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Mean-field theory accurately captures the variation of copy number distributions
across the mRNA’s life cycle

Juraj Szavits-Nossan∗ and Ramon Grima†

School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
(Dated: March 3, 2022)

We consider a stochastic model where a gene switches between two states, an mRNA transcript
is released in the active state, and subsequently it undergoes an arbitrary number of sequential
unimolecular steps before being degraded. The reactions effectively describe various stages of the
mRNA life cycle such as initiation, elongation, termination, splicing, export and degradation. We
construct a novel mean-field approach that leads to closed-form steady-state distributions for the
number of transcript molecules at each stage of the mRNA life cycle. By comparison with stochas-
tic simulations, we show that the approximation is highly accurate over all the parameter space,
independent of the type of expression (constitutive or bursty) and of the shape of the distribution
(unimodal, bimodal and nearly bimodal). The theory predicts that in a population of identical cells,
any bimodality is gradually washed away as the mRNA progresses through its life cycle.

I. INTRODUCTION

In recent years, the study of stochastic models of gene
expression has received wide attention [1]. In the ab-
sence of transcriptional feedback, these models are often
composed of first-order reactions, in which case exact ex-
pressions can be derived from the master equation for all
the moments of the distribution of mRNA numbers. This
is because for linear propensities, the moment equations
are closed and can be solved straightforwardly [2].

However, the exact closed-form solution of the master
equation for the probability distribution of mRNA num-
bers is a much harder problem. Popular methods such
as the Poisson representation of Gardiner [3] and those
devised more recently by Jahnke and Huisanga [4] are
not applicable to models of gene expression composed
of only first-order reactions because of the presence of a
reaction of the type G→ G+M which models transcrip-
tion of mRNA (M) from the active state of a promoter
(G). Hence, the general solution of these models is still
an open research question. However, progress has been
achieved on the solution of specific models.

A two-state model (commonly known as the telegraph
model) whereby a gene switches between two states (an
active and an inactive state) and mRNA is transcribed
in the active state, has been solved exactly in steady-
state [5] and in time [6] for the marginal distribution of
mRNA numbers. Various other extensions of this model
to include more biological realism have also been solved
exactly or approximately for the marginal distribution of
mRNA numbers. These include models that account for
more than two gene states [7–9], for polymerase dynam-
ics [10], for leaky expression from the inactive state [11],
cell-to-cell variability (static and dynamic) [11, 12], repli-
cation and binomial partitioning due to cell division [13],
cell cycle duration variability [14] and modulation under
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environmental changes [15].
We here consider a different type of extension of the

telegraph model that has recently received attention in
three different biological contexts: (i) RNA polymerase
(RNAP) movement along a gene during transcription
[16, 17]; (ii) multistep splicing [18]; (iii) nuclear retention
of mRNA [19]. In this stochastic model, a gene switches
between two states (an active state G and an inactive one
G∗), produces a transcript in the active state, and subse-
quently it undergoes an arbitrary number L of sequential
unimolecular steps, leading to L forms of the transcript
(denoted by Pi, where i ∈ [1, L]). Each transcript either
is removed after the L steps, or else can also be degraded
prematurely at an earlier step. A reaction scheme for
this model is as follows:

G −⇀↽− G∗, G −→ G+ P1,

P1 −→ P2 −→ ... −→ PL −→ ∅,

P1 −→ ∅, P2 −→ ∅, ..., PL −→ ∅.. (1)

The L downstream processing steps can be interpreted
in various ways. At the coarsest scale, the model with
L = 2 steps can capture nuclear mRNA and cytoplasmic
mRNA dynamics. At a less coarse scale, the model can
capture the dynamics of the whole mRNA life cycle from
birth (initiation) to death (in the cytoplasm). For exam-
ple one can associate steps i = 1, ..., L1 − 1 with elonga-
tion of the nascent transcript, i = L1 with termination,
i = L1 + 1, ..., L2 − 1 with splicing, i = L2 with export
from the nucleus to the cytoplasm and i = L2 + 1, ..., L
with several reaction steps leading to mRNA degrada-
tion. For the latter process, for example, the sequence
of steps can model the fact that the polyadenylate tails
of eukaryotic transcripts are sequentially chewed up be-
fore the protein-coding part of the message is degraded
[20]. At a fine scale, the model could capture the dynam-
ics of nascent mRNA only, where the L steps represent
the unidirectional movement of RNAP (with a nascent
mRNA tail attached to it) along the gene. Hence, the re-
action scheme (1) has myriad molecular interpretations
according to the desired application.
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In the past, several models have been proposed that
couple gene promoter switching to downstream process-
ing of RNA. The telegraph model coupled to determin-
istic nascent RNA elongation has been studied in Ref.
[21]. For the model with stochastic RNA processing de-
scribed by (1), the mean and variance of the number
of molecules of Pi have been computed numerically or
analytically [16, 17]. Recently, an analytical expression
for the probability distribution to find n1 copies of P1,
n2 copies of P2 etc has been found in a similar model
in which transcription initiation is allowed from both on
and off states [18]. The probability distribution was ex-
pressed in a power series in the difference between the
transcription initiation rates from on and off states. We
also note that a model similar to (1), but with excluded
volume interactions restricting copy numbers of Pi to 0 or
1, has been recently studied in Refs. [22, 23]. However,
only numerical results have been provided.

In addition, several important results have been ob-
tained in the limiting case in which the gene is always
on, and transcription initiation occurs in bursts. In that
case the first two steps in (1)—the promoter switching
(G −⇀↽− G∗) and transcription initiation (G −→ G + P1)—

are combined into a single step, G −→ G+n×P1, where n
is usually taken from a geometric distribution. The case
L = 2 describing nuclear (P1) and cytoplasmic (P2) RNA
has been solved in full in the steady state [24], and a for-
mal steady-state solution has also been found recently for
arbitrary L [25]. In the L = 2 case, the mean and vari-
ance of the cytoplasmic RNA have also been found for
an arbitrary distribution of the nuclear RNA retention
time [26]. This model can be seen as a coarse-grained
version of (1) in which multiple RNA processing steps
are implicit in the probability distribution of the nuclear
RNA retention time.

Despite these successes, an exact, steady-state and
closed-form solution for the marginal distribution of the
number of molecules of Pi in the full model described
by (1) is unknown. In this paper, we report an approxi-
mate solution to this open problem. Because the method
we devise is non-perturbative and does not make assump-
tions on the strength of correlations between the forms of
the product, we find by comparison with stochastic sim-
ulations that the approximation is highly accurate across
all the parameter space.

The paper is divided as follows. In Section II, we de-
scribe the model in detail, formulate its master equation
and discuss some known exactly solvable cases. In Sec-
tion III, we derive exact expressions for the moments of
the distribution of Pi using a lattice path method. In
Section IV, we use the first and second moments and
mean-field approximation to construct marginal distri-
butions for the number of molecules of Pi. We show
that while the use of standard mean-field approximation
is valid in only certain regions of parameter space, the
use of a novel type of mean-field approximation leads to
a uniformly accurate approximation over all parameter
space. In particular, we show that the latter is practically

indistinguishable from distributions calculated using the
stochastic simulation algorithm. We conclude in Section
V by a discussion of our method versus those already in
the literature.

II. STOCHASTIC MODEL OF
TRANSCRIPTION KINETICS

In this section we define the model and introduce the
master equation that describes its stochastic evolution in
time. While, as mentioned in the Introduction, the model
has many interpretations, in what follows we will describe
it in terms of RNAP dynamics during transcription.

A. Definition of the model

Transcription is modelled as a series of steps involving
promoter activation, initiation at the transcription start
site, RNAP movement along the gene and termination at
the stop site that frees the newly synthesized mRNA.

