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Abstract7

Population dynamics are functions of several demographic processes including survival,8

reproduction, somatic growth, and maturation. The rates or probabilities for these pro-9

cesses can vary by time, by location, and by individual. These processes can co-vary and10

interact to varying degrees, e.g., an animal can only reproduce when it is in a particular11

maturation state. Population dynamics models that treat the processes as independent12

may yield somewhat biased or imprecise parameter estimates, as well as predictions of13

population abundances or densities. However, commonly used integral projection models14

(IPMs) typically assume independence across these demographic processes. We examine15

several approaches for modelling between process dependence in IPMs, and include cases16

where the processes co-vary as a function of time (temporal variation), co-vary within each17

individual (individual heterogeneity), and combinations of these (temporal variation and18

individual heterogeneity). We compare our methods to conventional IPMs, which treat19
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vital rates independent, using simulations and a case study of Soay sheep (Ovis aries). In20

particular, our results indicate that correlation between vital rates can moderately affect21

variability of some population-level statistics. Therefore, including such dependent struc-22

tures is generally advisable when fitting IPMs to ascertain whether or not such between23

vital rate dependencies exist, which in turn can have subsequent impact on population24

management or life-history evolution.25

Keywords— copula models, correlated vital rates, generalized linear mixed models, population26

growth rate, reproduction investment, Soay sheep27

2



1 Introduction28

Population models use estimated (or assumed) vital rates at the individual level to understand many29

aspects of a population’s ecology and evolution: its long-term abundance trajectory and age-, size-,30

or state-distribution; its sensitivities and elasticities relevant for management; and its optimal life-31

history strategy, among others. Variation in vital rates can have important affects on populations32

(Vindenes and Langangen, 2015; Hamel et al., 2018). This broad concept encompasses variation33

across individuals, across cohorts, and/or through time in ways described more below. In many34

models, potential variation in multiple vital rates is artificially assumed to be independent.35

Looking beyond independent vital rates, ecologists have also long recognized the potential importance36

of non-independent – i.e. correlated – vital rates on demography and life history evolution (Benton37

and Grant, 1999; Doak et al., 2005; Fieberg and Ellner, 2001). Correlations between growth, survival,38

reproduction, and/or other traits can change demographic conclusions (Coulson et al., 2005). For39

example, whereas independent temporal heterogeneity in vital rates has been generally predicted to40

decrease population growth rate, it can actually increase population growth rate when multiple vital41

rates are correlated (Doak et al., 2005). A completely different example is that persistent individual42

heterogeneity in vital rates can reveal different optimal life history strategies in different environmental43

conditions (Kentie et al., 2020).44

Integral projection models (IPMs) are the framework for discrete-time population dynamics with45

continuous individual state variables (e.g. mass, size) (Easterling et al., 2000). Compared to age- or46

stage-structured matrix population models, which track abundance for each discrete state category,47

IPMs track abundance as a distribution (density) for continuous state values. This enables IPMs to48

more accurately represent populations in which continuous state variables are important predictors49

of individual dynamics such as growth, reproduction and survival (Ellner et al., 2016; Merow et al.,50

2014; Rees et al., 2014). Thus, it may be important to incorporate both variation in vital rates and51

correlations among multiple vital rates into IPMs.52

To what extent have correlated vital rates been incorporated into both estimation and analysis of53

IPMs? At a basic level, correlation in individual vital rates arising from stochastic life trajectories is54

almost inherent to a non-trivial IPM. For example, in a size-structured IPM, correlation in growth55

and survival will arise when both depend on size and individual size trajectories vary due to stochastic56

growth. Temporal correlations among vital rates (e.g. a good year is good for each of growth,57
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survival and reproduction) are captured naturally when year-specific transition kernels are estimated58

or correlated random effects are estimated (Childs et al., 2004; Metcalf et al., 2015; Hindle et al., 2018).59

Correlations in individual heterogeneity among multiple traits have been considered for life-history60

tradeoffs and eco-evolutionary IPMs (Coulson et al., 2021; Kentie et al., 2020). However, there remains61

a need for systematic formulation and comparison of multiple kinds of correlated vital rates. This62

will allow identification of gaps in statistical estimation and IPM analysis methods and comparison of63

impacts on demographic conclusions for the same data. Some IPM formulations have been sufficiently64

general to encompass these kinds of correlations from a mathematical perspective (Childs et al., 2016;65

