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Immersed Boundary Methods in Wave-based Virtual
Acoustics

Stefan Bilbao
Acoustics and Audio Group, University of Edinburgh

Room 2.10 Alison House, 12 Nicolson Square

Edinburgh, United Kingdom EH8 9DFa)

Volumetric wave-based simulation methods for room and virtual acoustics, such as the finite
difference time domain method, are computationally intensive; for large volumes, operation
over a regular grid is desirable for the sake of efficiency. In coping with realistic irregular
geometries (such as enclosures or scattering objects), form-fitting meshing can disturb grid
regularity and introduce new difficulties in terms of maintaining numerical stability. An
alternative is the immersed boundary method, allowing for the representation of an irregu-
lar boundary over a regular grid through additional forcing terms in the dynamical system.
While heavily used in fluid-structure interaction problems, such methods have seen less ap-
plication in virtual acoustics. In this article, a simplified form of the immersed boundary
method, tailored to virtual acoustics is presented. Under appropriate passivity-preserving
discretisation techniques, simple numerical stability conditions can be proved, and in par-
ticular, impedance boundaries may be incorporated easily without any risk of numerical
instability. In addition, the method retains a largely explicit character with a small linear
system solution required over the immersed boundary surface. Numerical results in 2D and
3D, illustrating various interior and exterior problem scenarios are presented.
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I. INTRODUCTION

Volumetric wave-based time domain methods are in-
creasingly applied to large scale problems in room and
virtual acoustics. While computationally intensive, fi-
nite difference time domain methods (FDTD)1–3, finite
volume time domain methods (FVTD)4 and others5–8

have been applied in realistic geometries, and over the
full audio bandwidth9. Such methods offer, in theory, a
complete solution to the problem of virtual acoustic emu-
lation. Comparisons between methods can be made with
respect to three inter-related attributes: a) efficiency,
or the computation required, how it scales with problem
size, and ease of parallelisation; b) accuracy, or how much
numerical error is introduced, and c) numerical stability,
and the possibility and difficulty of obtaining robust con-
ditions. A major difficulty in virtual acoustics, in both
algorithm design and implementation, is in coping with
complex geometries, either for the enclosing space itself,
or objects embedded within it. The choice of approach
impacts upon all three attributes mentioned above.

For regular grid arrangements, preferred for large-
scale algorithm parallelisation, a common approach is to
employ a basic “staircasing” of a complex geometry10.

a); sbilbao@ed.ac.uk

See Figure 1 at left. When staircasing is employed within
the basic nearest-neighbour FDTD method, numeri-
cal stability under the simple Courant-Friedrichs-Lewy
(CFL) condition11 may be easily proved. This holds
even for general passive frequency-dependent boundary
conditions4. A key drawback is that the temporal co-
herence of scattered waves is significantly disturbed in
the high-frequency limit. (In addition, for enclosures,
the surface area under staircasing is incorrect, even in
the limit of small grid spacings, and decay times can be
grossly incorrect4.) When more accurate (and less lo-
cal) simulation methods are used over regular grids (such
as higher-order accurate FDTD12, or Fourier spectral
methods5), stability conditions become much more dif-
ficult to obtain under staircasing termination. One may
need to perform eigenvalue checks for the update over the
entire domain, a computationally intensive undertaking
that may reveal instability without offering a remedy.

One solution is boundary-conforming meshing—this
leads to a great increase in the accuracy of computed
responses, in terms of calculated decay times, modal fre-
quencies for enclosures, and also the coherence of tem-
poral responses4. See Figure 1, middle. Flux conserva-
tion methods such as FVTD4,13 achieve this in the sim-
plest way, and this carries over to methods of the finite
element8 or spectral element7 variety. But the computa-
tional domain as a whole becomes unstructured and less
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FIG. 1. A circular boundary in 2D under: staircasing ter-

mination (left), with “interior” cells indicated in white; con-

formal meshing (middle); and with an immersed boundary

(right), with forcing locations indicated as white dots.

amenable to parallelisation, and, for explicit methods,
new stability considerations arise, dependent on mesh ge-
ometry, again requiring global eigenvalue checks. Mesh-
ing itself, carried out prior to run time, can become com-
putationally prohibitive, and there are new storage con-
siderations to hold the connectivity graph of any result-
ing unstructured mesh. One means of avoiding such dif-
ficulties is to employ Cartesian cut-cell techniques14, re-
taining a regular grid ordering (with some alterations if
merging techniques15 are employed); but even here, the
problem of small residual cell-sizes and its influence on
stability conditions remains a large unsolved problem15.

In applications involving fluid-structure interactions,
one approach to avoiding meshing of a boundary surface
is through the use of immersed boundary techniques16–19.
(including other related techniques such as the immersed
interface method10 and volume penalisation methods20.)
See Figure 1, at right. Here, the boundary itself is re-
placed by a forcing term in the underlying dynamical
system. If a regular computational grid is used, paral-
lelisation is undisturbed, which is ideal in the context of
large-scale virtual acoustics, where operation in parallel
hardware will be necessary for the foreseeable future.

In virtual acoustics, the defining equations (usually
the acoustic wave equation) are simpler than in general
fluids21–23 or nonlinear acoustics24,25 applications, and
boundaries are normally immobile. There are thus op-
portunities for simplified algorithm design, allowing ef-
ficient operation over regular grids, and yielding simple
global numerical stability conditions through an energy-
based or passivity criterion. New features to be examined
in the context of virtual acoustics include the accuracy
of modal frequency calculations for enclosed spaces, the
effects of rotation of an object relative to the underlying
Cartesian grid, and leakage through immersed bound-
aries, particularly over long time scales. In addition, de-
spite the avoidance of form-fitting meshing and the desir-
able attribute of operation over regular grids, there are
new computational costs to consider, and particularly the
partially-implicit behaviour of such methods over the im-
mersed boundary. New numerical design choices emerge,
including the density of the representation of the contin-
uous forcing and the type of interpolation employed, that
need to be addressed in the context of virtual acoustics.

