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MMV-Net: A Multiple Measurement Vector
Network for Multi-frequency Electrical Impedance

Tomography
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and Yunjie Yang, Member, IEEE

Abstract—Multi-frequency Electrical Impedance Tomography
(mfEIT) is an emerging biomedical imaging modality to reveal
frequency-dependent conductivity distributions in biomedical ap-
plications. Conventional model-based image reconstruction meth-
ods suffer from low spatial resolution, unconstrained frequency
correlation and high computational cost. Deep learning has been
extensively applied in solving the EIT inverse problem in biomed-
ical and industrial process imaging. However, most existing
learning-based approaches deal with the single-frequency setup,
which is inefficient and ineffective when extended to the multi-
frequency setup. This paper presents a Multiple Measurement
Vector (MMV) model based learning algorithm named MMV-
Net to solve the mfEIT image reconstruction problem. MMV-Net
considers the correlations between mfEIT images and unfolds the
update steps of the Alternating Direction Method of Multipliers
for the MMV problem (MMV-ADMM). The non-linear shrinkage
operator associated with the weighted l2,1 regularization term
of MMV-ADMM is generalized in MMV-Net with a cascade
of a Spatial Self-Attention module and a Convolutional Long
Short-Term Memory (ConvLSTM) module to better capture
intra- and inter-frequency dependencies. The proposed MMV-
Net was validated on our Edinburgh mfEIT Dataset and a
series of comprehensive experiments. The results show superior
image quality, convergence performance, noise robustness and
computational efficiency against the conventional MMV-ADMM
and the state-of-the-art deep learning methods.

Index Terms—Deep learning, Electrical Impedance Tomog-
raphy (EIT), multi-frequency, Multiple Measurement Vector
(MMV), image reconstruction.

I. INTRODUCTION

B IO-IMPEDANCE as an indicator of the physiological
status of biological tissues varies with frequency. Electri-

cal Impedance Tomography (EIT) is a non-intrusive and non-
destructive imaging modality for revealing the cross-sectional
conductivity distribution from a sequence of boundary current
injections and induced differential voltage measurements [1].
The EIT inverse problem reconstructs the conductivity inside
the Region Of Interest (ROI) based on the voltage measure-
ments. EIT is fast, low-cost, portable, non-intrusive, label-free
and radiation-free, making it an up-and-coming candidate in
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biomedical imaging. Emerging applications include functional
lung imaging [2], stroke diagnosis [3], [4], and biological
tissue imaging [5], [6]. As the impedance spectra of biolog-
ical tissues are frequency-dependent, differences in electrical
properties between various tissues can be exploited to benefit
physiological and pathological diagnostics for tissue differen-
tiation, early cancer detection, and tumor or stroke imaging
[6], [7]. This motivates the development of multi-frequency
EIT (mfEIT) [8], which measures the bio-impedances under
different frequencies of interest and employ them to recon-
struct a set of multi-frequency conductivity images related to
tissue properties.

The mfEIT-image-reconstruction problem concerns the si-
multaneous reconstruction of multiple conductivity images of
selected frequencies. The problem is fundamentally challeng-
ing because of its non-linearity, severe ill-posedness, sensitiv-
ity to modelling and measurement errors, and high computa-
tional cost. However, existing literature mainly focuses on ad-
vancing mono-frequency EIT image reconstruction algorithms
based on the Single Measurement Vector (SMV) model [9]–
[13]. The effort in developing effective and efficient mfEIT
image reconstruction algorithms has been relatively limited.
A straightforward way is to recover the image under each
frequency individually using the SMV-based methods while
ignoring the correlations among conductivity images over the
selected frequencies. In contrast, the Multiple Measurement
Vector (MMV) model [14] as an extension of SMV considers
the mfEIT measurements as a whole and can simultaneously
reconstruct multiple conductivity images of given frequencies
with higher quality by exploiting the inherent correlation
between multi-frequency images. Specifically, it enforces the
joint-sparsity constraint to each pixel within the ROI to exploit
the spatial structure. The hypothesis is that solutions for all
frequencies have common profiles but unnecessarily similar
magnitudes. To optimize the MMV model, the MMV-ADMM
algorithm adopts the extensively utilized Alternating Direction
Method of Multipliers (ADMM) [15], [16], which has been
introduced in hyperspectral imaging [17] and multi-frequency
Electrical Capacitance Tomography (ECT) [18]. Alternatively,
Liu et al. [19] and Xiang et al. [20] extended the SMV-
based Sparse Bayesian Learning (SBL) framework based on
the MMV model for multi-frequency tomographic imaging.
However, the MMV-SBL approaches rely heavily on the spar-
sity assumption, leading to considerably degraded performance
in non-sparse scenarios. These existing MMV algorithms
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generally require manual determination of regularization terms
and fine-tuning of hyper-parameters, such as penalty param-
eters and step sizes. In addition, the computational cost is
considerable, preventing their wide adoption in biomedical
applications that desire real-time imaging capability.