The promoter is modelled having two states, activated
(on state G) and deactivated (off state G∗). Gene body—
the part of the gene between the start and stop sites—
is divided into L segments. The state of the system is
described by the state of the promoter (on or off), and the
number of RNA polymerases in each of the L segments,
ni for i = 1, . . . , L.

d

kel,i

Pi

sbsu

r
P1 PL

kel,1 kel,L

d d

ON

OFF

G

G*

FIG. 1. Schematic of the stochastic transcription model. The
gene body is divided into L segments. The promoter can be
in two states: active (on) and inactive (off). Promoter on and
off switching rates are su and sb, respectively. Transcription
initiation occurs when the promoter is in the on state at the
rate r by which a new RNAP is added to the first segment.
No transcription initiation is allowed when the promoter is
in the off state. Following initiation, RNAPs move along the
gene with segment-dependent elongation rates kel,i. They can
detach from DNA at any segment with rate d (premature
termination). Once they reach the stop site, they terminate
transcription at rate kel,L. We note that the model ignores
excluded volume interactions between neighbouring RNAPs,
i.e. the number of RNAPs in each segment is unbounded.

The model is summarised in Fig. 1 – note that this
is a cartoon version of the reaction scheme (1) which is
specific to the context of transcription. In particular,
the RNAP on gene segment i is what was labelled as Pi
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in scheme (1). Note that the number of RNAPs on a
gene is equal to the number of nascent mRNA; this is
because each RNAP has attached to it a nascent mRNA
tail whose length increases as elongation proceeds. The
rates of gene activation and deactivation are su and sb, re-
spectively. Once the promoter is active (in the on state),
transcription initiation occurs at rate r, whereby a new
RNAP enters the first segment. We do not consider leaky
transcription, i.e. transcription initiation is not allowed
when the promoter is in the off state. After initiation, the
RNA polymerase moves along the gene body from seg-
ment to segment with, in general, a segment-dependent
elongation rate kel,i. During elongation, the RNAP can
prematurely detach from the gene at rate d. Transcrip-
tion termination occurs at the last segment with rate
kel,L, whereby the RNAP is removed from the gene and
the newly synthesized mRNA is released.

We note that the model does not explicitly take into
account excluded volume interactions between RNAPs.
RNAP has a footprint of `RNAP = 35 base pairs (bp)
[23]. The size of each segment is `segment = Lgene/L,
where Lgene is the number of base pairs in the gene body,
typically measured in thousands of base pairs. Thus,
the maximum number of RNAPs in each segment is
c = `segment/`RNAP, whereas in our model the number
of RNAPs in each segment is unbounded.

As we show later, this simplification allows us to ob-
tain analytical expressions for the distribution of RNAPs
along the gene. In order to compensate for this simpli-
fication, one can choose the size of the segment `segment

such that the average number of RNAPs in any segment
is less than the maximum capacity c

〈ni〉 < c, i = 1, . . . , L. (2)

Alternatively, one can choose `segment such that the prob-
ability of observing more than c RNAPs in each segment
is small,

P (ni > c)� 1, i = 1, . . . , L. (3)

We provide analytical expression for both 〈ni〉 and P (ni)
so that any of these two conditions can be easily checked
if the model parameters are known. Transcription is typ-
ically rate-limited by initiation, which means there are
only few active RNAPs on the gene at a given time, and
hence conditions (2) and (3) are automatically satisfied.

B. Master equations for the RNAP distribution

The central information that we are interested in is the
probability P (n1, . . . , nL; t) to find n1 RNAPs in segment
1, n2 RNAPs in segment 2, and so on, at a given time
t. This probability is in fact a sum of two probabilities
Pon(n1, . . . , nL; t) and Poff(n1, . . . , nL; t) which are con-
ditioned on the state of the promoter. The probabilities

Pon and Poff satisfy the following master equations,

∂

∂t
Pon(n1, . . . , nL; t) =

L−1∑
i=1

kel,i(ni + 1)EiE−1
i+1Pon

+ kel,L(nL + 1)ELPon +

L∑
i=1

d(ni + 1)EiPon

+ rE−1
1 Pon + suPoff −

L∑
i=1

(kel,i + d)niPon

− (sb + r)Pon, (4a)

∂

∂t
Poff(n1, . . . , nL; t) =

L−1∑
i=1

kel,i(ni + 1)EiE−1
i+1Poff

+ kel,L(nL + 1)ELPoff +

L∑
i=1

d(ni + 1)EiPoff

+ sbPon −
L∑
i=1

(kel,i + d)niPoff − suPoff . (4b)

Here we have shortened the notation by introducing step
operators Ei and E−1

i [27] that increase and decrease the
number of particles ni in segment i, respectively,

EiP (. . . , ni, . . . ) = P (. . . , ni + 1, . . . ), (5a)

E−1
i P (. . . , ni, . . . ) = P (. . . , ni − 1, . . . ), ni ≥ 1, (5b)

E−1
i P (. . . , ni = 0, . . . ) = 0. (5c)

From now on, we are interested only in the steady state,
so that ∂Pon/∂t = 0 and ∂Poff/∂t = 0 and so we drop
the time dependence from Pon and Poff .

Rather than working with the master equation directly,
we introduce the probability generating functions Gon,
Goff for each of the promoter states, and also G = Gon +
Goff , whereby

Gon(z1, . . . , zL) =

∞∑
n1=0

· · ·
∞∑

nL=0

zn1
1 . . . znL

L

× Pon(n1, . . . , nL), (6a)

Goff(z1, . . . , zL) =

∞∑
n1=0

· · ·
∞∑

nL=0

zn1
1 . . . znL

L

× Poff(n1, . . . , nL). (6b)

From the master equation we get the following steady-
state partial differential equations for Gon and Goff ,

L−1∑
i=1

[
(kel,i + d)zi − kel,izi+1 − d

]∂Gon

∂zi

− (kel,L + d)(1− zL)
∂Gon

∂zL
= suGoff − sbGon

− r(1− z1)Gon, (7a)

L−1∑
i=1

[
(kel,i + d)zi − kel,izi+1 − d

]∂Goff

∂zi
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− (kel,L + d)(1− zL)
∂Goff

∂zL
= sbGon − suGoff . (7b)

To the best of our knowledge, this system of equations
has not been solved in closed-form before, except in three
special cases: telegraph model (L = 1), constitutive gene
expression (sb = 0) and deterministic elongation with
mature RNA production. For completeness, we sum-
marise these three cases below.

C. Exactly solvable cases

1. The telegraph model

The case of L = 1 is known as the telegraph model [5],
whose solution for the generating function reads

G(z1) = e−α(1−z1)M(σb;σu + σb;α(1− z1)), (8)

where kel,1 = kel and

α =
r

kel + d
, σu =

su
kel + d

, σb =
sb

kel + d
. (9)

In the expression for G(z1), M is Kummer’s (confluent
hypergeometric) function [28]. The probability distribu-
tion of n1 is given by

P (n1) =
αn1e−α

n1!

(σu)n1

(σu + σb)n1

×M(σb, σu + σb + n1, α). (10)

We note this expression also holds for the marginal dis-
tribution P (n1) of the model with L ≥ 1 – this is because
the fluctuations in the RNAP numbers on segment 1 are
unaffected by the fluctuations on the other segments due
to the irreversible nature of the reactions between seg-
ments.

2. Constitutive gene expression

A constitutive promoter is always in the on state,
which means that sb = 0. In that case there is only
one equation to solve, that for Gon ≡ G, since Goff = 0.
We can easily check that the solution is given by

G(z1, . . . , zL) =

L∏
i=1

e−µi(1−zi), (11)

where µi is the average number of RNAPs in segment i
and is given by Eq. (23) in which η = su/(su + sb) = 1.
This generating function leads to a probability distribu-
tion that is a product of Poisson distributions,

P (n1, . . . , nL) =

L∏
j=1

µ
nj

j e
−µj

nj !
. (12)

Consequently there are no correlations between seg-
ments. Models of this type have been used to describe
mRNA senescence [29] and splicing [30].

