganda between 1990 and 1993, with 80% protection against local parasite
challenge [63]. Another report of Muguga cocktail immunisation in Uganda, around the
same time, reported 2005 animals vaccinated and 86% protection [64].

3.1.5. Onset of Immunity

As for previous sections, seroconversion does not directly equate to immunity, how-
ever, it is a widely accepted indirect indicator of a protective response. Six studies reported
onset of immunity with regards to vaccine efficacy. Anon [50] observed a high proportion
of seroconversion by 30 days (93.9% for those given 1:80 vaccine dose, and 84% in those
given 1:100 dose) and no reactions with either vaccine dose. Anon [51] similarly described
a high rate of seroconversion, by 45 days (95% vaccinated with batch FAO-2 and 100%
vaccinated with batch FAO-1). Anon [65] reported seroconversion between 28 and 35 days.
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Kiraithe [52] observed seroconversion by day 35 in the majority or vaccinated calves (69% in
Mutara and 83% in Ole Naishu), and only very few controls (6.2% and 3.1%, respectively).

Oura et al. [66] described seroconversion by day 48. Sitt et al. [44] reported serocon-
version in all but one vaccinated calves, between days 21 and 35, whereas the controls
remained negative by enzyme-linked immunosorbent assay (ELISA).

3.1.6. Duration of Immunity

A single study reported on duration of immunity. Oura et al. [66] described the
presence of antibodies to T. parva by ELISA at day 48 post-vaccination.

3.1.7. Efficacy as a Statement (Qualitative)

Six studies described vaccine efficacy in qualitative terms. Akoolo et al. [67] reported
solid resistance to challenge with a potentially lethal dose of vaccine batch FAO-1 after
vaccination with FAO-1. Anon [68] described a “very high degree of vaccine efficacy”,
based on a 90% reduction in ECF morbidity/mortality in ECF endemic areas following
immunisation with vaccine batch FAO-1 in Tanzania.

Homewood et al. [69] reported a “highly significant impact on survival” following
use of the ITM vaccine (this study did not specify that the ITM vaccine in use was Muguga
cocktail, however communication with the authors via email confirmed Muguga cocktail
was indeed used). The study found the probability of a vaccinated animal surviving to
54 months was 97%, in comparison to 71% for those unvaccinated, and this reduced calf
mortality due to ECF from more than 20% to around 2%.

A titration study by Mutugi et al. [70] described direct evidence of efficacy of the
optimal 1:80 dose of FAO-1 stabilate against experimental challenge, stating “a good margin
of vaccine efficacy exists as shown by the unequivocal good result of the 1:100 dilution”.
Patel et al. [71] conducted a dose determination study and concluded that 1 ml of a 1:100
vaccine dose (ILRI-0804) was considered efficacious (as well as safe—discussed later).

Mutugi reviewed the safety and efficacy of the Muguga cocktail and reported that
“the efficacy of the FAO-1 batch is exemplified by the successful immunisation of some
400,000 cattle in Uganda and Tanzania in recent years with a high and rising demand for
the ITM technology” [72]. A high degree of efficacy was reported with more than a 90%
reduction in ECF morbidity and mortality following immunisation with the FAO-1 vaccine
in Tanzania between 1998 and 2007.

The third of the early Radley et al. studies [12] compared immunisation with a combi-
nation of theilerial strains (Muguga, Kiambu 5, and Serengeti transformed) to immunisation
with only one or two strains separately, followed by heterologous challenge. Inapparent or
mild reactions were observed in those animals immunised with the combination (Muguga
cocktail components), whereas both the controls and those immunised with only one or
two strains had severe reactions or died. Additionally, when cattle immunised with the
combination of strains were challenged with a lethal dose of three heterologous T. parva
strains, inapparent or mild reactions were observed, compared to the control animals,
almost all of which (13/15) died.

Steinaa et al. [73] compared the protection given with a single T. parva strain (Muguga)
to immunizing with the trivalent Muguga cocktail, and found no substantive difference in
protection, with no broader a CTL response when using the cocktail, suggesting limited
antigenic diversity in the cocktail.