Recently, deep learning has proven its effectiveness for
medical tomographic image reconstruction with noteworthy
improvement of image quality and speed [21]. Deep neu-
ral networks composed of a stack of layers automatically
learn complicated functions from large-scale training datasets
without requiring manually designed priors. Learning-based
methods are also desirable for real-time imaging due to
the faster execution time against conventional model-based
algorithms. Existing learning-based EIT image reconstruction
algorithms can be classified into three categories [22]: (a)
fully learning approaches that directly map measurement data
to a conductivity image [23]; (b) image post-processing ap-
proaches that employ a trained network to eliminate artifacts
of a preliminary conductivity image obtained from model
based algorithms [24], [25]; (c) model-based deep learning
approaches that unroll a finite number of iterations of the
model based methods into a network, e.g. FISTA-Net [22],
MoDL [26], ADMM-CSNet [27] and ISTA-Net [28].

The main drawback of generic deep networks in (a) and
(b) via end-to-end training is the lack of interpretability and
the underlying structures neglect the physical processes of the
inverse problem. In contrast, the unrolling approaches in (c)
are capable of incorporating the advantages of physical model-
based methods and deep neural networks. However, the state-
of-the-art model-based deep learning approaches in EIT only
address the mono-frequency image reconstruction problem.
Model-based learning for mfEIT image reconstruction remains
an open problem. Therefore, this paper focuses on developing
an effective model-based deep learning approach to solve the
mfEIT inverse problem. We aim to exploit intra- and inter-
frequency dependencies to improve multi-frequency image
quality. The proposed approach, named as MMV-Net, unrolls
the MMV-ADMM algorithm into a single pipeline (see Fig. 2).
MMV-Net is composed of multiple blocks, each of which
corresponds to one iteration. The non-linear shrinkage opera-
tion in each block is approximated and generalized by a deep
network. MMV-Net is fundamentally different from ISTA-Net
[29] and FISTA-Net [30]. Although MoDL, ADMM-CSNet
and MMV-Net have a similar structure based on ADMM,
MoDL and ADMM-CSNet are exclusively designed for SMV-
based imaging. In contrast, MMV-Net goes beyond to provide
simultaneously multiple conductivity images constrained by
frequency correlations to promote image quality. The main
contributions of this paper are as follows:

1) A novel model-based deep learning approach is pro-
posed for simultaneous mfEIT image reconstruction.
The proposed MMV-Net tackles the inherent limitations
of the conventional MMV-ADMM approach. Parameters
across all iteration blocks are shared and learned through
end-to-end training.

2) A dedicated network is developed to substitute the non-
linear shrinkage operator, which learns a more general
regularizer to incorporate spatial and frequency correla-

tions between mfEIT images. The unique design could
boost the reconstruction performance of mfEIT.

3) The proposed MMV-Net has much fewer parame-
ters than the state-of-the-art model-based learning ap-
proaches, e.g. MoDL [26] and FISTA-Net [22] (by 12.8
and 8.5 times, respectively), making it easier to train
even with a smaller dataset.

4) The Edinburgh mfEIT Dataset is constructed for mfEIT
image reconstruction. The dataset mimics tissue engi-
neering applications and comprises 4×12, 414 randomly
generated multi-object, multi-conductivity phantoms at
four distinct frequencies.

5) MMV-Net is thoroughly evaluated on the Edinburgh
mfEIT Dataset and various real-world experiments, and
achieves superior reconstruction quality, convergence
performance, and noise robustness, compared to the state
of the art, such as MMV-ADMM [18], MoDL [26], and
FISTA-Net [22].

The remainder of this paper is organized as follows. In
Section II, we present the problem formulation of mfEIT
and elaborate the proposed MMV-Net. Section III describes
the Edinburgh mfEIT Dataset, experiment implementation,
and simulation and experimental results. Section IV draws
conclusions and discusses future work.

II. METHODOLOGY

A. Multi-frequency EIT

Consider difference imaging of mfEIT [31], voltage changes
∆V ∈ Rm×l at a set of excitation frequencies {f1, f2, . . . , fl}
are measured to reconstruct the conductivity changes ∆σσσ ∈
Rn×l. The MMV model [14] of mfEIT linearly approximates
the relationship between ∆V and ∆σσσ by

∆V = A∆σσσ (1)

where A ∈ Rm×n (m� n) denotes the sensitivity matrix.
We define ∆V = [∆vf1 ,∆vf2 , . . . ,∆vfl ], where ∆vfi ∈

Rm×1(i = 1, . . . , l) denotes the ith column of ∆V. The first
method to obtain voltage changes leverages Time-Difference
(TD) measurements [32], i.e. ∆vfi = vfi(t1)−vfi(t0), which
requires mfEIT measurements at two time instants t0 and t1,
i.e. vfi(t1), and vfi(t0) ∈ Rm×1. Another prevailing method is
to utilize Frequency-Difference (FD) measurements [33]. The
FD approach employs voltage changes at different frequencies,
i.e. ∆vfi = vfi − vf0 , where f0 is the reference frequency.

For convenience, we use B and X as substitutes for ∆V
and ∆σσσ respectively in the rest of the paper. Typically, the
MMV model-based mfEIT image reconstruction problem can
be solved by addressing the constrained optimization problem:{

min
X
R(X)

s.t.AX = B
(2)

where R(·) denotes the regularization function, which encodes
the a priori knowledge of the conductivity distribution X. The
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MMV model uses the weighted l2,1 regularization to promote
the joint sparsity [18], [34]:min

X
‖X‖w,2,1 :=

n∑
i=1

wi ‖Xi‖2

s.t.AX = B
(3)

where wi(i = 1, . . . , n) is a positive scalar and Xi is the ith

row of X.