Coulson et al., 2017), but case studies and estimation tools have not been as highly developed.66

In this paper, the general concept of non-independence among vital rates includes three quite different67

categories: (i) labile individual heterogeneity, (ii) temporal heterogeneity, and (iii) persistent individual68

heterogeneity. Labile individual heterogeneity refers to differences arising from phenotypic plasticity69

and the random events of a life course (Childs et al., 2016). This is also called dynamic condition70

(Forsythe et al., 2021) or transient heterogeneity (Brooks et al., 2017). For example, an individual71

that by luck experiences high-growth conditions in early years may continue to be above average in72

size throughout its life. Labile heterogeneity can also arise from physiological tradeoffs such as costs73

of reproduction. For example, if an individual gives birth during the spring, its growth rate over sub-74

sequent months may be lower than if it had not given birth. In this example, the heterogeneity could75

be viewed as an individual-level trade-off between reproducing or growing more, although rigorously76

proving such causality cannot be done without a controlled experiment (Coulson, 2012; Knops et al.,77

2007). In statistical models, labile individual heterogeneity can be incorporated by making the tran-78

sition (projection) kernels for multiple vital rates interdependent. Below we consider both a standard79

regression framework and introduce a new copula approach for modelling such interdependence.80

Temporal heterogeneity is driven by a shared covariate, which may be observed or unobserved (latent),81

that affects multiple traits (Compagnoni et al., 2016; Coulson et al., 2011; Hindle et al., 2018; Metcalf82

et al., 2015; Vindenes et al., 2014). For example, such a covariate could be annual (or breeding-83

season) food supply that has a positive correlation with both survival probability and fecundity.84

Demographic data spanning multiple years would then show a positive correlation between population-85

level survival and fecundity values. Note that a factor such as food supply could contribute to both86

temporal heterogeneity – to the extent individuals experience similar growth in a year due to the same87

conditions – and/or labile heterogeneity – to the extent individuals experience different growth due to88
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heterogenous food conditions in the same year. We will present two different approaches for modelling89

correlated temporal heterogeneity, one being to explicitly include a shared and measured covariate90

that affects multiple vital rates and the other being to implicitly include shared, but unmeasured91

covariates by including correlated temporal random effects.92

Persistent individual heterogeneity in multiple traits refers to between-individual differences that last93

their entire life (Brooks et al., 2017). This is also called fixed condition (Forsythe et al., 2021) or94

heterogeneity (Steiner et al., 2010). For example, one individual’s average growth and fecundity rates95

could remain consistently higher than another individual’s rates due to fixed heterogeneity. Persistent96

individual heterogeneity can be as simple as an univariate quality affecting a single trait (Ellner and97

Rees, 2006) or as complicated as a multivariate vector affecting the duration of the different life stages98

of an individual (de Valpine et al., 2014). Persistent individual heterogeneity is necessary to represent99

genetic variation in models of eco-evolutionary dynamics (Childs et al., 2016; Vindenes and Langangen,100

2015), but it can also represent only phenotypic variation potentially shaped by good site conditions101

at birth, for example. Processes such as energy acquisition-allocation (van Noordwijk and de Jong,102

1986), or reproductive strategy trade-offs (Benton and Grant, 1999) could be considered as labile103

heterogeneity and/or persistent heterogeneity in different cases. In this paper the statistical models of104

correlated persistent individual heterogeneity use correlated individual random effects (Brooks et al.,105

2017; Knape et al., 2011), although they can also use individual-level covariates (Moyes et al., 2011).106