3.1.8. Efficacy near Buffalo

Ten studies reported the apparent efficacy of the Muguga cocktail vaccination in cattle
in proximity to buffalo; four studies reported the vaccine to be efficacious at this interface,
two studies observed efficacy to be reduced or partial, and four studies (three of these
studies report on the same dataset [49,74,75]) reported inefficacy.

Di Giulio et al. [13] reported on the several studies of vaccine uptake and environmen-
tal impact in northern Tanzania, including longitudinal studies in pastoral communities,
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where vaccine efficacy had been observed in areas including livestock–buffalo interfaces;
92% reduction in overall calf mortality was seen in the Ngorongoro Conservation Area
(NCA) where there is a high degree of livestock–wildlife interaction, and 95% reduced
calf mortality was observed in the Tanzania-Kenya border study areas (considered to be
unstable ECF-endemic). Lynen et al. [76] also reported clear demonstration of Muguga
cocktail vaccine efficacy in pastoral farming systems in northern Tanzania, including buf-
falo areas. There were no deaths reported due to ECF in vaccinated cattle (n = 50) compared
to 25 deaths due to ECF in those nonvaccinated (50%).

As already mentioned (efficacy as a percentage), Martins et al. [54] conducted a study
to assess the impact of immunisation with the Muguga cocktail, observing 97% vaccinal
efficacy in Endulen, NCA; although the study does not make reference to buffalo, their
presence in this area is highly likely. In a report by Turasha [77], it was concluded that
the Muguga cocktail vaccine was both safe and protective of cattle in pastoral systems in
Kenya, and was protective even where buffalo were present (Loita division).

Kiraithe [52] reported vaccine efficacy of 97.8% in Ole Naishu, Kenya, where contact
with buffalo was minimal, in comparison to Mutara, Kenya, where buffalo and cattle
shared grazing and the vaccine efficacy was lower, at 78.4%. Several possible explanations
for the varied efficacy were given, including level of tick challenge, tick infection rates,
environmental conditions, and interaction with wildlife, in particular buffalo.

As included in the efficacy meta-analysis (protection against ECF mortality), Radley
et al. [38] conducted challenge trials whereby Muguga cocktail-immunised cattle were
exposed to T. lawrencei tick challenge in a buffalo paddock (experiment 2). All six control
animals underwent severe reactions and five died of theileriosis, whereas four of the six
immunised animals underwent severe reactions, with three succumbing to theileriosis.
Similarly, in experiment 3, four Muguga cocktail-immunised cattle exposed in the buffalo
paddock underwent severe reactions, with three of them fatal, compared to all five controls
succumbing to fatal T. lawrencei infections; thus, although demonstrating some protection,
field protection was inadequate.

A series of studies refer to a vaccine field trial conducted in Kenya in 2000, whereby
113 animals were challenged with T. parva from buffalo-associated ticks; 40 immunised
cattle and 13 control cattle developed clinical disease (mostly typical of buffalo-derived T.
parva) and died [49,74,75]. The Muguga cocktail FAO-1 was one of three vaccine stabilates
trialled (also Marikebuni stabilates 316 and 3014); in the 27 animals immunised with the
FAO-1, there were 14 severe reactions, which was the same outcome in the control group
(14/27 severe reactions). Pelle et al. [74] conducted genotypic analyses using samples from
the vaccines trial, and although they did not present clinical reaction data from the trial,
their findings were consistent with immunisation studies demonstrating that immunity
induced by a mix of parasites is not always effective against buffalo-derived challenge.

Sitt et al. [44] observed that both vaccinated and unvaccinated cattle had the same
number (9/12) succumb to T. parva when grazed in a site with buffalo only (no other
cattle) at Ol Pejeta, Kenya, and thus the vaccine did not affect the survival outcome.
Additionally, there was no significant difference in onset or progress of disease in vaccinated
and unvaccinated cattle. The study demonstrated that the Muguga cocktail did not protect
against buffalo-derived T. parva.