3. Deterministic elongation with mature RNA production

We can extend this model to include mature RNA pro-
duction by another stage after transcription termination.
The model now has L+ 1 segments, whereby the first L
segments describe RNAP dynamics and the last segment
counts the number of mature RNA m. We further as-
sume uniform elongation rates in segments i = 1, . . . , L
so that kel,i = kel. At the last segment, the mature RNA
is degraded at rate dm, which in our notation is equiva-
lent to saying that dm ≡ kel,L+1 + d.

For this model the distribution of mature RNA, P (m),
has been found analytically [17] in the limit in which the
elongation is deterministic, i.e. when dm/kel → 0 and
L → ∞ but keeping the transcription time T = L/kel

fixed. In this limit, the distribution of the mature RNA
is the same as in the telegraph model; hence, this limit is
a more formal way of deriving the telegraph model from
a detailed model of RNAP dynamics.

III. EXACT MOMENTS OF THE RNAP
DISTRIBUTION P (ni)

In this section we consider the first three moments of
the RNAP distribution P (ni) in the steady state. We will
need these moments later in Section IV, where we derive
an analytical expression for the RNAP distribution using
mean-field theory.

We begin by deriving recurrence relations for the first
three moments, which we solve analytically in the uni-
form case (all kel,i are equal to kel). In the non-uniform
case (arbitrary values of kel,i in each segment) we obtain
the first moments analytically and the second and third
moments numerically.

In the former case, the first two moments have been
previously derived in Ref. [17]. Here for the uniform case
we present a new derivation using lattice paths which has
the advantage that it can be extended to higher moments,
as we demonstrate by computing the third moment.

We first make the following change of variables,

ui = λi(1− zi), (13)

where λi is given by

λ1 = 1, λi =

i−1∏
j=1

kel,j

kel,j + d
, i = 2, . . . , L. (14)

The equations for Gon and Goff now take a simpler form,

L−1∑
i=1

ωi(ui − ui+1)
∂Gon

∂ui
+ ωLuL

∂Gon

∂uL

= suGoff − (sb + ru1)Gon, (15a)

L−1∑
i=1

ωi(ui − ui+1)
∂Goff

∂ui
+ ωLuL

∂Goff

∂uL
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= sbGon − suGoff , (15b)

where we have introduced ωi defined as

ωi = kel,i + d. (16)

The recurrence relations for the moments of P (ni) can
be found by taking partial derivatives of the equations
above and setting u1 = · · · = uL = 0.

A. First moment of P (ni)

We introduce the following notation,

g(i) = g(i)
on + g

(i)
off , (17)

where

g(i)
on =

∂Gon

∂ui

∣∣∣∣
{uj}=0

, g
(i)
off =

∂Goff

∂ui

∣∣∣∣
{uj}=0

, (18)

and {uj} = 0 means that u1 = · · · = uL = 0. Using g(i),
we can express the first moment of P (ni) as,

µi = 〈ni〉 = −λig(i). (19)

In order to find g(i) we add Eqs. (15a) and (15b) to-
gether, then take a partial derivative with respect to ui
and set all u1 = · · · = uL = 0. The resulting recurrence
relation for g(i) reads

ωig
(i) = ωi−1g

(i−1), ω1g
(1) = −rη, (20)

where η is the fraction of the time that the promoter
spends in the on state,

η =
su

su + sb
. (21)

From here we get

g(i) = −rη
ωi
. (22)

The first moment of P in segment i is thus given by

µi = 〈ni〉 =
rηλi
ωi

=
rηλi+1

kel,i
=

rη

kel,i

i∏
j=1

kel,j

kel,j + d
. (23)

For uniform rates with no detachment, the mean is the
same across the gene. Otherwise, the mean varies across
the gene, for example if the elongation rates are non-
uniform with no detachment or if the elongation rates
are uniform with non-zero detachment.

We also write down an analytical expression for g
(i)
on

because we will need it later for computing the second
moment of P (ni),

g(i)
on = −rη

ωi

i∑
n=1

(
δn,1 +

su
ωn

)

×
i∏

k=n

ωk
su + sb + ωk

, (24)

where δi,j is the Kronecker delta function. In the case of

uniform elongation rates, the expression for g
(i)
on takes a

simpler form:

g(i)
on = −αη

(
η +

1− η
(1 + σu + σb)i

)
, (25)

where the rescaled parameters α, σu and σb are defined
in Eq. (9).

B. Second moment of P (ni)

Next, we define

g(ij) = g(ij)
on + g

(ij)
off , (26)

where

g(ij)
on =

∂2Gon

∂ui∂uj

∣∣∣∣
{uj}=0

, g
(ij)
off =

∂2Goff

∂ui∂uj

∣∣∣∣
{uj}=0

. (27)

The second central moment of P (ni) (the covariance) is
related to g(ij) as follows,

cov(ni, nj) = 〈(ni − µi)(nj − µj)〉

= δijµi + λiλj

(
g(ij) − g(i)g(j)

)
. (28)

In order to find g(ij), we add Eqs. (15a) and (15b) to-
gether, then take partial derivatives with respect to ui
and uj and set u1 = · · · = uL = 0, yielding the following

recurrence relations for g(ij),

g(ij) =
ωi−1

ωi + ωj
g(i−1j) +

ωj−1

ωi + ωj
g(ij−1),

i, j = 2, . . . , L (29a)

g(1j) =
ωj−1

ω1 + ωj
g(1j−1) − rg

(j)
on

ω1 + ωj
, j = 2, . . . , L (29b)

g(i1) =
ωi−1

ωi + ω1
g(i−11) − rg

(i)
on

ωi + ω1
, i = 2, . . . , L (29c)

g(11) = − r

ω1
g(1)

on . (29d)

A closed-form expression for g(ij) can be found for uni-
form elongation rates, in which case the coefficients in
Eqs. (29) are all equal to 1/2. We can think of Eqs. (29)
in terms of two-dimensional lattice paths with unit steps
(m,n) → (m − 1, n) and (m,n) → (m,n − 1). We are
interested in the paths that start at (i, j) and end at one
of the boundary points, (1, n) or (m, 1), for 1 ≤ m ≤ i
and 1 ≤ n ≤ j. Let us say we start at (i, j) and end at
(m, 1) for 1 ≤ m ≤ i. Each step we make is weighted by
factor 1/2, until we reach the end point at (m, 1), which
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1 2 3 4 5
i

1

2

3

4

5

j

FIG. 2. A lattice path from point (i, j) = (5, 4) (red) to

point (2, 1) (blue). The contribution from this path to g(54)

is (1/2)6(−αg(2)on /2).

is weighted by (−αg(m)
on /2), where α = r/(kel + d). Simi-

larly, the end point at (1, n) for 1 ≤ n ≤ j is weighted by

(−αg(n)
on )/2, whereas the end point at (1, 1) is weighted

by −αg(1)
on .

One such lattice path is presented in Fig. 2 with the
start point at (5, 4) and the end point at (2, 1). The total
weight of this path is 1/26—the length of the path is 6—

multiplied by the weight at the end point, (−αg(2)
on /2),

which gives

path weight in Fig. 2 =

(
1

2

)6
(
−αg

(2)
on

2

)
. (30)

Because all paths between two given points on the lat-
tice carry the same weight, we can simply count them,
multiply their weight by the weight at the boundary and
then sum over all boundary points. This simplification is
not possible in the case of non-uniform elongation rates
because paths between two given points on the lattice
will in general all have different weights.