In summary, the three kinds of individual heterogeneity are biologically and statistically distinct, at107

least in principle.108

Numerous IPM studies have incorporated one or more type of heterogeneity in vital rates, but few109

have incorporated non-independent forms of heterogeneity (beyond the correlated vital rates arising110

from a basic IPM formulation). For example, Ellner and Rees (2006) incorporated persistent and labile111

individual heterogeneity without correlation, and Ellner and Rees (2007) incorporated temporal het-112

erogeneity without correlation. As described by Vindenes and Langangen (2015), some studies include113

heterogeneity in estimation but then use only mean traits for analysis and prediction. Evolutionar-114

ily explicit IPMs have included both quantitative genetic traits and phenotypes as state variables,115

which together can be a kind of correlated persistent heterogeneity (Childs et al., 2016; Coulson et116

al., 2017; Rees and Ellner, 2019; Coulson et al., 2021). Although these have mathematical similarity117

in IPM formulation, they are distinct in goals and statistical parameterisation methods compared to118

a non-evolutionary model with correlated individual traits. Kentie et al. (2020) considered correlated119
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persistent heterogeneity among growth, survival and reproduction, although they did not estimate120

these in a hierarchical statistical modeling framework as we do here. It is important to realize that121

each kind of correlated heterogeneity introduces different implementation challenges both for estima-122

tion and for IPM analysis involving multidimensional numerical integration, discussed more below.123

Statistical estimation of different forms of non-independent vital rates can draw on methods from other124

kinds of ecological analyses that, in some cases, have not typically been used for parameterization of125

IPMs. For labile individual heterogeneity, one current phenotypic value can be used to predict changes126

in another, which is basic to the formulation of IPMs. Such dependence can in principle include time127

lags, although these are not explored here. A potential limitation of the simple regression approach128

is that correlation among vital rates can be induced only be modifying the marginal distribution129

of the traits. We introduce the use of statistical copulas in this context as an alternative way to130

model labile correlations. For correlated temporal heterogeneity, one can include correlated temporal131

random effects or shared explanatory variables (Evans and Holsinger, 2012; Metcalf et al., 2015; Hindle132

et al., 2018). Alternatively, one can estimate different kernels for each of many years (Childs et al.,133

2004). Relevant to persistent individual heterogeneity, statistical models for individual demographic134

data routinely include random effects for individual heterogeneity, and multivariate random effects135

can be correlated (van de Pol and Verhulst, 2006; Bonnet and Postma, 2016). In the case of marked136

animals with imperfect detection or recapture, capture-mark-recapture methods can also incorporate137

correlated individual random effects (Cam et al., 2013; Gimenez et al., 2018).138

In this paper we systematically present statistical methods to estimate different kinds of correlations in139

vital rates and incorporate those correlations into IPMs. We give methods for modelling correlations140

in vital rate arising in each of the three categories of heterogeneity, including a new copula method for141

individual heterogeneity. We show how the methods can be used in a hierarchical statistical framework142

and discuss some of the computational and implementation challenges involved. In a case study with143

Soay sheep data, we illustrate that the same data can imply different demographic conclusions when144

different kinds of correlated vital rates are considered. In addition, even when including correlations145

does not change point results such as population growth rate or elasticities, it can change the width146

of uncertainty (credible or confidence interval) propagated from uncertainties in parameter estimates.147

The structure of this paper is the following. We begin with a general description of IPMs (Section 2.1),148

and consider IPMs with independent vital rates (Section 2.2). We next discuss the area of primary149

focus: IPMs with heterogeneous and non-independent vital rates (Section 2.3). We note here that150
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while dependency and correlation are not exactly equivalent, we will use the terms interchangeably151

because of common practice. This is followed by a description of simulation studies and a case study152

using data from a population of Soay sheep (Ovis aries) in Scotland (Sections 2.5 and 2.6). The results153

of these studies (Section 3) focus on differences arising from the non-independent vital rate models154

on (i) the log population growth rate and (ii) population growth rate elasticities. We conclude with a155

discussion of the implications of the proposed methods (Section 4).156

2 Methods157

2.1 General Integral Projection Models158

We begin with a description of a family of IPMs that permits the incorporation of temporal, persistent159

and/or labile individual heterogeneity, using the notation from Childs et al. (2016). Let x denote160

the individual state variables, hereafter called “i-states”. The i-states comprise labile traits that161

vary over the life cycle in response to the environment such as body mass, length or breeding status162