The immersed boundary is introduced in the con-
tinuous framework in Section II, alongside a characteri-
sation of impedance conditions for an enclosed bound-
ary. The fully discrete FDTD scheme for the acous-
tic field is introduced in Section III, alongside a fam-
ily of interpolants, and the complete algorithm design
for an immersed boundary. Numerical examples in 2D
and 3D, simulating both exterior and interior geome-
tries, and illustrating some of the features mentioned
above are presented in Section IV. The focus of the exam-
ples will be mainly on the important baseline case of the
rigid boundary, or Neumann condition, of central impor-
tance in room and virtual acoustics. Following conclud-
ing remarks in Section V, a complete stability analysis
of FDTD with an immersed boundary, drawing upon the
notion of discrete passivity, is given in Appendix A.

II. IMMERSED BOUNDARY METHODS

The defining equations of linear acoustics in d dimen-
sions may be written in conservation form as:

1

ρc2
∂tp+∇ · v = uinδ

(d) (x− xin) ρ∂tv +∇p = 0 .

(1)
Here, p(x, t) is the acoustic pressure, in kg· m2−d · s−2

and v(x, t) = [v1, . . . , vd] is the d-dimensional particle ve-
locity, in m· s−1. Both are functions of x = [x1, . . . , xd] ∈
V ⊂ Rd and time t ∈ R. ρ is density in kg· m−d and c
is the wave speed in m· s−1. ∂t represents partial differ-
entiation with respect to t, and ∇ is the d-dimensional
gradient operation, defined by ∇ = [∂x1

, . . . , ∂xd ], with
∇· the associated divergence. Here, d will be set to 2, 3.

Initial conditions are assumed quiescent; the system
is driven by a point source of strength uin = uin(t), in md

· s−1, where δ(d) represents a d-dimensional spatial Dirac
delta function, selecting the driving location x = xin.
More general directional26,27 source models could be in-
cluded here but are not relevant to the current study
of scattering in the interior of a given domain. For the
same reason, the domain V is assumed to be infinite or
periodic, so boundary conditions need not be considered
(though in the simulations in Section IV, a simple ab-
sorbing boundary condition is employed).

Equations (1) may be consolidated to the familiar
d-dimensional second order wave equation, here with a
forcing term, and using the Laplacian operator ∆ = ∇·∇:

1

c2
∂2
t p−∆p = ρ

duin

dt
δ(d) (x− xin) . (2)

System (1) satisfies an energy balance of the form

dEac

dt
= Pin Eac =

∫
V

p2

2ρc2
+
ρ|v|2

2
dx , (3)

where Eac = Eac(t) is the total acoustic field energy in
J, and where Pin = p(xin, t)uin(t) is input power due to
the driving term.
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A. Immersed Boundary

Assume a (d − 1)-dimensional surface Ω internal to
the region V, and of volume |Ω|. Associated with each
point ξ ∈ Ω over the surface is a normal vector n(ξ) ∈ Rd.
See Figure 2. An immersed boundary may then be added
to the second of system (1) as

ρ∂tv +∇p =

∫
Ω

n(ξ)p∗(ξ, t)δ(d) (x− ξ) dσ . (4)

Here, p∗(ξ, t) is a distributed forcing term, acting normal
to the surface. The forcing function p∗ is related back to
the normal fluid velocity v∗(ξ, t) = n(ξ) ·v(ξ, t) over the
boundary surface Ω, or as

v∗(ξ, t) = n(ξ) ·
∫
V

v(x)δ(d) (x− ξ) dx ξ ∈ Ω . (5)

Ω
Ω

n n

VV

FIG. 2. The domain V, and an immersed boundary Ω with

normal n, in 2D (left) and 3D (right).

In acoustics applications, one possible representation
of such a forcing is through an impedance relationship:

p̂∗(ξ, s) = −Z0ζ(ξ, s)v̂∗(ξ, s) , (6)

written in terms of Laplace-transformed pressure p̂∗(ξ, s)
and velocity v̂∗(ξ, s). Here, Z0 = ρc is the characteristic
impedance of air, and ζ(ξ, s) is a normalized impedance
function. ζ is constrained to be passive, or a positive real
function28 of complex frequency s for all ξ ∈ Ω:

Re(ζ(ξ, s)) ≥ 0 when Re(s) > 0 . (7)

As an example, consider the particular choice of

ζ(ξ, s) = R+Ms+
K

s
R,M,K ≥ 0 . (8)

In the time domain, the representation of Goldstein17

follows (under the simplification M = 0):

p∗ = −Z0

(
Rv∗ +M∂tv

∗ +K

∫
t

v∗dt′
)
. (9)

This formulation differs from usual immersed bound-
ary in that it is framed in terms of the normal component
of the velocity only, allowing an alignment with the no-
tion of an acoustical impedance. It also differs in the
sense that the boundary also may behave as an acousti-
cal barrier, capable of transmitting energy.