In order to count the paths between two fixed points,
we denote by S moving south and by W moving west. We
can then describe a path of length n as a n-letter word
consisting of letters S and W. For example, the path in
Fig. 2 can be written as SSWWSWW.

Next, we count all paths from a given point (i, j) to
the boundary point (1, n) for each n = 2, . . . , j. To get
to this point, we need to make i−1 steps to the south and
j − n steps to the west. The total length of this path is
i−1+j−n and there are

(
i−1+j−n
i−1

)
such paths. We repeat

this procedure for all paths from (i, j) to the boundary
points (m, 1) for each m = 2, . . . , i. Finally, we count all
paths from (i, j) to (1, 1). After rearranging terms, the

total contribution from all paths can be written as

g(ij) =

i∑
m=1

1

2i−m+j−1

(
i−m+ j − 1

j − 1

)(
−αg

(m)
on

2

)

+

j∑
n=1

1

2i−1+j−n

(
i− 1 + j − n

i− 1

)(
−αg

(n)
on

2

)
. (31)

Inserting the expression for g
(m)
on from Eq. (25) into (31)

we get a closed-form expression for the second moment
of P (ni) (the covariance)

cov(ni, nj) = δi,jµi + µiµj
σb/σu

1 + σu + σb
γij(σu, σb), (32)

where γi,j(σu, σb)[31] is given by

γij(σu, σb) =

i−1∑
q=0

(
j − 1 + q

q

)
1

2j+q(1 + σu + σb)i−q−1

+

j−1∑
q=0

(
i− 1 + q

q

)
1

2i+q(1 + σu + σb)j−q−1
. (33)

The derivation of the second moments conditioned on
the promoter being in the on state can be done is a similar
fashion. We omit here the details and state only the final
result:

g(ij)
on =

1

2 + σu + σb

i∑
m=1

j∑
n=1

(
i−m+ j − n

i−m

)

× (σug
(mn) − δm1αg

(n)
on − δ1nαg(m)

on )

(2 + σu + σb)i−m+j−n . (34)

It is interesting that while RNAPs in this model are
non-interacting (dynamics of a single RNAP does not
depend on the presence of other RNAPs), yet the model
exhibits long-range correlations in RNAP numbers be-
tween segments. These correlations are entirely due to
promoter switching, because the model with constitutive
gene expression (sb = 0) has covariance cov(ni, nj) = 0
for i 6= j, see Section II C.

In the case of non-uniform elongation rates, the lattice
path method cannot be used because paths that share
the same end points in general have different weights. In-
stead, the recurrence relation (29) for g(ij) must be solved
directly. leading to rather cumbersome expressions.

First, we solve the recurrence relation for g(1j), which
reads

g(1j) =
1

ω1ωj

j∑
m=1

ω1 + δ1mωm
ω1 + ωm

Q1j

Q1m
(−rωmg(m)

on ), (35)

where δij is the Kronecker delta, g
(i)
on is given by Eq. (24)

and Qij is defined as

Qij =

j∏
k=1

ωk
ωi + ωk

. (36)
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Next, we can express g(ij) in terms of g(i−1m) for m =
1, . . . , j,

g(ij) =
1

ωiωj

j∑
m=1

ωi + δ1mωm
ωi + ωm

Qij
Qim

× (ωi−1ωmg
(i−1m)). (37)

The final expression for g(ij) can be obtained by iterating
(37) until g(ij) is expressed in terms of g(1k) for k =
1, . . . , j and then inserting expression (35) for g(1k).

C. Third moment of P (ni)

In order to compute the third moment of P (ni), we
consider third-order partial derivatives of Gon and of
Goff ,

g(ijk) = g(ijk)
on + g

(ijk)
off , (38)

where

g(ijk)
on =

∂3Gon

∂ui∂uj∂uk

∣∣∣∣
{uj}=0

, (39a)

g
(ijk)
off =

∂3Goff

∂ui∂uj∂uk

∣∣∣∣
{uj}=0

. (39b)

Of particular importance is the third standardised central
moment of P (ni), which is given by

κi =
〈(ni − 〈ni〉)3〉

σ3
i

=
1

σ3
i

{
− λ3

i

(
g(iii) − 3g(ii)g(i) + 2g(i)

)
+ 3λ2

i

[
g(ii) −

(
g(i)
)2
]
− λig(i)

}
, (40)

where g(i), g(ij) and g(ijk) are given by Eqs. (22), (31)
and (43), respectively, and σi is the standard deviation
of ni,

σi =
√
〈(ni − 〈ni〉)2〉 =

√
cov(ni, ni). (41)

The third standardised central moment is useful for un-
derstanding the shape of the distribution, in particular
its (a)symmetry. We will use this expression later in Sec-
tion IV.

The recipe to obtain the recurrence relation for g(ijk)

is the same as before. We first add Eqs. (15a) and (15b)
together, then take the partial derivatives with respect
to ui, uj and uk and finally set u1 = · · · = uL = 0. The

resulting recurrence equations for g(ijk) are given by

g(ijk) =
ωi−1

ωi + ωj + ωk
gi−1jk +

ωj−1

ωi + ωj + ωk
gij−1k

+
ωk−1

ωi + ωj + ωk
gijk−1, i, j, k = 2, . . . , L, (42a)

g(1jk) =
ωj−1

ω1 + ωj + ωk
g1j−1k +

ωk−1

ω1 + ωj + ωk
g1jk−1

− rg
(jk)
on

ω1 + ωj + ωk
j, k = 2, . . . , L, (42b)

g(11k) =
ωk−1

2ω1 + ωk
− 2rg

(1k)
on

2ω1 + ωk
, k = 2, . . . , L (42c)

g(111) = −rg(11)
on . (42d)

Other equations, for example for g(i1k), can be obtained
from these equations using that fact g(ijk) is invariant
under the permutation of indices i, j, k.

Eqs. (42a)-(42b) can be solved analytically in the case
of uniform elongation rates using lattice paths, or nu-
merically in the non-uniform case. In the former case,
we consider three-dimensional lattice paths that start at
(i, j, k) and end at one of the boundary points (1, n, o),
(m, 1, o) or (m,n, 1), where 1 ≤ m ≤ i, 1 ≤ n ≤ j and
1 ≤ o ≤ k. Instead of 1/2, each step is now weighted
by 1/3. If the end point is, say (1, n, o), where n, o 6= 1,

then the weight of that point is −αg(no)
on /3, where g

(no)
on

is the second moment conditioned on the promoter being
in the on state. If the end point is (1, 1, o) for o 6= 1,

then the weight is −2αg
(1o)
on /3. If o = 1 then the weight

is −αg(no)
on . The final result for g(ijk) is

g(ijk) =

i∑
m=1

j∑
n=1

(
i−m+ j − n+ k − 1

i−m, j − n, k − 1

)

× 1

3i−m+j−n+k−1

(
−αg

(mn)
on

3

)

+

i∑
m=1

k∑
o=1

(
i−m+ j − 1 + k − o
i−m, j − 1, k − o

)

× 1

3i−m+j−1+k−o

(
−αg

(mo)
on

3

)

+

j∑
n=1

k∑
o=1

(
i− 1 + j − n+ k − o
i− 1, j − n, k − o

)

× 1

3i−1+j−n+k−o

(
−αg

(no)
on

3

)
(43)

where g
(ij)
on is given by Eq. (34).