(Coulson, 2012; Merow et al., 2014; Rees et al., 2014). In addition, individuals are further characterised163

by “q-states”, denoted by z. The q-states comprise unmeasured, non-labile characteristics that are164

fixed during the lifetime of the individual. In this article, we assume that (i) individuals can be165

uniquely characterized by (x, z), which essentially assumes that individuals with the same (x, z) are166

interchangeable, (ii) all vital rate models depend on x, and (iii) selected vital rate models depend on167

z. The values of (x, z) at one discrete time step later are denoted as (x′, z′).168

The state of the population is described by the abundance density, denoted n(x, z, t). The abundance169

density is defined such that the number of individuals at time t with states in a small interval (x, z) to170

(x + ∆x, z + ∆z) is approximately n(x, z, t)∆x∆z. Then the total abundance at t can be expressed171

as Nt, such that172

Nt =

∫ ∫
n(x, z, t)dxdz. (1)173

The projection of the abundance density over time is described by the following equation,174

n(x′, z′, t+ 1) =

∫ ∫
n(x, z, t)k(x′, z′ | x, z,dt)dxdz, (2)175

where k(x′, z′ | x, z,dt) is the time-varying projection (transition) kernel, i.e. the density of individuals176

evolving from (x, z) to (x′, z′) (Ellner and Rees, 2007). The term dt denotes measured and/or un-177
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measured time-specific environmental conditions that account for temporal variation. The functional178

form of the projection kernel depends on the parameterization of vital rate models and the life cycle179

of the study species. In this article, the formulation of the projection kernel is motivated by the life180

cycle of Soay sheep (Clutton-Brock and Pemberton, 2004; Coulson, 2012) such that,181

k(x′, z′ | x, z,dt) = s(x, z,dt)
[
b(x, z,dt)h(x′, z′ | x, z,dt) + g(x′, z′ | x, z,dt)

]
, (3)182

where s(·) denotes survival probability; b(·) is the number of offspring of survived individuals; h(·) is183

the density of offspring with (x′, z′) from a reproducing individual with (x, z); and g(·) is the density184

of individuals growing from (x, z) to (x′, z′). The IPM kernel is a large-population approximation, so185

these rates are expected values. Most births of Soay sheep are singletons and for simplicity we ignore186

twinning (Coulson, 2012).187

In the following sections, we discuss different ways to construct vital rate models when rates are188

independent or dependent, given the i-states, x. Motivated by reproduction cost (Gittleman and189

Thompson, 1988; Tavecchia et al., 2005), we restrict attention to the dependence between growth and190

reproduction.191

2.2 Independent Vital Rate Models192

Before describing different formulations of vital rate models, we introduce some additional notation. To193

begin we assume that there is only one element in the labile traits, x, and that is the natural logarithm194

of body mass. For individual j at time t, let mj,t denote the log body mass (given survival); aj,t the195

alive (1) vs dead (0) state; rj,t the reproductive (1) vs non-reproductive (0) state (given survival); and196

cj,t the offspring log body mass (given reproduction). The discrete times are t = 1, . . . , T .197

In terms of parameters, fixed effect parameters are referenced as β with subscripts defining the vital198

rate and the variable they influence, respectively. For instance, βg,0 is the intercept for the growth199

model and βs,m is the slope for the survival model corresponding to the variable m. Also, residual (non-200

random effect) variances are denoted by σ2 with the subscript defining the vital rate. In addition to201

fixed effects, we consider random effects on year and individual for temporal and persistent individual202

heterogeneity, respectively. These random effects are placed on the growth and reproduction models203

to capture the potential dependence of interest. The unobserved temporal or individual random effects204

are denoted by u and v respectively. For example, ub,t is the reproduction random year effect in year t,205
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while vg,j is the growth random individual effect on individual j. Random effect variances are denoted206

by ν2 and θ2; and correlation parameters by ρ and ψ, respectively.207

Assuming independence between vital rates, parameters for each vital rate model can be estimated208

separately. For that case, we summarize three of the most commonly used approaches to formulate209

vital rate models.210

2.2.1 Vanilla Model (I1)211

We initially define the “vanilla model”, denoted as model I1, as the widely used approach where the212

vital rates depend only on the labile phenotype, x, corresponding to the log body mass (m) in our213