B. Discrete Forcing

As a preparatory step, prior to full discretisation, one
may approximate the continuous immersed boundary (4)
by a finite set of V forcing terms, as

ρ∂tv +∇p =

V∑
ν=1

nνp
∗
ν(t)δ(d) (x− ξν) ∆σν . (10)

The forcing pressure p∗ν , ν = 1, . . . , V , acts at x = ξν , and
in direction nν over a surface patch of (d−1)-dimensional
volume ∆σν . It is assumed that the patch volumes cover

Ω such that
∑V
ν=1 ∆σν = |Ω|. The finite set of forcing

pressures p∗ν may be related to interpolated field velocities
(5) in the Laplace domain by discretising (6) as:

p̂∗ν(s) = −Z0ζν(s)v̂∗ν(s) ν = 1, . . . , V (11)

for positive real impedances ζν(s), where the interpolated
field velocities are given by

v∗ν(t) = nν ·
∫
V

v(x, t)δ(d) (x− ξν) dx ν = 1, . . . , V .

(12)
If the local impedances ζ(ξ, s) are positive real, then

the system as a whole is passive. When a concrete reali-
sation of the impedance is available, this may be demon-
strated directly in the time domain. Taking the simple
case of the series impedance given by (8), one has the
following generalisation of the energy balance (3):

d

dt
(Eac + Eb) = Pin −Qb , (13)

where

Eb =
Z0

2

V∑
ν=1

(
Mν (v∗ν)

2
+Kν (g∗ν)

2
)

∆σν ≥ 0 (14a)

Qb = Z0

V∑
ν=1

Rν (v∗ν)
2

∆σν ≥ 0 (14b)

and where dg∗ν/dt = v∗ν . Under unforced conditions, and
due to the non-negativity of Eac, Eb and Qb, the system
is dissipative as a whole, and lossless when Rν = 0.

III. DISCRETISATION

For the purposes of this investigation, we employ the
most basic discretisation possible. The standard inter-
leaved form of FDTD, as used by many authors in acous-
tics applications2, is descended from techniques used in
electromagnetic field simulation29.

A. Grids and Grid Functions

Assume a spatial grid spacing X and time step T . As
the dual variables p and v will be approximated by inter-
leaved grid functions, it is helpful to adopt the following
simplified indexing strategy.
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The grid function pnq, for integer n and an integer-

valued d-vector q = [q1, . . . , qd] ∈ B ⊂ Zd, is an approxi-
mation to p(x, t) at t = nT and x = qX. The grid func-

tion v
n+1/2
q is defined as v

n+1/2
q = [v

n+1/2
1,q , . . . , v

n+1/2
d,q ].

The ηth component v
n+1/2
η,q of this vector, η = 1, . . . , d,

is an approximation to vη(x, t) at t = (n+ 1/2)T , and at
the interleaved location x = (q− (1/2)eη)X, where eη is
a unit vector in direction xη. For a given q, the spatial lo-

cations of pnq and v
n+1/2
q form a simplex, as illustrated in

Figure 3. Note that for simplicity of notation and analy-
sis purposes, we assume here q ∈ B for both the pressure
and velocity components—this assumption is true for an
infinite or d-periodic domain, but must be modified for a
finite domain with nontrivial outer boundary conditions.

FIG. 3. Computational grids for FDTD in 2D (left) and 3D

(right). The simplex of points sharing the same grid index is

illustrated as a set of white points in either case.

B. Basic FDTD Scheme

Basic time difference operators D+
t and D−t may be

defined, through their action on a grid function wnq , as

D+
t w

n
q =

1

T

(
wn+1

q − wnq
)

D−t w
n
q =

1

T

(
wnq − wn−1

q

)
.

(15)
Both approximate a first time derivative ∂t. Also impor-
tant is the two-point averaging operator µ−t , defined as

µ−t w
n
q =

1

2

(
wnq + wn−1

q

)
. (16)

These definitions hold when n is an integer or half integer.
Similarly, approximations to a spatial derivative ∂xη ,

η = 1, . . . , d, may be written as D+
η and D−η , and act as

D+
η w

n
q =

1

X

(
wnq+eη − w

n
q

)
D−η w

n
q =

1

X

(
wnq − wnq−eη

)
.

(17)
Forward and backward approximations D+

∇ and D−∇ to
the gradient operation may then be defined as

D±∇ = [D±1 , . . . , D
±
d ] . (18)

A scheme for system (1), in the absence of a forcing
term, may be written directly as

1

ρc2
D+
t p

n
q+D+

∇ ·v
n+1/2
q = 0 ρD−t vn+1/2

q +D−∇p
n
q = 0 .

(19)
This is identical to Botteldooren’s formulation of FDTD
in acoustics2. When combined, this system of two up-
dates results in the familiar two-step update approximat-
ing the unforced scalar second order equation (2) directly:

1

c2
D+
t D
−
t p

n
q −D∆p

n
q = 0 . (20)

Here, D∆ = D+
∇ ·D

−
∇ approximates the Laplacian ∆, and

has the usual 5-point (in 2D) or 7-point (in 3D) stencil.
This is the simplest possible scheme for the wave

equation, and by no means the best, particularly in terms
of numerical dispersion artefacts. Superior schemes are
available, often written for the second order system3,12,30,
but lacking a first-order form (that is, the Laplacian ap-
proximation may not be factorizable into separate diver-
gence and gradient operations, and thus the immersed
boundary approach is less suitable in these cases).

C. Interpolants

Approximations to the Dirac delta function at non-
grid locations arise both in velocity interpolation in (5),
and in the point forcing representation in (10). They also
arise in the discrete representation of the source in (1)
and, though not discussed here, in readout of a waveform
from the computed field at an arbitrary location.

FIG. 4. Grid points, in white, included in forming nearest

neighbour (left), bilinear (middle) and bicubic (right) inter-

polants or approximations to a Dirac delta function in 2D.

The non-grid interpolation location is indicated as a cross.