IV. THE RNAP DISTRIBUTION P (ni) IN THE
MEAN-FIELD APPROXIMATION

As we mentioned earlier, solving the system of partial
differential equations for Gon and Goff for arbitrary num-
ber of segments L is a difficult problem. In order to make
progress, we focus on the marginal distribution of ni in
the steady state defined as

P (ni) =
∑
{ni}\ni

P (n1, . . . , nL), (44)
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where the summation goes over all values of variables
n1, . . . , nL except for the variable ni which is kept fixed.
In this section we provide an analytical expression for
P (ni) in the mean-field approximation.

A. Naive mean-field approximation

We first consider an approximation of the mean-field
type that we call the naive mean-field approximation
(NMF) for the reasons that will be clear in a moment.
This type of approximation is well known in statistical
physics and often gives satisfactory results in the ab-
sence of long-range correlations (for example, away from
phase transitions). However, we will show that for this
model the naive mean-field approximation does not al-
ways work, and later we find an improved mean-field ap-
proximation using exact results from Section III, which
shows excellent agreement with the exact results from
stochastic simulations. Since both of these approxima-
tions are of the mean-field type, we use terms “naive”
and “improved” to distinguish between them.

The main idea of the naive mean-field approximation is
to find closed master equations for the marginal distribu-
tions Pon(ni) and Poff(ni), which is done by decoupling
fluctuations in segments i− 1 and i. To find the master
equation for Pon(ni) and Poff(ni), we sum Eqs. (4a) and
(4b) over all nj for all j 6= i. In each of the resulting mas-
ter equations, there will be exactly one term that couples
segments i and i− 1, and that is the term that describes
elongation from i − 1 to i. For example, in the master
equation for Pon, this term is given by

∞∑
ni−1=0

kel,i−1(ni−1 + 1)Pon(ni−1 + 1, ni − 1)

=

kel,i−1

∞∑
ni−1=0

ni−1Pon(ni−1|ni − 1)


× Pon(ni − 1). (45)

Here, Pon(ni−1+1, ni−1) describes the coupling between
segments i − 1 and i. This type of hierarchy in which a
n-segment probability distribution depends on (n + 1)-
segment probability distribution is typical of an interact-
ing many-body system and cannot be solved. However,
we can rewrite this term using the conditional distribu-
tion Pon(ni−1|ni−1), so that the expression in the paren-
theses is an effective rate at which new RNAPs are added
to segment i from segment i − 1. The naive mean-field
approximation amounts to ignoring the dependence of
P (ni−1|ni − 1) on ni, i.e. replacing

Pon(ni−1|ni − 1) ≈ Pon(ni−1)∑
ni−1

Pon(ni−1)
, (46a)

Poff(ni−1|ni − 1) ≈ Poff(ni−1)∑
ni−1

Poff(ni−1)
. (46b)

In other words we ignore correlations between segments
i− 1 and i, except for the fact that both segments have
the same promoter state. By ignoring these correlations,
we obtain master equations that contain only terms with
Pon(ni) and Poff(ni). The effective rates pi and qi at
which new RNAPs are added to the segment i in the on
and off state are thus given by

pi =
kel,i−1

∑
ni−1

ni−1Pon(ni−1)∑
ni−1

Pon(ni−1)

=
−kel,i−1 λi−1g

(i−1)
on

η
, i = 2, . . . , L, (47a)

qi =
kel,i−1

∑
ni−1

ni−1Poff(ni−1)∑
ni−1

Poff(ni−1)

=
−kel,i−1 g

(i−1)
off

1− η
, i = 2, . . . , L. (47b)

The effective model that governs the stochastic dynam-
ics of ni in the naive mean-field approximation is equiv-
alent to the telegraph model for RNA production [5] in
which transcription rates in the on and off states are pi
and qi, respectively, and the mRNA degradation rate is
kel,i + d. The reactions for this model with their corre-
sponding rates are given by

G
sb−⇀↽−
su

G∗, (48a)

G
pi−→ G+ Pi, (48b)

G∗
qi−→ G∗ + Pi, (48c)

Pi
kel,i+d−−−−→ ∅, (48d)

where G and G∗ represent the on and off states of the
gene and Pi is the species associated with the ith segment
(see scheme (1)). We note that the telegraph model in
which transcription is allowed from both on and off states
is also known as the leaky telegraph model [11].

The telegraph model described by reactions (48a)-
(48d) can be solved exactly and the probability-
generating function reads

G0(zi) =

∞∑
ni=0

zni
i P0(ni) = e−αi(1−zi)

×M(σb;σu + σb; (αi − βi)(1− zi)), (49)

where αi, βi, σu,i and σb,i are defined as

αi =
pi

kel,i + d
, βi =

qi
kel,i + d

σu,i =
su

kel,i + d
, σb,i =

sb
kel,i + d

. (50)

The probability distribution P (ni) in the naive mean-
field approximation reads

P (ni) =
e−αi

ni!

ni∑
k=0

(
ni
k

)
βni−k
i (αi − βi)k
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FIG. 3. RNAP number distribution in segments i = 2 and i = L = 30 in the naive mean-field approximation (NMF; the
distribution is given by Eq. (51)), compared to the exact distribution obtained by using the stochastic simulation algorithm
(SSA). Elongation rates are assumed to be uniform (kel,i = kel). (a) Constitutive expression: r = 0.5, kel = 1, d = 0, su = 10,
sb = 1. (b) Bursty expression: r = 100, kel = 1, d = 0, su = 7, sb = 50. (c) Bimodal distribution: r = 20, kel = 1, d = 0,
su = 0.35, sb = 0.25. (d) Nearly bimodal distribution: r = 30, kel = 1, d = 0, su = 0.5, sb = 0.8.

× (σu,i)k
(σu,i + σb,i)k

M(σb,i;σu,i + σb,i + k; (αi − βi)), (51)

and the mean and the variance are given by, respectively,

µ0,i = αiη + βi(1− η), (52)

σ2
0,i = µ0,i + (αi − βi)2 η(1− η)

1 + σu,i + σb,i
. (53)

We can check that the choice of pi and qi in Eqs. (47a)
and (47b) ensures that µ0,i = µi, i.e. the mean of ni
computed in Eq. (23) is the same as the mean in the
naive mean-field approximation. However, the value of
the variance is generally different from the exact value.

In the case of uniform elongation rate the expression
for the variance simplifies to

σ2
0,i = µi + µ2

i

σb/σu
1 + σu + σb

γ0,ii(σu, σb), (54)

where γ0,ii(σu, σb) is given by

γ0,ii(σu, σb) =
1

(1 + σu + σb)2i−2
. (55)

The difference between the exact variance in Eq. (32) and
Eq. (54) is in the factor γii for i ≥ 2 (the naive mean-
field approximation is exact in segment 1). In general,
we find that γ0,ii < γii for any i = 2, . . . , L for σu 6= 0
and σb 6= 0, whereas γ0,ii = γii = 1 for σu = σb = 0.
The naive mean-field approximation underestimates the
exact variance, which is expected given that we ignored
correlations. When σb = 0 (constitutive gene expres-
sion), there are no correlations between segments, the
naive mean-field approximation becomes exact and the
resulting distribution is Poisson, see Eq. (12).

In general, the naive mean-field approximation is valid
if the correlations between ni−1 and ni are small. Fortu-
nately, for this model we can compute these correlations
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exactly from the covariance cov(ni−1, ni) in Eq. (28).
In particular, we can compute the correlation coefficient
defined as

Ri =
cov(ni−1, ni)

σi−1σi
, (56)

where σi is the standard deviation of ni, see Eq. (41).
The naive mean-field is valid provided Ri ≈ 0, i.e. when
ni−1 and ni are not correlated. Computing Ri thus gives
us a direct method to check the validity of the naive
mean-field theory.