B. MMV-ADMM for mfEIT image reconstruction

The MMV-based mfEIT-image-reconstruction problem in
(3) can be efficiently solved using the classic Alternating
Direction Method of Multipliers (ADMM) [15], [16]. By
introducing an auxiliary vector Z ∈ Rn×l, the problem in
(3) is equivalent to{

min
X,Z
‖Z‖w,2,1

s.t.Z = X,AX = B.
(4)

The augmented Lagrangian problem of (4) is

min
X,Z
‖Z‖w,2,1 −ΛΛΛT

1 (Z− X) +
β1

2
‖Z− X‖22−

ΛΛΛT
2 (AX− B) +

β2

2
‖AX− B‖22

(5)

where ΛΛΛ = {ΛΛΛ1 ∈ Rn×l,ΛΛΛ2 ∈ Rm×l} are Lagrangian
multipliers and β = {β1, β2 > 0} are penalty parameters.
The ADMM is then applied to solve (5) through the following
steps: 

arg min
X

ΛΛΛT
1 X + β1

2 ‖Z− X‖22 −ΛΛΛT
2 AX

+β2

2 ‖AX− B‖22,
arg min

Z
‖Z‖w,2,1 −ΛΛΛT

1 Z + β1

2 ‖Z− X‖22,

ΛΛΛ1 ←− ΛΛΛ1 − γ1β1(Z− X),

ΛΛΛ2 ←− ΛΛΛ2 − γ2β2(AX− B),

(6)

where γ = {γ1, γ2 > 0} are step lengths for the Lagrangian
multipliers.

The first step in (6) is a convex quadratic problem, which
has a closed-form solution:

X = (β1I + β2ATA)−1(β1Z−
ΛΛΛ1 + β2ATB + ATΛΛΛ2)

(7)

where I ∈ Rn×n is an identity matrix.
To avoid large matrix inversion and reduce the computation

cost, we in this work adopt the gradient descent method as a
substitute for (7):

X←− X− η∇X;Z,ΛΛΛ1,ΛΛΛ2
(8)

where η is the step size, and ∇X;Z,ΛΛΛ1,ΛΛΛ2
is the gradient of

the first step in (6) with respect to X given {Z,ΛΛΛ}, which is
defined by:

∇X;Z,ΛΛΛ1,ΛΛΛ2
= (β1I+β2ATA)X− (β1Z−

ΛΛΛ1 + β2ATB + ATΛΛΛ2)
(9)

𝑿! …𝑿" 𝑿#$! 𝑿#

Frequency

x

y

Inter-frequency Correlation
(Joint Sparsity Constraint) 

Intra-frequency Correlation

Fig. 1. Illustration of intra- and inter-frequency correlation between mfEIT
images.

Thus, to solve (4) with ADMM, we have the following
updates at the kth iteration:

X(k) = X(k−1) − η∇X(k−1);Z(k−1),ΛΛΛ
(k−1)
1 ,ΛΛΛ

(k−1)
2

, (10a)

Z(k) = S(X(k) + 1
β1

ΛΛΛ
(k−1)
1 , wβ1

), (10b)

ΛΛΛ
(k)
1 = ΛΛΛ

(k−1)
1 + γ1β1(X(k) − Z(k)), (10c)

ΛΛΛ
(k)
2 = ΛΛΛ

(k−1)
2 + γ2β2(B− AX(k)), (10d)

where k ∈ {1 . . .Ks} is the iteration index, and S(·) rep-
resents a row-wise shrinkage operator associated with the
weighted l2,1 regularization:

Z(k)
i = max

{∥∥∥∥X(k)
i +

1

β1
(ΛΛΛ1)

(k−1)
i

∥∥∥∥
2

− wi
β1
, 0

}
·

X(k)
i + 1

β1
(ΛΛΛ1)

(k−1)
i∥∥∥X(k)

i + 1
β1

(ΛΛΛ1)
(k−1)
i

∥∥∥
2

, for i = 1, . . . , n.
(11)

In this work, we propose to approximate S(·) through
the data-driven method. Instead of directly applying (11)
to only promote the joint sparsity, MMV-Net aims to learn
a more general S(·) to exploit both the spatial correlation
and the inherent correlation across different frequencies (see
illustration in Fig. 1), to simultaneously reconstruct the multi-
frequency conductivity distributions effectively and efficiently.

C. MMV-Net for mfEIT image reconstruction

For the mfEIT-image-reconstruction problem, the conven-
tional ADMM (MMV-ADMM) has limitations in three re-
spects: a) typically it requires hundreds of iterations to achieve
the optimum, which degrades the computational efficiency to
a significant extent [17], [18]; b) the non-linear shrinkage
operator S(·) is only valid for specific image patterns (e.g.
sparsity [35], group sparsity [18]); c) it is non-trivial to fine-
tune the algorithm parameters {β, γ, η}.