In immersed boundary methods, various smooth-
ing kernels are employed19, as well as bi(tri)linear
interpolation18. Assume first a forcing location x′ ∈ V.
An approximation to the Dirac delta function δ(d)(x−x′)
over a grid indexed by q ∈ B may be represented as

1

Xd
Jq(x′) u δ(d)(x− x′) . (21)

Here, the dimensionless grid function Jq(x′) selects x =
x′ and must satisfy the basic moment condition31,32 that∑

q∈B Jq(x′) = 1. This condition is satisfied by nearest-

neighbour, bi(tri)linear and bi(tri)cubic approximations,
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the choices that will be employed here. See Figure 4. A
detailed investigation of interpolation design in 3D vir-
tual acoustics has appeared recently33.

In an interleaved setting, with the uniform indexing
strategy adopted here, care must be taken as the index
q refers to distinct locations in the case of all d+ 1 pres-
sure/velocity field components. An approximation to the
Dirac delta function may be immediately employed as an
interpolant. For example, if the grid function bq approxi-
mates the continuous function b(x), then an interpolated
approximation to b(x′) follows from

∑
q∈B Jq(x′)bq.

D. Discrete Immersed Boundary

First, (19) may be extended to include a source term,
acting at x = xin, according to (1), as

1

ρc2
D+
t p

n
q +D+

∇ · v
n+1/2
q = u

n+1/2
in

1

Xd
Jq(xin) . (22)

Here (1/Xd)Jq(xin) is some approximation to δ(x−xin),

and u
n+1/2
in is an approximation to the driving term uin(t)

at t = (n+1/2)T (perhaps arrived at through sampling).
Similarly, the second of (19) may be extended to in-

clude discrete boundary forcing, through an approxima-
tion to (10). For the ηth velocity component, one has:

ρD−t v
n+1/2
η,q +D−η p

n
q =

V∑
ν=1

nη,ν∆σν
Xd

µ−t p
∗,n+1/2
ν Jη,q(ξν) .

(23)
Here, nη,ν is the ηth component of the νth normal vec-
tor nν = [n1,ν , . . . , nd,ν ].The grid function Jη,q(ξν)/Xd

is an approximation to a Dirac delta function over the

ηth interleaved grid. Finally, p
∗,n+1/2
ν is a discrete time

approximation to p∗ν(t), at t = (n+1/2)T , and thus tem-
porally aligned with the velocity grid functions. Center-
ing is achieved through the use of the two point averaging
operator µ−t as defined in (16).

The discrete pressures p
∗,n+1/2
ν will be related to in-

terpolated values v
∗,n+1/2
ν drawn from the velocity field

through an impedance relationship approximating (11).

The values v
∗,n+1/2
ν follow from an approximation to (12):

v∗,n+1/2
ν =

d∑
η=1

nη,ν
∑
q∈B

Jη,q(ξν)vn+1/2
η,q . (24)

Here the same grid function Jη,q(ξν) used in (23) is now
used as an interpolant. The use of such an adjoint has
been pointed out by various authors17, and is crucial to
the analysis of numerical stability. See Appendix A.

E. Discrete-time Impedance Relationship

Returning to the continuous-time impedance rela-
tionship between p∗ν(t) and v∗ν(t) given in (11), we first
assume that the normalized impedance ζν(s) may be ex-

pressed as a rational function as

ζν(s) =

∑τν
l=0 b

(l)
ν sl∑υν

l=0 a
(l)
ν sl

(25)

for some finite polynomial orders τν and υν , ν = 1, . . . , V .
In the time domain, this implies the following differential
relationship between p∗ν(t) and v∗ν(t):

υν∑
l=0

a(l)
ν

dl

dtl
p∗ν = −Z0

τν∑
l=0

b(l)ν
dl

dtl
v∗ν . (26)

In order to arrive at a discrete-time approximation,
define first the trapezoidal differentiation operator

D◦t = (µ−t )−1D−t , (27)

where here, (µ−t )−1 is interpreted as the operator inverse
of the two-point averaging operator µ−t as defined in (16).
Under the discretisation rule d/dt → D◦t , the following
discrete time recursion results:

υν∑
l=0

a(l)
ν (D◦t )lp∗,n+1/2

ν = −Z0

τν∑
l=0

b(l)ν (D◦t )lv∗,n+1/2
ν . (28)

This may be written, ultimately, as

p∗,n+1/2
ν = −Z0γνv

∗,n+1/2
ν + Ξn+1/2

ν (29)

for some constants γν ≥ 0, where Ξ
n+1/2
ν includes previ-

ously computed values of p∗ν and v∗ν .
The approach here is similar to that presented in

the case of boundary impedances in the FVTD setting34;
in particular, the choice of the approximation (27) is
passivity-preserving, and corresponds, in the frequency
domain, to a bilinear transformation, allowing for a
greatly simplified stability analysis. See Appendix A.

F. Complete Update

It is useful, for implementation purposes, to rewrite
the entire update, including the source and immersed
boundary, in a matrix-vector form. To this end, we as-
sume that grid function pnq is consolidated into a Np × 1
vector pn, where Np is the number of pressure grid loca-
tions in the discrete domain B. Similarly, the d velocity

component grid functions v
n+1/2
η,q , η = 1, . . . , d, are con-

solidated into an Nv×1 vector vn+1/2. For (22), we have:

1

ρc2
D+
t pn + Dvn+1/2 = u

n+1/2
in

1

Xd
jin , (30a)

where the Np × Nv matrix D represents the divergence
operation D+

∇·, and the Np × 1 vector jin encodes the
spatial source distribution Jq(xin). Similarly, the veloc-
ity updates (23) may be written as

ρD−t vn+1/2 −DTpn =
1

Xd
NS

(
µ−t p∗,n+1/2

)
. (30b)

The V discrete forcing pressures p
∗,n+1/2
ν , ν = 1, . . . , V

have been written as the V ×1 vector p∗,n+1/2. Here, the
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Nv ×Np matrix −DT represents the gradient operation
D−∇. S is a V × V matrix with the values ∆σν , ν =
1, . . . , V on the diagonal. Finally, the Nv × V matrix N
consolidates the V Dirac delta approximations, as well
as the V normal directions.