In Fig. 3 we compare RNAP number distribution in
the naive mean-field approximation with the exact dis-
tribution obtained from stochastic simulations, for two
segments of the gene, i = 2 and i = L = 30. In the
case of constitutive gene expression (Fig. 3(a)) we find
an excellent agreement between the distributions, in ac-
cordance with the fact R2 = 1.5 · 10−3 and R30 = 10−4.
In the case of bursty expression, the agreement is not so
good for i = 2, but improves for i = L (Fig. 3(b)). Again,
this can be explained by stronger correlations at the start
of the gene than at the end, R2 = 0.35 and R30 = 0.18.
The disagreement between the distributions is strongest
in the bimodal and nearly bimodal cases (Figs. 3(c) and
(d)). In those cases the correlations are the strongest:
we find R2 = 0.74 and R30 = 0.58 for the bimodal and
R2 = 0.76 and R30 = 0.59 for the nearly bimodal distri-
butions.

B. Improved mean-field approximation

We saw in the previous section that the naive mean-
field approximation is equivalent to a telegraph model
that produces exact mean but wrong variance. In this
section we consider a telegraph model with general rates,

G
s′b,i−−⇀↽−−
s′u,i

G∗, (57a)

G
p′i−→ G+ Pi, (57b)

G∗
q′i−→ G∗ + Pi, (57c)

Pi
k′el,i+d

′
i−−−−−→ ∅. (57d)

We want to find rates p′i, q
′
i, s
′
u,i, s

′
b,i, k

′
el,i and d′i such

that the mean µ′i and variance σ′i of the telegraph model
described by Eqs. (57a)-(57d) are both matched to their
exact values µi in Eq. (23) and σ2

i = cov(ni, ni) in Eq.
(28), respectively. In particular, we want to solve

µ′i = α′iη
′ + β′i(1− η′) = µi, (58a)

σ′i = µ′i + (α′i − β′i)2 η′(1− η′)
1 + σ′u,i + σ′b,i

= σi, (58b)

where α′i, β
′
i, σ

′
u,i and σ′b,i are obtained as before by

rescaling p′i, q
′
i, s
′
u,i, s

′
b,i by k′el,i+d

′
i, and η′i = σ′u,i/(σ

′
u,i+

σ′b,i). In other words, we decouple the segments i − 1
and i as before resulting in an effective telegraph model,
but now we reinstate some of these correlations implicitly
throughout by matching the variance.

Obviously we cannot find unique rates that solve Eqs.
(58a)-(58b) because the problem is overdetermined. We
therefore keep the elongation rate k′el,i and the detach-

ment rate d′i the same as in the original model,

k′el,i = kel,i, d′i = d. (59)

That leaves us with four parameters to adjust by solving
two equations, Eqs. (58a) and (58b). We further require
that the fraction of time the gene spends in the on state,
η′i, is preserved,

η′i = η. (60)

We consider three options for the remaining parameters:

• Option 1: We set s′u,i = su and s′b,i = sb so that

Eq. (60) is automatically satisfied. We then adjust
the effective transcription rates p′i and q′i to match
the mean and variance. This is a leaky telegraph
model with the same gene switching rates as in the
original model.

• Option 2: We set q′i = 0 and adjust p′i, s
′
u,i and s′b,i

by solving Eqs. (58a), (58b) and (60). This is a
non-leaky telegraph model with effective, segment-
dependent gene switching rates.

• Option 3: We adjust all four rates p′i, q
′
i, s
′
u,i, s

′
b,i

by solving Eqs. (58a), (58b) and (60). Addition-
ally, we require that the skewness predicted by the
telegraph model, Eq. (63), is matched to the exact
skewness computed in Eq. (40). This is a leaky
telegraph model with effective, segment-dependent
gene switching rates.

Surprisingly, option 1 does not lead to a noticeable im-
provement over the naive mean-field approximation, and
we discard it. In contrast, option 2 significantly improves
the naive mean-field approximation in all four cases: the
constitutive, bursty, bimodal and nearly bimodal, as we
demonstrate below. Interestingly, option 3 does not pro-
vide noticeable improvement over option 2. We will show
later that that is because option 2 predicts skewness that
is very close to the exact one. Since option 2 has a sim-
pler expression for the probability density, we from now
on consider only option 2 to which we refer to as the
improved mean-field approximation (IMF).

For option 2 the solution to Eqs. (58a), (58b) and (60)
with β′i = 0 is unique and reads,

α′i =
p′i

kel,i + d
=
µi
η
, (61a)

σ′u,i =
s′u,i

kel,i + d
= η

(
µ2
i

σ2
i − µi

1− η
η
− 1

)
, (61b)
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FIG. 4. RNAP number distribution in segments i = 2 and i = L = 30 in the improved mean-field approximation (IMF; the
distribution is given by Eq. (62)), compared to the exact distribution obtained by the stochastic simulation algorithm (SSA).
Model parameters are the same as in Fig. 3. The improved mean-field approximation performs significantly better than the
naive mean-field approximation and is accurate even when the number correlations between segments are large. (a) Constitutive
expression. (b) Bursty expression. (c) Bimodal distribution. (d) Nearly bimodal distribution.

σ′b,i =
s′b,i

kel,i + d
= (1− η)

(
µ2
i

σ2
i − µi

1− η
η
− 1

)
. (61c)

One can show that the effective parameters σ′u,i and σ′b,i
are always positive and thus the effective rates can be
found for any choice of the model parameters.

These parameter values can then be used to compute
the probability distribution in the improved mean-field
approximation (IMF) from the telegraph model,

P (ni) =
α′
ni

i e
−α′i

ni!

(σ′u,i)ni

(σ′u,i + σ′b,i)ni

×M(σ′b,i;σ
′
u,i + σ′b,i + ni;α

′
i). (62)

In Fig. 4 we compare the approximate distribution in
Eq. (62) to the exact distribution obtained by stochastic
simulations using the same model parameters α, σu and
σb as in Fig. 3. We find an excellent agreement in all
four cases, the constitutive, bursty, bimodal and nearly

bimodal. We argue that option 2 performs significantly
better than option 1 because the correlations between
segments are solely due to promoter switching. These
correlations can be better taken into account by adjusting
the effective on and off rates, rather than keeping them
the same.

Because the improved mean-field approximation
matches only the first two moments, we wanted to check
its accuracy in predicting the third standardised central
moment or skewness. To this end we generated 8000
unique values of the parameters α, σu and σb. The val-
ues for each parameter were generated uniformly on a
logarithmic scale according to the formula 2k for integer
k between −13 and 6. That gave us 20 values for each
parameter spanning over five orders of magnitude in the
range from 1.2 · 10−4 to 64. For each combination we
computed the exact skewness κi according to Eq. (40),
and compared it to the one predicted by the improved
mean-field approximation (computed from Eq. (62)),
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FIG. 5. Skewness κ1,i predicted by the improved mean-field approximation (IMF; see Eq. (63)) compared to the exact value κi

(given by Eq. (40)) for 8000 combinations of α, σu and σb. Each point (κ1,i, κi) corresponds to one combination of parameters
α, σu and σb. For each combination, the segment i with the largest relative error between κ1,i and κi was selected. The results
were divided in two sets: (a) is for κi < 10 (linear scale) and (b) is for κi > 10 (log scale). The dashed line is for reference only
and given by κ1,i = κi.

κ1,i =
1

σ3
i

(
− 2α′

3
i η(1− η)(2η − 1)

(1 + σ′u,i + σ′b,i)(2 + σ′u,i + σ′b,i)

+ 3σ2
i − 2µi

)
. (63)

We did this for all segments of the gene, after which
we selected the segment with the largest relative error
ε = 100%·|κ1,i−κi|/κi. For this segment we further com-
puted the RNAP number distribution in the improved
mean-field approximation according to Eq. (62). De-
pending on the shape, we determined to which of the
three categories the distribution corresponds to: uni-
modal (without an inflection point), bimodal and nearly
bimodal (unimodal with an inflection point). Out of 8000
distributions, 7190 were unimodal, 487 bimodal and 323
nearly bimodal.