To address the above issues, we propose a deep architecture
named MMV-Net for mfEIT image reconstruction by unrolling
the iterative MMV-ADMM algorithm. MMV-Net combines the
model-based method and the deep neural network for mfEIT
image reconstruction to exploit advantages from both sides.
We map the four update procedures in (10a)-(10d) into an
unfolded data flow with Ks iterations as illustrated in Fig. 2.
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Algorithm : MMV-ADMM for mfEIT Image Reconstruction

Input : mfEIT measurement data 𝑩. 
Initialize : 𝑿(")	using (12),	𝒁(")= 𝟎, 	𝚲$

(") = 𝟎, 𝚲%
(") = 𝟎.

for 𝑘 = 1, 2,… , 𝐾& do
Update 𝑿(') using (10a);
Update 𝒁(') using (10b);
Update	𝚲$

(') using (10c);
Update 𝚲%

(') using (10d).
end for
Output : Estimated multi-frequency images 𝒁(𝑲𝒔). 
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Fig. 2. (a) The iterative MMV-ADMM algorithm. (b) Illustration of the four updating steps at the kth iteration corresponding to (10a)-(10d). (c) Overall
architecture of the proposed MMV-Net. MMV-Net is an unrolled architecture for Ks iterations. It alternates among the four update steps. These update steps
share parameters across all iterations.

The input of the MMV-Net is the mfEIT measurement data
B. Z(0), ΛΛΛ

(0)
1 , and ΛΛΛ

(0)
2 are initialized as zeros. X(0) is obtained

by employing the one-step Gaussian Newton solver with the
Laplacian filter [36]:

X(0) = (ATA + λLTL)−1ATB (12)

where L is the Laplacian matrix, and λ is the regularization
factor. The initialization results are then utilized to generate
the final multi-frequency conductivity images Z(Ks) after Ks

iterations. The subsequent part of MMV-Net comprises of Ks

blocks, where the kth block corresponds to the kth iteration
of the MMV-ADMM algorithm. Each block consists of four
update steps corresponding to one iteration of MMV-ADMM
in (10a)-(10d), including gradient descent (X) update, auxiliary
variable (Z) update, the first multiplier (ΛΛΛ1) update, and the
second multiplier (ΛΛΛ2) update. The following parts discuss the
four update steps at the kth iteration in detail.

1) X(k) update: This update step implements the gradient
descent method. It generates the immediate result X(k). Given
X(k−1), Z(k−1), ΛΛΛ

(k−1)
1 , and ΛΛΛ

(k−1)
2 , which are obtained from

the previous (k − 1)th iteration, the output X(k) is computed
according to (10a).

2) Z(k) update: This step updates the auxiliary variable by
unrolling the generalized non-linear operator S(·) in (10b),
where the prior knowledge is integrated. For mfEIT, it is cru-
cial to learn intra- and inter-image correlations simultaneously
with respect to frequency channels (see Fig. 1). With this pur-
pose, we propose to design S(·) as a deep neural network, in
particular, a cascade of a Spatial Self-Attention (SSA) module

and a Convolutional Long Short-Term Memory (ConvLSTM)
module. Fig. 2(b) illustrates how (10b) is mapped into a
network. First, a more general combination of X(k) and ΛΛΛ

(k−1)
1

is learned by two 1× 1× 1 convolutional layers respectively
and an element-wise sum. Afterwards, we apply the SSA
and ConvLSTM to improve reconstruction performance of
Z(k). Let Conv1(·) and Conv2(·) be the two convolutional
layers, FSSA(·) and FLSTM (·) be the function of SSA and
ConvLSTM, respectively, then (10b) can be reformulated as:

Z(k) = FLSTM (FSSA(Conv1(X(k)) + Conv2(ΛΛΛ
(k−1)
1 )))

(13)
The detailed design of the SSA and ConvLSTM is elabo-

rated as follows.
Spatial self-attention module FSSA(·): our previous work

[37] observed that by explicitly learning the structural infor-
mation of the conductivity image, significant image quality
improvement can be achieved in terms of spatial resolution
and accuracy. This idea is inherited by using a spatial self-
attention module to determine the structural information under
each frequency channel to extract inter-frequency correlations.

The family of attention modules is capable of modeling
long-range dependencies in natural language processing and
computer vision. As a variation of attention, self-attention
mechanism was firstly proposed to extract global dependencies
of inputs for machine translation [38]. [39] and [40] extended
the self-attention mechanism to video classification and image
segmentation, respectively. Self-attention is usually inserted
in a network and generates importance maps to refine the
high-level feature maps. As a result, important regions can
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be focused on and feature representations are enriched with
contextual relationships for intra-image compactness.

Inspired by the self-attention mechanism, the proposed
SSA adopts the structure of a symmetric encoder–decoder
network, embedded with a self-attention mechanism to the
encoder output. An encoder is typically composed of a stack
of convolutional layers with activation layers to extract la-
tent feature representations. For instance, Wang et al. [39]
and Fu et al. [40] employed the pretrained ResNet [41] as
the backbone. He et al. [42] used a lightweight backbone
based on ShuffleNetV2 [43] followed by a deformable context
feature pyramid network to improve the adaptive capability
of multiscale features. As the reconstructed mfEIT images
under all frequencies share the same structure, the encoder
part first introduces a 3 × 3 convolutional layer producing
one output channel. Then, we apply two 2 × 2 convolutional
layers with a stride of 2. Each layer is followed by a Batch
Normalization layer and an ELU layer. The encoder outputs
a feature representation E with size of C ×H ×W , which is
fed into three 3 × 3 convolutional layers to generate feature
maps queries Q, keys K and values V, respectively. Q, K and
V now have the size as E. They are all reshaped to C × P ,
where P = H ×W . Q and K are multiplied and fed into a
softmax layer to generate a score/attention map S with size of
P ×P . Afterwards S and V are multiplied and reshaped back
to C × H ×W . We then perform residual learning through
a skip connection to E. Finally, the decoder is applied and it
comprises two 2×2 deconvolutional layers with a stride of 2,
each of which is followed by a BatchNorm layer and an ELU
layer. The final output is the contextualized representation of
structure information R(k) ∈ Rm×l.