Alongside p∗,n+1/2, the set of interpolated velocity

values v
∗,n+1/2
ν , ν = 1, . . . , V , may be consolidated into

the V ×1 vector v∗,n+1/2, retrieved from the velocity field
vn+1/2, according to (24), as

v∗,n+1/2 = NTvn+1/2 . (30c)

Finally, (29) may be written as

p∗,N+1/2 = −Z0Γv∗,n+1/2 + Ξn+1/2 (30d)

for the V × V diagonal matrix Γ with γν , ν = 1, . . . , V
on the diagonal, and the V × 1 vector Ξn+1/2, consisting

of Ξ
n+1/2
ν , ν = 1, . . . , V .
Equations (30a)–(30d), alongside the auxiliary cal-

culation of Ξn+1/2, constitute a complete update for the
immersed boundary. (30a) is fully explicit: pn+1 may
be computed directly from pn and vn+1/2. The updates
(30b)–(30d) may be combined into a single update for
vn+1/2 of the form(

INv + WWT
)︸ ︷︷ ︸

A

vn+1/2 = qn , (31)

where here INv is the identity matrix of size Nv ×
Nv, and W is an Nv × V matrix defined by W =√
cT/2XdNS1/2Γ1/2. qn consists of previously com-

puted (known) values of p and v up through time step
n. Thus a linear system solution is required, involving
the matrix A. Notice, however, that a) it is strictly pos-
itive definite by construction and thus definitely invert-
ible, and b) consists of a rank V perturbation of the iden-
tity matrix. Thus, using Sherman-Morrison inversion35,

A−1 = INv −W
(
IV + WTW

)−1
WT (32)

where IV is a V ×V identity matrix. Thus a linear system
solution of size V is required, scaling with the number of
boundary forcing points. Notice in particular that W is
sparse, with each column containing non-zero values of
the interpolant corresponding to a single forcing location.
WTW will also be sparse, with a bandwidth depending
on the width of the interpolant chosen, and the density
of forcing locations relative to the grid spacing.

G. Special Cases

As a useful special case, consider the series
impedance as given in (8). For this concrete realisation,
it is possible to show that an energy balance exists, mir-
roring (13) for the continuous system:

D+
t (Eac + Eb) = Pin −Qb , (33)

where, with reference to the vector/matrix form given in
Section III F,

Eac =
ρXd

2
|vn−

1
2 |2 +

Xd

2ρc2
(pn)

T
pn−1 (34)

Eb =
Z0

2

(
|(SM)

1
2 v∗,n−

1
2 |2 + |(SK)

1
2 g∗,n−

1
2 |2
)
≥ 0

Pin = µ−t u
n+

1
2

in jTinpn

Qb = Z0|(SR)
1
2µ−t v∗,n+

1
2 |2 ≥ 0

where here, D−t g∗ = µ−t v∗, and R, M and K are V × V
matrices with the values Rν , Mν and Kν on their di-
agonals, respectively. The stored and dissipated energy
terms corresponding to the immersed boundary, Eb and
Qb are both non-negative, and thus the system is strictly
dissipative if Eac is also non-negative; not shown here is
that this is true under the CFL condition cT/X ≤

√
1/d.

But the presence of the immersed boundary does not
affect this stability condition. This property can be
extended to fully general passive immersed boundaries,
without a concrete realisation—see Appendix A.

As a further useful simplification, consider the case
of a purely inertial immersed boundary with Rν = Kν =

0. In this case, µ−t p∗,n+
1
2 = −Z0MD−t v∗,n+

1
2 . The

updates (30a)–(30c) may now be combined into a single
second order update in the pressure variable p alone:

1

c2
D+
t D
−
t pn+D

(
INv + QQT

)−1
DTpn =

ρ

Xd
D−t u

n+
1
2

in jin ,

(35)

where here, Q =
√
c/XdN(SM)

1
2 . This is an extremely

compact extension of the basic scheme (20); again, using
Sherman-Morrison, the required linear system solution
can be reduced to size V × V . Such a form is useful
in modeling rigid boundaries. The linear system to be
solved is again strictly positive definite by construction—
this desirable property follows directly from the adjoint
approximations to the divergence and gradient, and also
to the interpolants and forcing functions.

IV. NUMERICAL EXAMPLES

In this section, results are presented under different
configurations of the immersed boundary in both 2D and
3D. In all cases, we set ρ = 1.18 kg·m−d and c = 344
m·s−1, and the time step is chosen as T = 1/48000 s
(and the sample rate is SR = 1/T ). The grid spacing X

is chosen to satisfy the CFL condition cT/X ≤ 1/
√
d

as close to equality as possible. Simulations are run
over a cube-shaped region sufficiently large to contain
the immersed boundary, and with first order absorbing
boundary conditions36 at the outer boundary. For plot-
ting visibility, the driving function uin(t) (and its sam-
pled discrete-time counterpart) is chosen here to be of
the form of a doubly-differentiated Gaussian:

uin(t) =
2√

3σ0π1/4

(
1− (t− t0)

2

σ2
0

)
e−(t−t0)2/2σ2

0 . (36)
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FIG. 5. Scattering from a rigid circular barrier. Left: configuration, with output locations A-E indicated by circles. and the

source location by a cross. Right: output pressures generated by a staircased boundary (grey), an immersed boundary (dashed)

as compared with the exact solution (solid line).

t0 is chosen such that uin(0) = 1.1 × 10−16, or machine
epsilon in double precision floating point. One may also
write σ0 = 1.321/f0, where f0 is the frequency in Hz
at which the spectral magnitude of uin has decreased by
100 dB from its maximal value, defining an effective ex-
citation bandwidth. For input and output at non-grid
locations, bi(tri)cubic interpolation is employed.