3.1.9. Efficacy and Storage Temperature

Two studies assessed how temperature affected vaccine efficacy. Standard medium
for storing and transporting T. parva stabilate for ITM vaccination is liquid nitrogen
(−196 ◦C) [19]. Atuhaire et al. [78] recently investigated vaccine efficacy when Muguga
cocktail stabilate was transferred from liquid nitrogen to −80 ◦C for up to 30 days, and
reported no significant effect in its ability to infect cattle (or cultured PBMCs), thereby
suggesting that dry ice (−79 ◦C) could be a suitable alternative cold chain. Mbassa et al. [55]
also observed that transferring stabilate from liquid nitrogen to −70 ◦C maintained vaccine
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efficacy over a period of six months, with only a slight time-dependent reduction in vaccine
potency.

3.2. Safety
3.2.1. Safety as a Statement (Qualitative)

Ten studies reported on vaccine safety in qualitative terms (Table 5).

Table 5. Studies describing safety qualitatively.

Study Description of Safety

Anon 2007 [68] Reported that vaccine FAO-1 was accepted as safe in Tanzania.

Anon 1998 [50] The study compared 1:80 and 1:100 dilutions of FAO-1 with OTC LA 30 mg/kg and showed that both dilutions
were very safe for field conditions, with no reactors encountered.

Anon 1999 [51] Negligible reactors to either vaccine batch FAO-1 or FAO-2 with a 1:80 dilution and OTC LA 30mg/kg and were
both confirmed as being safe.

ILRI 1996 [79]

Four groups of two cattle were immunised with FAO-1 vaccine dilutions of 1:10, 1:20, 1:40, and 1:80, with
concurrent 20 mg/kg OTC (Terramycin LA 20%), followed by homologous challenge of all immunised as well as

two control animals. None of the vaccinated animals underwent severe reactions, whereas the controls both
reacted severely. It was concluded that even doses of 1:10 were safe.

Mbyuzi et al., 2013 [80] Observed mortality of calves born from immunised dams and reported the requirement for further safety
evaluation and verification.

Mutugi et al., 1997 [70] Reported a 1:80 dose of FAO-1 to be safe, in terms of survival and few reactions.

Mutugi [72]

A review of the safety of the FAO-1 vaccine stated that “the refinement of the vaccine used has given greater
confidence that the ITM procedure is safe and does not compromise productivity”. The review reported that the
majority of the 37,000 cattle immunised in Uganda (1998–2007) showed inapparent or only mild reactions, with

2.7% (1000)undergoing severe reactions and five deaths (0.01%) associated. The 1:80 FAO-1 dilution used in
Kenya “provided a bigger safety margin while at the same time being efficacious (than the 1:60 or 1:100)”, with a

“very high degree of safety margin observed in the field”.

Patel et al., 2016 [71]

A safety and dose determination study was conducted using a three-stage immunisation and challenge trial
(immunizing with ILRI-0804 Muguga cocktail and challenging with FAO-1). Severe reactions were observed in all
animals given undiluted vaccine and all given dilutions from 1:10 to 1:80, with the remaining animals undergoing
mild or inapparent reactions. All control animals underwent severe reactions to challenge. It was concluded that 1

ml of a 1:100 vaccine dose was considered both safe and efficacious.

Tenesi 2015 [58] Vaccinated cattle were followed for five months, and no reactors were observed, concluding that the Muguga
cocktail vaccine was safe.

Turasha 2005 [77]
An immunisation trial in Kenya reported a total of 87 reactors in 4000 immunised cattle (2.2%) and 46 mortalities

(1.1%). Calf mortality had previously been 20–40%, hence safety and efficacy of the vaccine in Kenyan field
conditions were demonstrated.

3.2.2. Shed and Transmission

Thirteen studies reported the presence of Muguga cocktail vaccine components in
unvaccinated cattle (or nontarget animals), with the possibility of sharing of stocks via tick
transmission and unrestricted movement/nomadism of cattle in the region. All studies
reporting possible shed and spread are shown in Table 6.