The results comparing κ1,i versus exact κi are pre-
sented in Fig. 5. Due to the large range of κi, we sep-
arated the data according to κi < 10 (Fig. 5(a), lin-
ear scale) and κi > 10 (Fig. 5(b), log scale). Next,
we inspected in more detail how the relative error ε is
distributed among the four aforementioned categories.
We focused on distributions for which the relative er-
ror ε > 10%. We found 74 such distributions in total,
64 were unimodal and 10 were bimodal. A closer in-
spection of these distributions revealed that they all had
in common skewness κi ≈ 0 which caused the relative
error to be large. We inspected the distributions with
the two largest ε values and used the Hellinger distance
[32] to quantify their similarity compared to the exact
distributions obtained by stochastic simulations. Indeed,
we found very small Hellinger distances for both distri-
butions, 3.7 · 10−3 and 3.3 · 10−3, confirming the high

accuracy of our improved mean-field approximation.

C. Other applications: nuclear retention and
export of mRNA

So far we have analysed the performance of the im-
proved mean-field theory in the context of transcription
elongation for which the assumption of uniform elon-
gation seems reasonable. However, in other multistep
downstream processes such as splicing or transport of
nuclear mRNA to the cytoplasm, we cannot expect the
rates of different downstream processing steps to be equal
because each step may represent a physically different
process.

Here, we demonstrate the performance of the improved
mean-field theory for the case of non-uniform rates. We
consider the model for nuclear mRNA retention devel-
oped in Ref. [19]. A reaction scheme for this model with
the corresponding rates is given by

G
sb−⇀↽−
su

G∗, G
r−→ G+ P1, P1

k1−→ P2
k2−→ ∅. (64)

In this model, nuclear mRNA P1 is produced at rate r
from a gene in the on state and exported at rate k1 from
the nucleus to the cytoplasm (this is a L = 2 version
of the reaction scheme (1)). The cytoplasmic mRNA P2

is degraded at rate k2. Parameters for this model were
quantified experimentally for a set of genes in mouse liver
cells in Ref. [19]. For our purposes, we will use the
following parameters obtained for Mlxipl gene,

r = 77 hr−1, k1 = 0.9 hr−1, k2 = 3.8 hr−1. (65)

In Ref. [19] only the fraction of active Mlxipl genes
η = 0.425 was measured but not the absolute on and
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off rates su and sb. In addition, the coefficient of vari-
ation (CV) for cytoplasmic mRNA was measured to be
CV= 0.46. By matching η and CV to those predicted
by our theory (using the results for the mean and vari-
ance), we estimated the switching parameters: su = 4.3
hr−1 and sb = 5.7 hr−1. In addition to these values, we
considered two additional values of export rate k1 that
were two times smaller and larger than the experimental
value.
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FIG. 6. Probability distributions of nuclear and cytoplasmic
mRNA numbers in a two-state model of transcription with
nuclear retention. Distributions were obtained by stochastic
simulations (symbols) and compared to the prediction of the
improved mean-field theory (lines). (a) Distribution of nu-
clear mRNA number P (n1). (b) Distribution of cytoplasmic
mRNA number P (n2). The reaction scheme is given by (64)
and the parameters are stated in the main text.

Using these parameters, we performed stochastic simu-
lations of the model and compared the distributions of P1

and P2 with predictions of the improved mean-field the-
ory. The results for nuclear mRNA are presented in Fig.
6(a) and for cytoplasmic mRNA in Fig. 6(b). In all cases
we find excellent agreement with the predictions of the
improved mean-field theory, showing that it is equally

accurate for non-equal rates of downstream processing
steps.

D. Variation of the shape of the distribution with
increasing number of downstream processing steps

In Fig. 4(c), we saw how a distribution that is bi-
modal for small i, can become unimodal for large enough
i. The question we want to address here is whether this
observation is a special case or if it generally holds.

Where the model is interpreted as one for RNAP dy-
namics during transcription, assuming uniform elonga-
tion rates across the gene (kel,i = kel) and no premature
detachment (d = 0), using the exact Eqs. (23) and (32),
one can easily deduce from Eqs. (32) and (33) that the

factor
µ2
i

σ2
i−µi

increases monotonically with i. Hence, from

Eqs. (61b) and (61c), it follows that the effective switch-
ing rates in the improved mean-field theory increase with
distance i from the start site. This implies that any bi-
modality in the RNAP distribution is washed out as i
increases because bimodality typically manifests due to
slow switching between inactive and active states [33, 34].

Remarkably, this is true also in the general case of
non-uniform elongation rates (including premature de-
tachment), as we prove in Appendix A. Hence, we can
state that for the general model defined in (1), any bi-
modality in the distribution of Pi will decrease as i in-
creases. Interpreting reaction scheme (1) as a model of
the whole mRNA lifecycle, this implies that in a popula-
tion of identical cells (since our model does not consider
cell-to-cell variability), it is easier to observe bimodality
in nascent/nuclear mRNA distributions than in cytoplas-
mic distributions.

The increase of the effective switching rates with i has
also implications for the inference of the extent of tran-
scriptional bursting [35]. This phenomenon is character-
ized by bursts of mRNA expression separated by long
intervals of no expression, i.e. large mean burst size and
low burst frequency. These two parameters are often es-
timated by fitting the telegraph model to measured dis-
tributions of the mRNA copy number [36].

Now, it is well known that within the mathematical
framework of the (non-leaky) telegraph model of gene ex-
pression, the mean burst size is the initiation rate divided
by the off switching rate while the burst frequency is the
on switching rate. We have shown above that the effec-
tive on rate increases with i, which means that fitting the
telegraph model to mRNA data primarily described by
the ith stage of the life cycle will necessarily overestimate
the true burst frequency. The effective mean burst size is
obtained by dividing Eq. (61a) by Eq. (61c). While the
latter equation increases with i, the former equation can
be independent or increase or decrease with i. Hence,
fitting the telegraph model to mRNA data primarily de-
scribed by the ith stage of the life cycle can under or
overestimate the true burst size.
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These results show that noise due to downstream pro-
cessing steps can have a significant effect on the estima-
tion of transcriptional parameters; this makes the case
that for the accurate estimation of these parameters, the
use of nascent mRNA data (which would correspond to
small i in our model) is preferable to the use of cytoplas-
mic or whole cell mRNA data [37].

V. SUMMARY AND DISCUSSION

In this paper, we have devised a simple but very ef-
fective approximation to the steady-state distribution of
the reaction scheme (1). The main idea behind our work
was to approximate the dynamics of Pi in this model by
that of an effective (non-leaky) telegraph model:

G −⇀↽− G?, G −→ G+ Pi, Pi −→ ∅. (66)

In the improved mean-field approximation, the effective
rates of the latter are deduced by matching the first two
moments of P (ni) in the full and reduced models such
that the ratio of the switching rates is the same in both
models (but the absolute rates are not the same). This
procedure is possible because the moments of both mod-
els are known exactly due to the linearity of their propen-
sities. We have shown that this automatically means
that the third-moments of both models are very close
to each other, which suggests that the distributions of
both models are also very close. By an extensive search
over parameter space, we verified that the steady-state
distribution of the reduced model distribution (which is
known in closed-form) was very close to that obtained
from stochastic simulations of the full model – the maxi-
mum Hellinger distance between the two distributions is
of the order of 10−3 and in fact in all cases one could not
easily distinguish by eye any difference between the two.