Convolutional LSTM module FLSTM (·): based on the
structure information R(k), we then attempt to learn the
inter-frequency correlations by reconstructing the trend of the
varying conductivity contrast along the frequency domain,
meanwhile preserving the general structures learned from the
SSA.

We view the contextualized representation R(k) as a set of
sequential images, i.e. {r(k)

i }li=1, where r(k)
i ∈ Rm represents

the ith column of R(k). To tackle this sequence-to-sequence
(seq2seq) problem, Recurrent Neural Network (RNN) and
LSTM models [44], [45] are in a dominant position in the
field of deep learning. One drawback of RNNs/LSTMs is
that they require considerable memory to store intermedi-
ate cell gate parameters, especially for long sequences and
high dimensional inputs, on account of the usage of full
connections. Though powerful enough to capture temporal
correlations, the fully-connected layers raise redundancy and
distortion for spatial data. In contrast, Convolutional LSTM
(ConvLSTM) [46] is more computationally efficient as it
replaces the fully-connected layers with convolutional layers.
This operation further preserves spatial correlations with much
fewer parameters and better generalization, meaning that we
could employ more parameters to construct the SSA.

To learn the changes of conductivity contrast along with the
frequency, we take advantage of ConvLSTMs. The proposed
ConvLSTM module has a stack of multiple ConvLSTM layers
with a kernel size of 3 × 3. We set the layer number as two

by default. We finally apply an additional 1× 1 convolutional
layer and a ReLU layer to generate Z(k).

3) ΛΛΛ
(k)
1 update: The multiplier update step corresponds

to (10c). As shown in Fig. 2(b), the residual (X(k) − Z(k))
first goes through a 1 × 1 × 1 convolutional layer, which is
expected to learn γ1β1. Then we perform an element-wise sum
operation between the residual and Z(k−1) to obtain the output
ΛΛΛ

(k)
1 .
4) ΛΛΛ

(k)
2 update: Fig. 2(b) also illustrates the multiplier up-

date according to (10d) with inputs of ΛΛΛ
(k−1)
2 and (B−AX(k)).

Similar to the update of ΛΛΛ1, we decompose this operation to
a 1 × 1 convolutional layer to learn the product γ2β2 and an
element-wise sum to generate ΛΛΛ

(k)
2 .

Given a training dataset D with ND pairs of samples, we
define the objective function as the Mean Square Error (MSE)
between the predicted images Z(Ks) and the ground truth
X(gt):

L =
1

ND

∑
(B,X(gt))∈D

∥∥∥Z(Ks) − X(gt)
∥∥∥2

. (14)

D. Network Training

We train the MMV-Net using PyTorch and employ Adam
[47] for optimization with the batch size of 6. Similar
to [22], [26]–[28], the non-linear operator and parameters
ΘΘΘ = {Conv1(·), Conv2(·),FSSA(·),FLSTM (·), β, γ, η} are
all learned from training data, rather than hand tuning. We
employ the parameter-sharing strategy to penalize the re-
cursive network size for effective learning, where ΘΘΘ of the
MMV-Net are shared across all iterations. Inspired by the
training approach in [26], we adopt a three-step approach
for training. We first train the auxiliary variable update (Z)
to learn ΘΘΘZ = {Conv1(·), Conv2(·),FSSA(·),FLSTM (·)}.
Then we train the entire parameters ΘΘΘ for only one iteration,
initialized with the previously learned parameters ΘΘΘZ. The
trained parameters ΘΘΘ with single iteration serve as a starting
point of training the MMV-Net with multiple iterations.

III. EXPERIMENTS AND RESULTS

A. The Edinburgh mfEIT Dataset

We constructed the Edinburgh mfEIT Dataset
(the dataset and code will be available in
www.research.ed.ac.uk/en/datasets/) to train the proposed
MMV-Net. It contains multiple imaging objects with
continuously varying conductivity values along four
frequencies (l = 4) within a circular 16-electrode EIT
sensor. The forward problem was solved by using COMSOL
Multiphysics and Matlab. We adopt the adjacent measurement
strategy [48] and a completed non-redundant measurement
cycle contains m = 104 voltage measurements. In solving
the inverse problem, we divide the circular sensing region by
a 64× 64 quadrate mesh, which contains n = 3228 pixels.

The background substance is saline with a constant con-
ductivity of 2 S/m, which does not change with frequency.
One to three circular objects are simulated with their diameters
randomly determined by the uniform distribution [0.05d, 0.3d]
(d is the sensor diameter). Extra constrains are imposed to
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TABLE I
GROUPS OF SIMULATED CONDUCTIVITY VALUES AT DIFFERENT

FREQUENCIES.