Table 6. Shed and transmission studies. These studies examined or reported the persistence of vaccine strains in vaccinated
cattle as well as possible transmission of vaccine strains to unvaccinated animals.

Study Year of Study Country Sample Size Description of Possible Transmission
of MC Vaccine Components

Amzati et al., 2019 [81] 2015 DRC and Burundi 480

Muguga vaccine component alleles
present in all AEZs, may be associated

with unrestricted movement of cattle in
the region

Chatanga et al., 2020 [82] 2018 Malawi 254 Possible spread of vaccine components
into unvaccinated cattle
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Table 6. Cont.

Study Year of Study Country Sample Size Description of Possible Transmission
of MC Vaccine Components

De Deken et al., 2007 [83] 2003–2004 Comoros 21 & 6 Vaccinated can shed Muguga and
Kiambu 5

Mwega et al., 2015 [84] 2012 Tanzania 39 Some field samples genetically related to
Muguga vaccine isolate

Geysen et al., 1999 [85] 1996–1997 Zambia 12 (isolates) Possible tick transmission of MC vaccine
components

Gwakisa et al., 2020 [86] Tanzania 410
Detection of vaccine component in
co-grazing unvaccinated, possible

vaccine transmission

Kerario et al., 2019 [87] 2014–2015 Tanzania 130
Indication of genotype sharing as
Muguga vaccine isolate clustering

despite no vaccination

Magulu et al., 2019 [88] Tanzania 336

Muguga vaccine-specific alleles detected
in unvaccinated cattle—potentially

transmitted by ticks from vaccinated to
unvaccinated

Mbyuzi et al., 2013 [80] 2010–2011 Tanzania 768

84% ECF cases in calves born to
immunised cattle—possibility of vertical
transmission of Muguga cocktail vaccine

parasites

Nambota et al., 1997 [89] Zambia 17 (stocks) Possible introduction of Theileria stocks
via MC use

Oura et al., 2004 [66]

Observed persistence of the Kiambu 5
strain in cattle for up to two years in

Uganda, in comparison to the Muguga
and Serengeti strains which were largely
eliminated by three months. There was
no evidence of transmission of vaccine

stocks to unvaccinated in-contact
animals (over a one-year period)

Oura et al., 2007 [90] 2000–2004 Uganda 36

Presence of Kiambu 5 stock in
unvaccinated cattle, indicating “foreign”
vaccine stocks will be introduced to local

cattle and tick populations

Rukambile et al., 2014 [91] Tanzania 102

Isolation of Muguga stock in areas where
no immunisation. Cannot exclude
possibility of vaccine derived as

extensive nomadism, thus sharing of
stocks likely to occur

3.3. OTC Safety and Efficacy

A potential confounding factor in the safety and efficacy of the ITM vaccine is the
long-acting oxytetracycline (OTC) used to control the clinical response to infection, as
there is a variety of OTC formulations. Radley et al. [10–12] first described the use of
oxytetracycline (OTC), with a series of daily injections, before the availability of a long-
acting (LA) formulation. A series of studies used a 20 mg/kg OTC LA dose rate in
determining the optimal therapeutic vaccine dose; however, there were reports of some
adverse clinical reactions to vaccination [19]. The OTC LA dose rate was increased to
30 mg/kg, but the volume was sometimes very high using the 20% formulation; a 30%
formulation became available, and both the frequency and severity of vaccination reactions
were reduced when using 30 mg/kg. Lynen et al. [92] conducted a series of experiments
using two OTC LA formulations (20% and 30%) and observed significant reductions in
both mild and severe reactions when using the 30% formulation (7.1% mild reactors with
30% compared to 21.4% with 20%, and 7.4% severe reactors with 30% compared to 44%
with 20%). Additionally, vaccine reactors reduced in the field, from around 15% to less
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than 1%, after the 30% formulation was introduced. Anon [50], Anon [51], and Anon [68]
also reported preferential use of the 30 mg/kg formulation.