Soay sheep example (Easterling et al., 2000; Ellner and Rees, 2006). In particular, parameters are214

estimated given the individual-level demographic data such that,215

aj,t+1 | mj,t ∼ Bernoulli
(

logit−1(βs,0 + βs,mmj,t)
)

rj,t+1 | mj,t ∼ Bernoulli
(

logit−1(βb,0 + βb,mmj,t)
)

mj,t+1 | mj,t ∼ N(βg,0 + βg,mmj,t, σ
2
g)

cj,t+1 | mj,t ∼ N(βh,0 + βh,mmj,t, σ
2
h),

(4)216

where logit−1(a) = 1/(1+e−a) is the inverse of the logistic transformation. To apply the vanilla model217

to the projection kernel in Equation (3), we rearrange the vital rate models such that,218

s(m) = logit−1(βs,0 + βs,mm)

b(m) = logit−1(βb,0 + βb,mm)

g(m′ | m) ≡ φ(m′;βg,0 + βg,mm,σ
2
g)

h(m′ | m) ≡ φ(m′;βh,0 + βh,mm,σ
2
h),

(5)219

where φ(a;µ, σ2) denotes the density function of N(µ, σ2) evaluated at a. Here x = m and there is no z220

or dt. The equation for h(·) represents an inheritance or the “parent–offspring phenotypic similarity”221

function (Coulson et al., 2021), with offspring size depending on parent size. For the following models,222

we assume the same vital rate models as described above if they are not mentioned in the model223

description.224
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2.2.2 Temporal Heterogeneity (I2)225

Models with temporal heterogeneity connect vital rates with time-varying factors, such as resource226

availability, natural enemies, and abiotic conditions. We consider a hierarchical model with indepen-227

dent random effects (Bolker et al., 2009; McCulloch and Searle, 2001) such that,228

rj,t+1 | mj,t, ub,t ∼ Bernoulli
(

logit−1(βb,0 + βb,mmj,t + ub,t)
)

mj,t+1 | mj,t, ug,t ∼ N(βg,0 + βg,mmj,t + ug,t, σ
2
g)

ub,t ∼ N(0, ν2
b )

ug,t ∼ N(0, ν2
g ),

(6)229

where the random effects ub,t and ug,t are independent to avoid inducing dependence between different230

vital rate models.231

Similar to Equation (5), the vital rate models are rearranged such that,232

b(m,ub,t) = logit−1(βb,0 + βb,mm+ ub,t)

g(m′ | m,ug,t) ≡ φ(m′;βg,0 + βg,mm+ ug,t, σ
2
g).

(7)233

Here x = m, dt = (ub,t, ug,t), and there is no z.234

2.2.3 Persistent Individual Heterogeneity (I3)235

The persistent individual heterogeneity model, denoted I3, differs from the temporal heterogeneity236

model (I2) by including random effects for each individual instead of each time step. The individ-237

ual random effects represent phenotypic variability that persists through each individual’s life. In238

particular we specify,239

rj,t+1 | mj,t, vb,j ∼ Bernoulli
(

logit−1(βb,0 + βb,mmj,t + vb,j)
)

mj,t+1 | mj,t, vg,j ∼ N(βg,0 + βg,mmj,t + vg,j , σ
2
g)

vb,j ∼ N(0, θ2
b )

vg,j ∼ N(0, θ2
g),

(8)240
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where the random effect distributions are independent to avoid inducing dependence. In this case, the241

vital rate models are re-arranged as,242

b(m, vb) = logit−1(βb,0 + βb,mm+ vb)

g(m′, v′g | m, vg) ≡ φ(m′;βg,0 + βg,mm+ vg, σ
2
g)I(v′g = vg)

h(m′, vob , v
o
g | m) ≡ φ(m′;βh,0 + βh,mm,σ

2
h)φ(vob ; 0, θ2

b )φ(vog ; 0, θ2
g),

(9)243

where vob and vog denote the random individual effects for the offspring. Here x = m, z = (vb, vg), and244

there is no dt. We assume offspring size depends on parent size while offspring random effects are245

independent of parent random effects.246

2.3 Non-independent Vital Rate Models247

We now discuss different ways to induce the dependence structure between vital rate models. Corre-248