Group
Index

f1
(S/m)

f2
(S/m)

f3
(S/m)

f4
(S/m)

1 0.01 0.6 1.2 1.8
2 0.4 0.6 0.8 1.0
3 0.8 1.0 1.2 1.4

avoid overlap within the sensing region. We then design three
possible groups of increasing conductivity values associated
with the four frequencies as shown in Table I, from which the
changing conductivity values of target objects along frequency
are assigned randomly. A distinct conductivity group is further
ensured for each circular object within a phantom. This setup
was adopted to simulate potential target application scenarios
in tissue engineering (e.g. cell culture imaging [37]).

A total of 4 × 12, 414 (where 4 is the number of current
frequencies) pairs of voltage-conductivity samples were gener-
ated through finite element modelling simulation. Considering
phantom complexity, we generated 4×3k one-object samples,
4 × 4k two-object samples, 4 × 5, 414 three-object samples.
They are partitioned into 4 × 8, 700 training set, 4 × 1, 900
validation set, and 4× 1, 814 testing set for network training.

To eliminate the influence of systematic defect, we calibrate
and normalize the voltage measurements and conductivity in
the dataset, following:

B =
Vmea − Vref

Vref
, (15)

X =
σσσmea − σσσref

σσσref
, (16)

where σσσref and Vref denote the reference conductivity distri-
butions and corresponding measurement data respectively with
only background substance (discussed in Section II-A); σσσmea
and Vmea denote respectively the conductivity distribution and
measurement with perturbations.

B. Evaluation on Simulation Data

In this sub-section, we evaluate the performance of the
proposed MMV-Net using simulated mfEIT data.

1) Performance Comparison: we compare the proposed
MMV-Net with three state-of-the-art image-reconstruction
methods for mfEIT, i.e. MMV-ADMM [18], MoDL [26], and
FISTA-Net [22] on the Edinburgh mfEIT Dataset. MMV-
ADMM is a conventional MMV-based method with the
ADMM solver that can be adjusted and applied for mfEIT
image reconstruction. MoDL and FISTA-Net are model based
deep learning methods targeted at single measurement vector
based tomographic imaging. MoDL unrolls the traditional
ADMM algorithm, while FISTA-Net is based on the FISTA
framework [30]. The number of trainable parameters of the
latter two model-based deep learning methods are given in
the last row of Table II.

Table II shows quantitative comparison based on average
Peak Signal to Noise Ratio (PSNR), Structural Similarity

TABLE II
PERFORMANCE COMPARISONS (PSNR, SSIM AND RMSE) ON

EDINBURGH MFEIT DATASET.

Metrics Frequency MMV- MoDL [26] FISTA- MMV-NetChannel ADMM
[18]

Net [22]

PSNR

1 19.3950 21.4738 21.4444 23.7423
2 22.0398 24.1978 24.4338 26.1284
3 24.3093 26.1114 26.6960 28.5507
4 26.6077 27.0675 27.6000 28.6125

Average 23.0880 24.7126 25.0435 26.7585

SSIM

1 0.4347 0.8467 0.8784 0.9354
2 0.5266 0.8676 0.9092 0.9312
3 0.6175 0.8712 0.9182 0.9469
4 0.6383 0.8569 0.9092 0.9265

Average 0.5543 0.8606 0.9038 0.9350

RMSE

1 0.1175 0.0910 0.0933 0.0700
2 0.0836 0.0651 0.0644 0.0527
3 0.0650 0.0526 0.0499 0.0404
4 0.0549 0.0512 0.0496 0.0407

Average 0.0803 0.0650 0.0643 0.0510
No. of learning NA 112,517 75,045 8,780parameters

Best results are highlighted in bold.

Index Measure (SSIM), and Root Mean Square Error (RMSE)
on all the testing data. MMV-Net outperforms all competing
approaches at all frequencies. Note that there is an explicit
improvement of PSNR, SSIM and RMSE from f1 to f4.
This is due to the higher sensitivity of these metrics to larger
conductivity contrasts.

Fig. 3 demonstrates reconstructions of two simulated phan-
toms for qualitative comparison. MMV-ADMM can hardly
reconstruct lower conductivity contrasts, especially at f3 and
f4, whereas MoDL and FISTA-Net perform better. In contrast,
the proposed MMV-Net can restore the most consistent struc-
tures/shapes and the conductivity changes along the frequency
domain more smoothly. In addition, MMV-Net can distinguish
fairly close objects more effectively than the other methods,
which demonstrates the advantages of SSA and ConvLSTM
used in MMV-Net. However, all methods failed to yield
accurate conductivity values of each object. Even the best per-
forming MMV-Net tends to assign similar values to all objects,
although the shapes estimated are close to the ground truth.
The potential reason is that the approximated linearization
in (1) is unable to handle such non-linear circumstances, i.e.
the sensitivity matrix A suffers from errors when interpreting
conductivity levels from the measurement data.

Fig. 4 shows two typical failure cases of MMV-Net. For case
1, MMV-Net fails to reconstruct the smallest object closely
positioned to two larger objects. Case 2 contains a noticeable
artifact at the center of the reconstructed images of each
frequency. This artifact is possibly inherited from the one-step
initialization, indicating that the quality of the initial guess
may also affect the final reconstruction.