The study by Vastola et al. [18] is the only other study
of the steady-state distribution of (1) that we are aware
of in the literature. In this paper, the same model is
considered, but there is no premature degradation and
there is a non-zero transcription rate from the off state
G∗. The model is studied in the context of transcription
coupled to a switching gene with multiple downstream
splicing steps. In this case, Pi can be interpreted as the
number of mRNA molecules after i − 1 splicing steps.
The paper use tools inspired by quantum mechanics, in-
cluding ladder operators and Feynman-like diagrams, to
write a formula for the joint distribution in terms of an
infinite sum. This cannot be generally written in closed
form. In particular the solution is in powers of the dif-
ference between the transcription rates of the active and
inactive states, and since this is not typically small, one
must compute many series terms in order to closely ap-
proximate the correct answer. This is a disadvantage
compared to our method, which leads to a simple closed-
form solution that is easy to evaluate and numerically
stable. The disadvantage of our method relative to that

of Vastola et al. is that it is not based on a system-
atic derivation; however, as we have shown, our method
leads to an impressively accurate approximation of the
full model over all parameter space. Another work re-
lated to our study is that by Bokes and Singh [24] which
studied a one state gene system where mRNA molecules
are produced in bursts (with a size that is distributed ac-
cording to the geometric distribution) and then they are
exported to the nucleus. This is likely [38] a special case
of our model, i.e. the bursty limit where r and sb → ∞
at constant r/sb for two segments L = 2. The authors
find an exact solution to this special case; the marginal
distribution of mRNA is found to be always unimodal.
The advantage of our approximation is that it is valid not
just in the bursty limit but all across parameter space,
thus being able to capture the variation of the modality
of the distribution through the mRNA lifecycle (all three
types of distributions – unimodal, bimodal and nearly
bimodal – have been measured [39–41]).

Finally, we note that our present model could be im-
proved to include further biological realism, e.g. an arbi-
trary number of gene states and time-dependent switch-
ing rates. The latter is important since the presence
of additional states is sometimes needed to explain the
non-exponential duration of the off state for mammalian
genes [42]; indeed, a recent paper [43] found that a model
equivalent to our reaction scheme (1) but with at most
three gene states was sufficient to explain the general
features of transcription and pervasive stochastic splice
site selection. The extension of our model to consider
time-dependent switching rates is also important to de-
scribe for example the activation of a promoter by a time-
dependent transcriptional factor signal e.g. the identities
and intensities of different stresses in budding yeast are
transmitted by modulation of the amplitude, duration or
frequency of nuclear translocation of the general stress re-
sponse transcription factor Msn2 [44]. The modification
of our novel mean-field approach to describe these more
complex scenarios will be reported in a separate paper.
Ultimately, would also like to use the model for inter-
preting live cell imaging using fluorescence microscopy,
for example as it was done in Ref. [45] but taking into
account stochastic rather than deterministic transcrip-
tional elongation.
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Appendix A: A mathematical proof that the
effective switching rates increase along the gene

We prove here that σu,i and σb,i, given by Eqs. (61b)
and (61c), respectively, are monotonically increasing
along the gene, i.e. that

σu,i−1 < σu,i, σb,i−1 < σb,i, i = 2, . . . , L. (A1)

We prove that this statement is true for any choice of the
elongation rates kel,i.

According to Eqs. (61b) and (61c), the dependence on
i in both σu,i and σb,i comes from the expression

µ2
i

σ2
i − µi

=
1

g(ii)/(g(i))2 − 1
. (A2)

If we define the ratio w(ij) as

w(ij) =
g(ij)

g(i)g(j)
, (A3)

then the claim in Eq. (A1) is equivalent to the claim that
w(ii) is decreasing, i.e. that

w(ii) < w(i−1i−1), i = 2, . . . , L. (A4)

In order to prove (A4), we use Eqs. (29) to derive
recurrence relations for w(ij), which read

w(ij) =
ωi

ωi + ωj
w(i−1j) +

ωj
ωi + ωj

w(ij−1),

i, j = 2, . . . , L, (A5a)

w(1j) =
ωj

ω1 + ωj
w(1j−1) − ω1

ω1 + ωj

(
rg

(j)
on

g(j)

)
,

j = 2, . . . , L, (A5b)

w(i1) =
ωi

ωi + ω1
w(i−11) − ω1

ωi + ω1

(
rg

(i)
on

g(i)

)
,

i = 2, . . . , L, (A5c)

w(11) =
rg

(1)
on

g(1)
. (A5d)

Note that w(ij) = w(ji) and thus it is sufficient to consider
only j ≥ i. For j = i, Eq. (A5a) gives

w(ii) = w(i−1i), i = 2, . . . , L. (A6)

Next, if we can show that the following inequalities hold
for j > i,

w(i−1j) < w(ij) < w(ij−1), j > i, (A7)

then it is easy to show that (A4) is true since

w(ii) =
1

2
w(i−1i) +

1

2
w(ii−1) = w(i−1i)

=
ωi−1

ωi−1 + ωi
w(i−2i) +

ωi
ωi−1 + ωi

w(i−1i−1)

<
ωi−1

ωi−1 + ωi
w(i−2i−1) +

ωi
ωi−1 + ωi

w(i−1i−1)

=
ωi−1

ωi−1 + ωi
w(i−1i−1) +

ωi
ωi−1 + ωi

w(i−1i−1)

= w(i−1i−1). (A8)

We first prove that w(1j) < w(1j−1). According to

Eqs. (22) and (24), g(j) and g
(j)
on are both negative for all

j = 1, . . . , L and thus their ratio is always positive. Since
w(11) is positive, and ωj/(ω1+ωj) < 1 and ωi/(ωi+ω1) <
1, we conclude that

w(1j) < w(1j−1), j > 1. (A9)

Next, we prove (A7) by induction for any 2 ≤ i ≤ L.
First, we show that (A7) is true for i = 2 and all j > 2.
We then assume that (A7) holds for an arbitrary i = k
and all j > k. Then we show that (A7) also holds for
i = k + 1 and j > k + 1.

We first consider i = 2 and j = 3. Using (A5a) we
obtain

w(23) =
ω2

ω2 + ω3
w(13) +

ω2

ω2 + ω3
w(22), (A10)

and since w(22) = w(12) > w(13), it follows that w(23) <
w(22) and w(23) > w(13). Next, we assume that (A7)
holds for i = 2 and some arbitrary j = k > 3. Using
(A5a) we get that

w(2k+1) =
ω2

ω2 + ωk+1
w(1k+1) +

ωk+1

ω2 + ωk+1
w(2k). (A11)

Since w(1k+1) < w(1k) < w(2k), we obtain that w(2k+1) <
w(2k) and w(2k+1) > w(1k+1). This proves (A7) for i = 2
and j > 2.

Next, we assume that (A7) holds for some arbitrary
i = k > 2 and all j > k. We then consider the case of
i = k + 1. For i = k + 1 and j = k + 2 we get that

w(k+1k+2) =
ωk+1

ωk+1 + ωk+2
w(kk+2)

+
ωk+2

ωk+1 + ωk+2
w(k+1k+1). (A12)

Since w(kk+2) < w(kk+1) = w(k+1k+1), we conclude that
w(k+1k+2) < w(k+1k+1). Now, we assume that (A7) holds
for i = k + 1 and some arbitrary j = m > k + 2. Then
using (A5a) we get that

w(k+1m+1) =
ωk+1

ωk+1 + ωm+1
w(km+1)

+
ωm+1

ωk+1 + ωm+1
w(k+1m). (A13)

Since w(km+1) < w(km) < w(k+1m), it follows that
w(k+1m+1) < w(k+1m) and w(k+1m+1) > w(km+1), and
thus (A7) also holds for i = k + 1 and j = m + 1. This
completes our proof of (A7) and thus the proof of (A4).
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