A study by Clarke et al. [93] was conducted to compare the pharmacokinetics of two
long-acting OTC preparations, manufactured by Boehringer Ingelheim and Merial, respec-
tively. Both preparations were given at the same dose (20 mg/kg) via the subcutaneous
or intramuscular route in Hereford steers. The pharmacokinetics in all four settings (two
manufacturing brands, two routes of administration) were very similar, with only marginal
differences, concluding that both OTC products were bioequivalent.

A study to compare 30% OTC LA given at 30 mg/kg and 40 mg/kg observed that
there were fewer reactions with the higher dose, but there were also fewer vaccine serocon-
versions, and as such, the 30 mg/kg dose was considered optimal [94].

4. Discussion

Veterinary vaccines have brought significant benefits to animal health and production,
with research advances bringing about safe and more effective vaccines [95]. This review
aimed to examine the evidence regarding the safety and efficacy of the Muguga cocktail
vaccine, an unconventional vaccination procedure to protect cattle from ECF. A total of
61 studies met the criteria to be included in the systematic review. It was possible to
conduct meta-analyses for ECF mortality in vaccinated and control animals, as well as
for severe reactors in vaccinated and control animals. Other studies were synthesised in
narrative summaries.

Results of the meta-analysis of ECF mortality showed a significant effect favouring
vaccination (OR: 0.06; 95% CI: 0.04–0.09, p < 0.00001). With all 18 studies (27 trials) in-
cluded in the meta-analysis, heterogeneity was relatively low at 26%; however, following
sensitivity analysis by excluding the Sitt et al. [44] study (OR = 1), heterogeneity reduced
greatly to only 6%, indicating a highly homogenous dataset, i.e., the studies were similar.
Meta-analysis of severe reactors to challenge also showed a significant effect favouring
vaccination (OR: 0.06; 95% CI: 0.02–0.17; p < 0.00001). There was heterogeneity observed in
the overall effect (61%); however, this was reduced to 37% when the dataset was reanalysed
with Bishop et al. [49] excluded, and reduced to 56% when Melewas et al. [48] was excluded,
suggesting differences in these studies from the others. Possible differences include the
buffalo-associated tick challenge in the Bishop et al. [49] study potentially resulting in the
vaccine being less efficacious, and in the Melewas et al. [48] study, the trial was conducted
in August–September, considered the season of high ECF challenge.

Evidence of vaccine efficacy was synthesised, both quantitatively and qualitatively.
For the seven studies presenting calculated percentage efficacy, not all studies calculated
efficacy correctly (as defined by Thrusfield [33]). The percentage efficacy reported, how-
ever, ranged from 70 to 97.9%. Efficacy was also reported qualitatively by eight studies.
The majority (seven of eight) of studies reported the Muguga cocktail to be efficacious,
with statements such as “very high degree of vaccine efficacy” [68], “good margin of
vaccine efficacy” [70], and “efficacy is exemplified by the successful immunisation of some
400,000 cattle in Uganda and Tanzania in recent years” [72]. A single study by Steinaa
et al. [73] reported no substantive difference in protection with the Muguga cocktail in
comparison to a single T. parva strain (Muguga), suggesting limited antigenic diversity in
the cocktail. Although not stated explicitly, efficacy was implied.

Efficacy based on seroconversion. Seroconversion following immunisation is indica-
tive of vaccine viability [55] but not necessarily efficacy. A viable vaccine administered
properly is expected to induce seroconversion of 80–90% [59]. The ten studies that de-
scribed seroconversion rates reported figures from 55.6% to 100% seroconversion; thus,
not all studies reported seroconversion within the range considered acceptable for a viable
vaccine. Wesonga et al. [59] reported that the inadequate seroconversion observed at one of
the study sites (Mutara) was likely due to the viability of the vaccine having been reduced
during storage or transfer and that, despite careful handling by experienced vaccinators, it
is thought that this is a common occurrence in the field. Poor handling has been shown to
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influence the efficacy of the vaccine, and seroconversion <70% is thought to be indicative
of poor handling, e.g., poor inoculation technique or cold chain issues [59].