It is also useful to define the nondimensional param-
eter θ = ∆σ/Xd−1, a measure of the density of forc-
ing terms relative to the spatial grid; for the simulations
presented here, ∆σ, the (d − 1)-dimensional patch area
corresponding to a single forcing term on the immersed
boundary, will be taken to be constant over all patches.

A. Circular Boundary in 2D

As a first example, consider exterior scattering of a
point source from a rigid circular boundary in 2D (here
of radius 30 cm), a case for which an exact solution
is available37. Impedance condition (8) is used with a
very high value of M = 1011, corresponding to a Neu-
mann condition, a relative density of forcing locations of
θ = 1.2, and bicubic interpolation. See Figure 5. Here,
stringent conditions are used: a wideband pulse of the
form of (36) is used, with an effective bandwidth f0 = 10
kHz, and drives the wave equation at a location in close
proximity to the circular barrier at (45, 0) cm. Outputs
are taken at locations near the barrier, at a radius of 35
cm. Staircasing leads to large deviations from the exact
solution, particularly on the far side of the barrier, where
coherence is disturbed and amplitudes are greatly overes-
timated. The immersed boundary performs much better,
with some residual error due primarily to the numerical
dispersion inherent to the scheme itself.

It is useful to examine the effect of the choice of inter-
polant on the behaviour of the immersed boundary, lead-
ing to major effects in terms of the coherence of computed
responses. In Figure 6, responses for different orders of
interpolant (nearest neighbour, bilinear and bicubic) are
shown, for the same scenario as the previous example,
at point E in Figure 5. Using a nearest neighbour in-
terpolant, results are poor, and of comparable quality,
in terms of coherence, to results obtained under staircas-
ing, which is expected. Precursors are also visible in all
cases, but are reduced in passing from bilinear to bicubic

interpolation. The residual phase delay is due to the dis-
persion of the scheme itself under wideband excitation.

FIG. 6. Computed pressure outputs at point E as shown in

Figure 5, for different choices of immersed boundary inter-

polant, as indicated. The exact solution is plotted as a solid

line, and the FDTD solution as crosses.

To better illustrate the performance of the IB
method relative to staircased boundary conditions, con-
sider again the response at point E in Figure 5, now
under refinement of the grid in the case of staircasing
methods. In Figure 7, computed outputs are shown for
IB and staircasing methods, both at the base sampling
rate of SR = 48 kHz, and for staircasing at twice and
four times the base sample rate. Convergence is slow
for staircasing, with IB outperforming it at these rates.
Comparable error for staircasing is achieved at a sample
rate of approximately SR = 400 kHz. Given that, for
volumetric simulation, memory requirements/operation
counts scale as the third/fourth power of the sample rate,
the IB method offers major advantages in this case.

As a concrete example, consider the present case of a
simulation over a square region of side length 2.2 m, and
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for a total simulation duration of 10 ms. Computation
time for the IB method at the base rate of SR = 48
kHz, including the required linear system solution, is 1.6
s (Matlab, running on a standard laptop with an Intel
i7). For a staircased termination, at an oversampled rate
of SR = 400 kHz, the total simulation time is 869 s.

FIG. 7. Computed pressure outputs at point E as shown in

Figure 5, for the immersed boundary method at a base rate

of 48 kHz, and for a staircased termination at increased rates.

B. Square Boundary in 2D

As an example of an enclosed space, consider a square
boundary, excited by a source in its interior. Again,
a purely inertial immersed boundary boundary is used
(M = 1011) corresponding to a rigid boundary, for dif-
ferent rotations of the square relative to the underlying
grid. See Figure 8. An elementary exact solution is avail-
able in this case through a modal expansion. The square
is of side length 35 cm and centered at the origin, and
the source and receiver locations are chosen, in unrotated
coordinates, as (10, 5) cm and (−7,−2) cm, respectively.
The input signal is again of the form (36) with f0 = 10
kHz, and the relative forcing density is θ = 1.2. Time do-
main responses under staircasing track the exact solution
well when the square is aligned with the computational
grid, but otherwise exhibit large deviations, even at very
short time scales; similarly, spectral plots show sigificant
errors in the placement of modal frequencies, and also
significant variation under rotation. All such errors are
greatly reduced in the immersed boundary results.

A major difficulty with immersed boundary meth-
ods is leakage through a boundary38; a problem which is
absent under form-fitted meshing with a flux conserva-
tive method. It is important to distinguish here between
leakage through a barrier intended to be airtight, and the
physical phenomenon of transmission through a barrier;
it is the former case that is of interest here. Spurious leak-
age is a complex phenomenon, with leakage depending on
frequency, the type of interpolant used, as well as the rel-
ative density of forcing locations θ. To investigate this,
consider a square of side length 2m, rotated at π/6 rel-
ative to the computational grid. In Figure 9, amplitude
decay curves are shown for pressure signals pout drawn
from inside the square region, then RMS averaged. In
general, spurious leakage increases with excitation band-
width f0, and decreases with the forcing point density θ,
with good results obtained at about θ = 2. Note that

leakage is sensitive to the choice of θ (see Su et al.22 for
perspectives on the optimisation of θ). A bicubic inter-
polant is used here; not shown here are results for bilinear
and nearest neighbour interpolants, which lead to larger
spurious leakage in all cases. For a small enclosure such
as this, leakage is on the order of 1-3 dB per second; not
large, but significant in the setting of virtual acoustics.
But, from geometric considerations, as the enclosure size
is increased, the rate of spurious loss will decrease.