sponding to the three types of heterogeneity are three categories of models, with a category representing249

labile individual heterogeneity having two models (D1a and D1b), the temporal heterogeneity cate-250

gory having two models (D2a and D2b), and the persistent individual heterogeneity category having251

one model (D3).252

2.3.1 Labile Individual Heterogeneity (D1a and D1b)253

Models in this category extend the vanilla model I1 to create dependence between reproduction and254

growth. We construct two types of dependent vital rate models: (i) the reproduction conditional255

model, and (ii) the copula model. The former model treats breeding status as a covariate within256

the growth model; while the latter model utilizes the copula structure to jointly model growth and257

reproduction. The latter necessitates estimating multiple kernel functions together, while the former258

does not.259

D1a. Reproduction Conditional Model This approach models the growth rate of an indi-260

vidual as a function of the breeding status. In particular, the binary variable, rt+1,j , is a covariate in261

the growth model such that,262

mj,t+1 | mj,t, rj,t+1 ∼ N(βg,0 + βg,mmj,t + βg|rrj,t+1, σ
2
g). (10)263
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Integrating out rj,t+1 to obtain the marginal growth model for the projection kernel, we note that,264

g(m′ | m) = b(m)φ(m′;βg,0 + βg,mm+ βg|r, σ
2
g) +

[
1− b(m)

]
φ(m′;βg,0 + βg,mm,σ

2
g), (11)265

where the marginal growth distribution is now a mixture of two Gaussian distributions and hence266

potentially bimodal. Here x = (m, r), and there is no z and dt.267

This model induces a dependency between growth and reproduction that is reflected in the covariance,268

cov(m′, r′) = βg|rvar(r′) = βg|rb(m)
[
1 − b(m)

]
. This covariance is maximized when b(m) = 0.5 and269

minimized as b(m) approaches 0 or 1.270

D1b. Copula Model Copula methods are a popular approach to construct a joint distribution for271

correlated random variables given assumed marginal distributions (see e.g. Chapter 6 of Song, 2007).272

These models extend univariate linear models to general multivariate models with vector responses273

and provide a flexible approach to the regression analysis of correlated discrete, continuous, or mixed274

responses (Anderson et al., 2019; de Valpine et al., 2014).275

The copula method relies on Sklar’s theorem (Sklar, 1959) which states that any multivariate distri-276

bution can be constructed by combining the marginal distributions with a suitable copula function277

describing the association between the variables. Mathematically, given the marginal cumulative dis-278

tribution function (CDF) F1(·), . . . , Fn(·) of variables Y1, . . . , Yn, and a copula function C, the joint279

CDF can be expressed as,280

F1,...,n(y1, . . . , yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn) = C(P (Y1 ≤ y1), . . . , P (Yn ≤ yn)), (12)281

where Fi(y) = P (Yi ≤ y), i = 1 . . . n.282

There are a variety of copula functions available that permit different behaviours of multi-dimensional283

distributions and typically lead to different dependence structures. However, the marginal distribu-284

tions of the random variables remain the same irrespective of the choice of copula function. We use285

the Gaussian copula function to handle the dependence structure for simplicity (Nelsen, 2006; Song286

12



et al., 2009). The Gaussian copula function is defined such that,287

F1,...,n(y1, . . . , yn) = ΦD

{
Φ−1[F1(y1)], . . . ,Φ−1[Fn(yn)]

}
f1,...,n(y1, . . . , yn) = φD

{
Φ−1[F1(y1)], . . . ,Φ−1[Fn(yn)]

} n∏
i=1

fi(yi)

φ
(

Φ−1
(
Fi(yi)

)) , (13)288

where Φ−1(·) denotes the inverse CDF of a standard Gaussian distribution; ΦD(·) and φD(·) are the289

CDF and density, respectively, of a n-dimensional Gaussian distribution with a zero vector as mean290

and covariance matrix D. The diagonal elements of D are all scaled to unity without the loss of291

generality.292

As an example we briefly describe the copula model used in the Soay sheep case study for correlated293

growth and reproduction, involving the combination of a continuous and discrete random variable.294