2) Ablation Studies: In MMV-Net, we employ a Spatial
Self-Attention (SSA) Module and a Convolutional LSTM
(ConvLSTM) Module to capture intra- and inter-frequency
correlations for high-performance mfEIT reconstructions. To
verify the performance of the two modules, we conduct
ablation studies (see Table III). MMV-Net with only the
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Fig. 3. Comparison of the proposed MMV-Net with the state-of-the-art imaging approaches on two simulated phantoms in the testing set.

Fig. 4. Two failure cases of MMV-Net.

TABLE III
ABLATION STUDY ON THE VALIDATION SET. (SSA: SPATIAL

SELF-ATTENTION MODULE; CONVLSTM: CONVOLUTIONAL LSTM
MODULE.

Method SSA ConvLSTM PSNR SSIM RMSE

MMV-Net
X 24.9132 0.7640 0.0622

X 26.5144 0.9300 0.0530
X X 26.9817 0.9364 0.0498

𝑓!

𝑓"

𝑓#

𝑓$

Ground Truth SSA only ConvLSTM only MMV-Net

0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.80.00.2 0.4 0.6 0.70.0 0.1 0.50.3 0.2 0.4 0.6 0.80.0

Fig. 5. An example of image reconstruction results from ablation study.

ConvLSTM module outperforms MMV-Net with individually
the SSA module by 6% in PSNR, 22% in SSIM, and 15% in
RMSE. Integration of the two modules into MMV-Net brings
further improved performance of 26.9817 dB in PSNR, 0.9364
in SSIM, and 0.0498 in RMSE.

Fig. 5 illustrates the visual effects of the two modules.
As expected, the SSA module itself manages to split the
two objects and provide rough shapes but relatively vague
boundaries, whereas the ConvLSTM module enhances the
continuity but focuses less on shapes. By taking advantage of
both modules, the proposed MMV-Net demonstrates superior
performance among all the given approaches.

3) Iteration Analysis: Table IV shows the impact of the
iteration number Ks. It can be observed that average PSNR,
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Fig. 6. Intermediate reconstructed images by MMV-Net, FISTA-Net and MMV-ADMM at different iterations.

TABLE IV
IMPROVEMENT IN RECONSTRUCTION QUALITY ON VALIDATION DATA

WITH INCREASING NUMBER OF ITERATIONS OF THE NETWORK.

No. of 5 6 7 8 9Iterations
PSNR 26.8428 26.9422 26.9817 27.0174 27.0177
SSIM 0.9341 0.9342 0.9364 0.9391 0.9394
RMSE 0.0506 0.0501 0.0498 0.0496 0.0496

SSIM, and RMSE values on the validation set are improved
with increasing iterations. These improvements slow down
considerably when Ks ≥ 7. Therefore, we use Ks = 7 for
configuration as a compromise of performance and computa-
tional cost.

We show the intermediate reconstructed images of MMV-
Net, FISTA-Net and MMV-ADMM at different iterations in
Fig. 6. Each row corresponds to an iteration under different
frequencies. The reconstruction quality of MMV-Net improves
gradually with iteration. More specifically, details in the struc-
tural information are clearer and more accurate while tiny
changes in conductivity values raise as it goes deeper. It might
be because we put more parameters in the SSA modules to
learn the structural information.

4) Generalization Ability: We demonstrate the general-
ization ability of MMV-Net by adding different levels of
noise to the measurement data and evaluate the image quality
based on PSNR. Fig. 7 shows the average PSNR values of
different methods. Degraded performance can be observed
for all methods, whilst the proposed MMV-Net is the most
robust against noise and FISTA-Net suffers a rapid decay.
MoDL and FISTA-Net are more robust than MMV-ADMM
with lower noise levels (e.g. 45dB) but MMV-ADMM exceeds

Fig. 7. Generalization ability study of different noise levels.

both MoDL and FISTA-Net when the SNR is smaller than
around 37dB.

However, it is worth mentioning that all three learning-based
methods are trained with only noise-free data. We believe our
MMV-Net will retain more advantage upon MMV-ADMM
and the other two model-based learning approaches should
demonstrate more robustness to noise if sufficient noisy data
are added in the training stage.

5) Convergence Performance: Fig. 8 illustrates the conver-
gence performance of MMV-ADMM, MoDL, FISTA-Net, and
MMV-Net. MMV-ADMM runs 100 iterations and ultimately
converges to a certain level, while much faster convergence
can be achieved by all network-based approaches. They adopt
only 7 iterations and saturate at a much lower RMSE. We
also observe that FISTA-Net shows smoother convergence than
MoDL though they finally stop at similar values. MMV-Net
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Fig. 8. Convergence performance analysis on the testing set.

TABLE V
COMPLEXITY EVALUATION. FPS MEANS FRAME PER SECOND. FLOPS

MEANS FLOATING POINT OPERATIONS PER SECOND

Method Model Size FPS FLOPS(MB)
MMV-ADMM - 1.39 -[18]
MoDL [26] 0.46 0.48 12.93
FISTA-Net [22] 0.32 1.87 12.91
MMV-Net 0.06 7.92 0.04
Best results are highlighted in bold.

converges even faster than MoDL and FISTA-Net.