Proximity to buffalo. Studies were analysed with regards to vaccine efficacy specifi-
cally in proximity to buffalo. It has been shown in cattle co-grazed with buffalo that there
is greater antigenic diversity in buffalo-derived T. parva and that the cattle-maintained
parasite population is a subset [74,87,96–99], which is thought to affect the efficacy of
the vaccine (with limited diversity) at the cattle–buffalo interface. Ten studies reported
use of the Muguga cocktail in areas where buffalo were known to be present. Four of
the studies reported the Muguga cocktail to be efficacious even when used in areas with
buffalo [13,54,76,77]. Two studies reported reduced or partial protection [38,52], and four
studies observed ineffective protection when the vaccine was used to protect against
buffalo-derived challenge, including the three studies sharing the same samples from a
cattle–buffalo interface [44,49,74,75]. Reduced efficacy in proximity to buffalo was also
demonstrated inadvertently in the mortality meta-analysis, whereby the outcome effect
of the Sitt et al. [44] study had a higher OR compared to other studies, and its removal
from the meta-analysis reduced the heterogeneity greatly. There are no readily appar-
ent explanations for the varied vaccine efficacy observed in the studies, but it is likely
that the environmental conditions, degree of tick challenge and tick infection rates, par-
asite population genetics, and level of interaction with wildlife all play important and
interconnected roles.

Immunity onset and duration. Evidence of onset and duration of immunity were
assessed as parameters of vaccine efficacy. In the six studies reporting onset of immunity,
seroconversion was observed between day 28 and day 48, with most studies reporting
seroconversion by day 35. With regard to duration of immunity, it is generally considered
that lifelong immunity is induced in vaccinated cattle [9]; however, only a single study
reported duration of immunity.

The final parameter considered was vaccine storage temperature and vaccine efficacy.
Atuhaire et al. [78] observed no significant effect when Muguga cocktail stabilate was
stored at −80 ◦C for 30 days. Similarly, Mbassa et al. [55] observed −70 ◦C maintained
vaccine efficacy over six months. These studies indicate that dry ice could be used in an
alternative cold chain.

Vaccine safety. Equally important to vaccine efficacy is vaccine safety. A reactor rate
of 0.5% (5 in 1000) is regarded as acceptable [57]. Ten studies reported vaccine safety
qualitatively, with nine of them reporting the Muguga cocktail to be considered safe, with
statements such as “very safe for field conditions”, “concluded even doses of 1:10 were
safe”, and “safe in terms of survival and few reactions”. A single study by Mbyuzi et al. [80]
reported mortality in newborn calves from vaccinated dams, stating that further safety
evaluation was required. Due to the lethal nature of the vaccine stocks, the severity of
reactions tends to reduce the safety margin, which is thought to reduce its uptake [55] as
farmer confidence of the vaccine is affected [57].

Thirteen studies described the persistence of vaccine components in unvaccinated
(nontarget) animals. The possibility of shedding into the environment, and cross infection
of nontarget animals, can lead to unintended severe adverse events (SAEs) [100], and
transmission of vaccine components into the field has understandably caused concern that
recombinant parasite populations could be established against which the Muguga cocktail
is not effective; however, it is also possible that vaccine antigens in field parasites could
augment vaccine effectiveness [13]. Whilst there may indeed be a risk of transmission,
it is largely speculative and is not specific to vaccination, with the potential to occur in
naturally infected animals as well, and after four decades of use, there has been no such
occurrence of SAEs reported.