C. Spherical Boundary in 3D

Exterior scattering from a spherical boundary in 3D
is a useful test problem, particularly in studies of head-
related transfer functions39. Exact solutions are available
in the case of scattering of a monopole point source from
a rigid sphere37. A new difficulty, relative to the case of
the circle in 2D, is the need for a regular sampling of the
sphere. Here, a spiral-based sampling method40 is used.

First consider the scenario of the scattering of a
monopole source from a rigid sphere, generalizing the
case of the circle described in Section IV A. Again, a
source with effective bandwidth f0 = 10 kHz is used, and
an inertial immersed boundary with M = 1011, θ = 1.5
and tricubic interpolation is used. The sphere is of ra-
dius 25 cm, the source location is 40 cm distant from
the sphere center, and outputs are drawn from five loca-
tions 30 cm distant from the sphere center. Comparisons
between scattered outputs using staircasing and the im-
mersed boundary are as shown in Figure 10. As before,
the immersed boundary method solution tracks the exact
solution very closely, even on the far side of the sphere.

As an example of the behaviour of the immersed
boundary under more general impedance conditions, see
Figure 11, showing the time evolution of the acoustic
field of a spherical barrier in response to a point source,
of effective bandwidth f0 = 8 kHz. Here, the series
impedance form (8) is used, in the case of a resistive bar-
rier, and a barrier with both inertia and stiffness. In both
cases, there is the expected penetration of wave propa-
gation into the interior of the spherical barrier.

As a final demonstration, consider a spherical im-
mersed boundary, again under the impedance condition
(8), but with R = 0, so the condition itself is lossless.
Under these conditions, a discrete-time energy balance
of the form (34) will be satisfied, to near machine accu-
racy in double precision floating point arithmetic. See
Figure 12, showing the partition of energy between the
energy stored in the acoustic field, and the stored energy
at the boundary due to inertial and stiffness effects. In
this case, the input forcing function uin is a simple unit
impulse, and the outer conditions of the computational
region B are chosen to be of lossless Neumann type. Also
shown is the relative error in the computed energy, which
fluctuates at approximately 10−14 of the total energy.
This structural losslessness property, in conjunction with
the CFL condition serves as a numerical stability condi-
tion. See Appendix A for a more general perspective on
passivity and numerical stability.
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FIG. 8. Rotations of a square boundary relative to the computational grid, as illustrated at left for different angles of rotation φ

as indicated. The time domain response pout and its transform p̂out are shown in the case of a staircased boundary in columns 2

and 3, and in the case of an immersed boundary in columns 4 and 5. For time domain responses, the exact solution is shown as

a solid line, and FDTD solutions as a dashed line. For spectral plots, exact modal frequencies are indicated as vertical dotted

lines. The total simulation duration is 0.1 s, and output signals are Hann-windowed before Fourier transformation.

V. CONCLUDING REMARKS

The focus of this article has been on the specialisa-
tion of immersed boundary method to numerical simu-
lation techniques for the acoustic wave equation. One
result of this specialisation is that it is possible to ar-
rive at conclusive proofs of numerical stability, hinging
on the key concept of numerical passivity (see Appendix
A). Furthermore, the method proposed here can be em-
ployed directly within the simplest variety of FDTD
without any further stability analysis required. The
same ideas extend to any numerical simulation method
that can be posed as in (30a)–(30d); that is, provided
the discrete gradient and divergence operations are de-
fined as adjoints. The extension to the case of FDTD
schemes, or other simulation methods defined over reg-
ular grids, defined directly in terms of the second order
wave equation12 (which are generally preferable, due to

reduced computational requirements) is more difficult,
and has not been addressed here, and forms the basis for
future work. In at least one special case shown here in
(35), the immersed boundary may be included directly
within a scheme for the second order wave equation.

The main additional computational cost is the re-
quirement of a linear system solution over the set of
boundary locations, which will be small relative to the
size of the interior computational FDTD grid, over which
the simple algorithm here remains fully explicit. Compu-
tational cost scaling thus bears some superficial resem-
blance to boundary element approaches41, but here the
linear system is rudimentary to compute (via, e.g., poly-
nomial interpolants) and extremely sparse, with O(V )
non-zero values with additional dependency on interpo-
lation width and the density of forcing locations. Not
explored here are possibilities for the use of fast sparse
linear system solution techniques42.
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FIG. 9. RMS-averaged (over a 100 ms window) amplitude

decay curves p̄out, for a square enclosure of side length 2m,

rotated at π/6 with respect to the computational grid. Poly-

nomial fits are shown, for better visibility. Results are shown,

at left, for different effective bandwidths f0, for a fixed value

of θ = 2, and at right for different values of θ, for a fixed

effective bandwidth f0 = 2 kHz.

In terms of performance in the context of virtual
acoustics, for exterior scattering problems, immersed
boundary methods clearly yield results far superior to
staircased boundary methods, in terms of the coherence
of scattered waves. An obvious application is to the nu-
merical determination of head-related transfer functions,
where immersed boundary methods permit operation
over a relatively coarse numerical grid, even if there are
complex features requiring sub-grid resolution43 (requir-
ing fine-grained staircasing, or relatively complex confor-
mal meshing). For interior problems with rigid bound-
aries, however, the situation is less clear—over short time
scales, there is the same coherence observed as in the ex-
terior case, but over longer time scales, there are leakage
effects that are nontrivial, which will impact upon decay
times. As the immersed boundary as proposed here is
a two-sided barrier, and intended to allow the transmis-
sion of energy, this is expected (though as shown here,
the Neumann condition may be modelled here through
the choice of a high-mass inertial condition). For the
modeling of enclosures with impedance conditions, tech-
niques such as blanking of exterior cells44, or sharp inter-
face methods10 could be considered. The relationship be-
tween point forcing density, frequency and the type of in-
terpolant on such leakage remains an open question, but
some preliminary perspectives appear in Section IV B.