C. Computational Complexity Evaluation

Table V compares the model size and running speed of
MMV-ADMM, MoDL, FISTA-Net, and MMV-Net as in-
dicators for computational complexity. MMV-Net has the
smallest model size while obtaining the best performance.
In terms of FPS, MMV-ADMM is faster than MoDL and
competitive to FISTA-Net, showing the advancement of the
MMV model compared to the SMV model. The proposed
MMV-Net achieves the highest model execution speed of 7.92
ft/s, making it suitable for real-time imaging. MMV-Net also
achieves the lowest floating-point operations, which benefits
from the lightweight backbone.

D. Evaluation on Experimental Data

In addition to simulation study, we carried out real-world
experiments on two different EIT sensors [37], [49] to examine
the generalization ability of the proposed method. The inner
diameter of the first 16-electrode EIT sensor is 94 mm.
We use a potato cylinder, a sweet potato cylinder, a metal
cylinder and a plastic cylinder with different conductivity
values as imaging targets. Fig. 9(a)-(f) show pictures and
corresponding geometric distributions of the three phantoms
based on the first EIT sensor, which contain combinations of
different targets. The background substance is saline with a
conductivity of 0.07 S ·m−1. The excitation frequencies are
{f1, f2, f3, f4, f5} = {100, 80, 50, 40, 10}kHz, and 10kHz
is selected as the reference frequency. The conductivity of
metal and plastic hardly changes with frequency, whilst the
conductivity of potato and sweet potato increases progressively
with the increase of current frequency [49]. The second
miniature EIT sensor has 16 planar electrodes and an inner

TABLE VI
NUMERICAL COMPARISONS OF EXPERIMENTAL RESULTS BASED ON

SSIM.

Phantom MMV- MoDL FISTA- MMV-NetADMM
[18]

[26] Net [22]

1

f1 0.39 0.71 0.71 0.77
f2 0.41 0.69 0.73 0.77
f3 0.45 0.69 0.72 0.76
f4 0.45 0.69 0.72 0.75

2

f1 0.38 0.74 0.74 0.79
f2 0.41 0.75 0.76 0.79
f3 0.44 0.75 0.75 0.79
f4 0.43 0.74 0.75 0.79

3

f1 0.53 0.61 0.79 0.80
f2 0.59 0.60 0.79 0.80
f3 0.61 0.59 0.80 0.80
f4 0.55 0.59 0.81 0.81

4

f1 0.27 0.70 0.77 0.87
f2 0.40 0.71 0.86 0.87
f3 0.34 0.70 0.85 0.87
f4 0.36 0.74 0.85 0.87

Best results are highlighted in bold.

diameter of 15 mm (see Fig. 9(g)). The background substance
is cell culture media with a conductivity of 2 S · m−1. The
imaging object is a triangular MCF-7 human breast cancer cell
pellet, which is less conductive than the background substance
and demonstrates an increasing conductivity with the increase
of current frequency.

Fig. 10 illustrates the mfEIT image reconstruction results
based on experimental data. We also compare the results
quantitatively based on SSIM, which is listed in Table VI.
Overall, only MMV-ADMM and the proposed MMV-Net man-
age to consistently provide a clear trend of conductivity values
with respect to frequency. MMV-Net further produces more
accurate shapes and less artifacts. Note that the potato cylinder
and the sweet potato cylinder in experiment phantom 1 have
the same location as that in experiment phantom 2, which is
most successfully recovered by the MMV-Net. MMV, MoDL
and FISTA-Net fail to identify the conductive metal cylinder
in experiment phantom 1, whereas MMV-Net can roughly
observe the metal cylinder but the shape is underestimated. For
experiment phantom 3, MMV-ADMM, FISTA-Net and MMV-
Net are more noise-resistant than MoDL. However, MoDL and
MMV-Net can reconstruct the non-conductive plastic cylinder.
Similarly, for experiment phantom 4, MMV-Net is the most
effective in inhibiting artifacts and shows more shape con-
sistency at all frequencies. The results suggest that MMV-Net
generalizes well to real-world experiments and outperforms the
conventional model-based method and state-of-the-art learning
approaches due to the competitive capability of capturing both
intra- and inter-frequency correlations.

IV. CONCLUSION

We proposed a model-based learning approach named
MMV-Net to address the simultaneous image reconstruction
problem of mfEIT. MMV-Net combines the advantages of the
traditional MMV-ADMM algorithm and deep networks. All
parameters are learned during training, rather than manually
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Fig. 9. Experiment phantoms using two different 16-electrode EIT sensors. (a) Phantom 1: potato rod, sweet potato rod and metal rod. (b) Geometric
distribution of phantom 1. (c) Phantom 2: potato rod and sweet potato rod. (d) Geometric distribution of phantom 2. (e) Phantom 3: sweet potato rod and
plastic rod. (f) Geometric distribution of phantom 3. (g) Phantom 4: MCF-7 cell pellet

Fig. 10. mfEIT image reconstruction results of four experimental phantoms.

tuned. We generalized the regularizer of MMV-ADMM by
introducing the spatial self-attention module and convolutional

LSTM module to learn both spatial and frequency correlations
between mfEIT images. Ablation experiments showed that
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cascading both modules strengthened the structural informa-
tion effectively and provided superior results. Simulation and
real-world experiments demonstrated that the proposed MMV-
Net outperformed the state-of-the-art methods in terms of
image quality, generalization ability, noise robustness and
convergence performance. This work can be readily extended
to solve other tomographic image reconstruction problems.
The 3D version of MMV-Net will also be investigated in the
near future for 3D cell culture imaging.
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