Safety and efficacy of OTC. As concurrent administration of OTC is essential with the
ITM vaccine, safety and efficacy of OTC were also assessed in this review. It was reported
that 30 mg/kg OTC was optimal [94] and 30 mg/kg was reported as preferred and more
effective [92]. Three further studies also reported preferential use of 30 mg/kg [50,51,68].
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Risk of bias. Bias is an essential consideration in conducting systematic reviews.
Almost all of the included studies were judged overall as high risk of bias, based on
selection and performance biases, although generally studies had low risk of bias for
attrition and reporting. As well as from the individual studies, there is always the risk
of bias in the results of meta-analyses if there is the absence of studies that should have
been included [101]. Systematic review can fail to identify all eligible studies, for example,
those in inaccessible publications, resulting in publication bias, or studies may present the
most significant results, resulting in reporting bias [102]. The low risk of reporting bias is
suggestive that there is not an absence of studies or results that should have been included
in this review.

Many signalling questions were judged as “unclear” risk of bias. This was not ex-
pected; however, reporting of experimental methodology details in animal studies is
considered poor [103]. This highlights the requirement for improved methodology in
animal studies, or at least improved reporting of methodological details. For example,
animal weight is an essential requirement in order to administer the correct dose of ITM
vaccine, and therefore weights must have been recorded, yet very few studies reported
this baseline characteristic. In general, the more recent studies tended to report study
methodology more thoroughly than the older studies.

Study limitations. There are numerous difficulties in animal challenge studies, in-
cluding ensuring the “three Rs rule”, to replace, reduce, and refine animal tests wherever
possible [18] and, as such, sample sizes are often very small. Statistically significant data
from field efficacy studies can be difficult to obtain, and due to uncontrollable outside vari-
ables, these studies can be inconclusive. As such, it can be necessary to combine laboratory
and field study efficacy data in order to demonstrate product efficacy, with a posteriori field
studies linked to vaccine surveillance [18] or vaccinovigilance [104]. There were numerous
uncontrolled variables in study design, and study design features were often not reported,
including time of year (with respect to seasonality of ECF), vaccine batch and dose, and
OTC dose. Challenge stabilates were also highly varied, often using local stocks. While
these study design features could not be controlled for, they do, however, represent a
real-life situation, where animals are challenged with local T. parva populations and at
varying times of the year.

Several factors influence vaccine efficacy, including host, human, environmental, and
intrinsic vaccine factors [95], and factors of vaccine safety go beyond manufacture, testing,
and trials, and include safe vaccine transportation, administration, and surveillance [105],
as demonstrated in this review. The positive impact of the vaccine on livelihoods has been
demonstrated in studies such as Homewood et al. [69], where calf mortality was reduced
significantly. However, it was also observed that poorer livestock keepers vaccinated
only a small proportion of their younger stock compared to wealthier farmers. It is
thought that this variation in livelihood impact was due to cost as well as vaccine pack-size
discriminating against the smallholders. While the economic benefit of the Muguga cocktail
vaccine was not included in this review, it has been said that it offers a less expensive and
more effective control option, without dependence on costly acaricides [106].

5. Conclusions

The studies in this review present the available evidence for safety and efficacy of
the Muguga cocktail vaccine. Overall, the evidence—both quantitative and qualitative—
indicates that the vaccine is both safe and efficacious, although the review did identify
some areas of uncertainty. With regards to safety, the study by Mbyuzi et al. [80] was
the only apparent study with data on use of the Muguga cocktail in pregnant animals.
It is anticipated that many pregnant (and lactating) animals must have been vaccinated
with no safety concerns reported; however, this is an area requiring further research. The
presence and persistence of vaccine components in nonvaccinated animals require further
genotyping studies and, importantly, molecular epidemiological surveillance studies. With
regard to efficacy, the reduced vaccine efficacy sometimes reported in cattle in proximity to
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buffalo also requires further comparative analyses of the population genetics of T. parva
populations in sympatric cattle and buffalo in order to better understand the barriers to
effective protection.

There is an inextricable link between livestock health and the health, wellbeing, and
livelihoods of livestock keepers. Considering the magnitude of economic damage caused
by theileriosis, vaccination with the Muguga cocktail ITM vaccine should be an accessible
and affordable control option for even the smallest of livestock keepers, allowing for
positive impact on animal health and production, and, importantly, livelihoods of all scales.
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