APPENDIX A: NUMERICAL STABILITY

The passivity property of the impedances ζ, when
discretized using the trapezoid rule, and in conjunction
with the simple FDTD scheme presented here leads im-
mediately to simple conditions for numerical stability.
The immersed boundary design does not interfere with
this analysis, and the normal CFL condition may be
employed. If a concrete realisation of the impedances
is available, dissipativity or losslessness may be demon-
strated directly in the time domain, as in Section IIIG;

even without such a realisation, the passivity property
persists, and may be used to show numerical stability for
the complete update using Laplace techniques, as illus-
trated below. The analysis here is related to the case
of impedance boundary conditions for FVTD methods34

and is presented in condensed form here.
Consider the complete update as expressed in (30a)–

(30d). The eigenfunctions are exponential solutions
wn = ŵesdnT , where here, sd = σd + jωd is a discrete
complex frequency variable, with π/T < ωd ≤ π/T , and
ŵ is a complex amplitude. w here could represent any
of the components p, v, p∗ or v∗. The object here is to
find a stability condition under which the update does
not permit exponentially-growing solutions with σd > 0.

For such solutions, the discrete-time operators from
(15), (16), and (27) behave as multiplicative factors:

D±t → e±sdT/2α α =
2

T
sinh(sdT/2) (A1a)

D◦t → β β =
2

T
tanh(sdT/2) (A1b)

µ−t → e−sdT/2m m = cosh(sdT/2). (A1c)

In particular, under trapezoidal integration, positive real
functions in s are mapped to positive real functions in
sd. So, for the impedances ζν(s), ν = 1, . . . , V :

Re(ζν(β)) ≥ 0 when Re(sd) > 0. (A2)

Let the V × V matrix Z(β) contain the impedances
ζν(β), ν = 1, . . . , V on the diagonal. Using (30c),

p̂∗ = −Z0Z(β)v̂∗ = −Z0Z(β)NT v̂. (A3)

Combining this with (30a) and (30b) and simplifying
leads to a matrix form for exponential solutions to the
update at discrete frequency sd:[

α
ρc2 INp D

− 1
mDT ρβINv + GZ(β)GT

]
︸ ︷︷ ︸

H(sd)

[
p̂

v̂

]
=

[
ûin

Xd
jin

0

]
(A4)

where here, ûin is the complex amplitude of the source
signal at frequency sd, and where G =

√
Z0/XdNS1/2.

Suppose now that there is a nontrivial solution
to (A4) at a frequency sd = s̄d with σ̄d > 0.
This implies that det(H(s̄d)) = 0, and further that

det(H11(s̄d))det(H†11(s̄d)) = 0, where H11 is the upper

left-hand block of H, and H†11 is its Schur complement.
Clearly α 6= 0 for sd = s̄d, so H11 is nonsingular. Using
ᾱ = α(s̄d), β̄ = β(s̄d) and m̄ = m(s̄d) we have:

H†11 = ρβ̄INv + GZ(β̄)GT +
ρc2

ᾱm̄
DTD. (A5)

For the determinant of H†11 to vanish, it must be true that

there is a non-zero vector r such that rTH†11(s̄d)r = 0.
But, using the positive realness property of the diagonal
elements of Z, from (A2), we have

Re(rTH†11r) ≥ ρRe

(
β̄|r|2 +

c2

ᾱm̄
|Dr|2

)
. (A6)
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FIG. 10. Scattering from a rigid spherical barrier. Left: configuration, with output locations A-E indicated by circles. and

the source location by a cross. Right: output pressures generated by a staircased boundary (grey), an immersed boundary

(dashed) as compared with the exact solution (solid line).

FIG. 11. Time evolution of the acoustic field of a monopole source scattered from a spherical boundary under impedance

condition (8), with parameters M , R and K as indicated. The cross-section in the (x1, x2) plane is shown, and the source is

located at x1 = 0, x2 = 0.4 m. Top row: a resistive barrier, and bottom row: a lossless barrier with inertia and stiffness.

FIG. 12. Discrete energy conservation for a spherical im-

mersed boundary (M = 0.001, K = 1000). Left: energy

partition as a function of time, showing energy contained in

the acoustic field, and the stiffness and inertia of the bar-

rier. Right: the relative variation in the discrete energy E =

Eac+Eb, as given in (34), and defined as (En+1/2−E1/2)/E1/2.

Furthermore, because34

Re
(
β̄
)
> 0 and Re

(
1

ᾱm̄

)
≥ −T

2

4
Re
(
β̄
)
,

(A7)

we have

Re(rTH†11r) ≥ ρRe
(
β̄
)(
|r|2 − c2T 2

4
|Dr|2

)
(A8)

≥ ρRe
(
β̄
)(

1− c2T 2

4
λmax

)
|r|2,

where λmax is the maximum eigenvalue of DTD. For the
basic spatial difference approximations to the gradient
and divergence employed here, we have λmax = 4d/X2.

This implies finally, that H†11 is nonsingular, and thus
that no solutions exist with σd > 0, under the condition

cT/X ≤
√

1/d. (A9)

Thus the conventional CFL bound for the nearest neigh-
bour scheme for the wave equation in d dimensions11 has
been recovered. Notice that the presence of the immersed
boundary has no effect on this stability condition; this is
due to the particular discretisation strategy used for the
immersed boundary impedances (notably the passivity-
preserving trapezoid rule).
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