In particular, we use the Gaussian copula function with a normally distributed random variable for295

growth, Y1, and a Bernoulli distributed random variable for reproduction, denoted Y2. Note that the296

density function and CDF of Y1 is expressed as,297

f1(y1) = φ(y1;µ, σ2)

F1(y1) = Φ

(
y1 − µ
σ

)
,

(14)298

where µ is the expected value of Y1; and σ2 is the variance of Y1. For the reproduction (Bernoulli)299

variable, as the raw scale is discrete we introduce an auxiliary variable X, which is distributed as300

an uniform distribution (i.e. X ∼ U [0, 1]), and define the new random variable Y3 = Y2 + X. The301

probability mass function for Y2, the probability density function for Y3, and the CDFs for both are302

13



then expressed as,303

f2(y2) =



q if y2 = 0

1− q if y2 = 1

0 otherwise

f3(y3) =



q if 0 ≤ y3 < 1

1− q if 1 ≤ y3 ≤ 2

0 otherwise

⇒

F2(y2) =



0 if y2 < 0

q if 0 ≤ y2 < 1

1 if y2 ≥ 1

F3(y3) =



0 if y3 < 0

qy3 if 0 ≤ y3 < 1

q + (1− q)(y3 − 1) if 1 ≤ y3 ≤ 2

1 if y3 ≥ 2

(15)304

where q = Pr(Y2 = 0). Combining Equations (13) and (15), we derive the joint density of (Y1, Y3)305

such that,306

f(y1, y3) ≡ φD
{
y1 − µ
σ

,Φ−1[F3(y3)]

}
1

σ

f3(y3)

φ
(

Φ−1
(
F3(y3)

)) . (16)307

We can then substitute the growth and reproduction model for Y1 and Y2 to obtain their corresponding308

joint density for parameter estimation. The notation becomes x = (m, r), and there is no z and dt.309

Despite the appealing features of copula models, IPMs with copula models give the same projection310

kernel as the vanilla model, which leads to the identical projection of the population dynamics. This is311

true because (i) correlations in the copula model do not modify the marginal distributions and (ii) the312

involved vital rate models (reproduction and growth) are an additive structure. Further details are313

presented in appendix S1. Demographically, population change is the same whether individuals who314

grow less are the ones who reproduced more or not. However, as discussed more below, the copula315

remains interesting because it may give different answers for life history questions involving trade-offs,316

or estimated parameters may be different, or it may give different kernels when used with time lags317

or other extensions.318

2.3.2 Temporal Heterogeneity (D2a and D2b)319

These models induce dependence on vital rates by the time-varying factors, extending the independent320

temporal heteroegeneity model, I2. In particular, when the conditions of a given year are “good” for321

both growth and reproduction, temporal heterogeneity will create positive temporal correlation among322
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these vital rates, which may generally be the case (Hindle et al., 2018). We consider two models: (i)323

the shared drivers model, and (ii) the correlated random year effect model. The former model accounts324

for the temporal effect explicitly with additional covariate(s); while the latter model utilizes random325

year effects to implicitly model the impacts of unknown temporal factors.326

D2a. Shared Drivers Model This approach includes observed time-varying covariates in the327

regression functions for vital rate models (Dalgleish et al., 2011; Simmonds and Coulson, 2015; van328

Benthem et al., 2017). Common choices include environmental indices; e.g., North Atlantic Oscillation,329

precipitation, temperature, etc. To quantify the additional influence of the drivers on the vital rates,330

let qt denotes the vector of covariates with an associated vector of regression coefficients β·,q, namely331

rj,t+1 | mj,t,qt ∼ Bernoulli
(

logit−1(βb,0 + βb,mmj,t + βb,qqt)
)

mj,t+1 | mj,t,qt ∼ N(βg,0 + βg,mmj,t + βg,qqt, σ
2
g).

(17)332

The vital rate models are re-arranged for the projection kernel such that,333

b(m,qt) = logit−1(βb,0 + βb,mm+ βb,qqt)

g(m′ | m,qt) ≡ φ(m′;βg,0 + βg,mm+ βg,qqt, σ
2
g).

(18)334

Here x = m, dt = qt and there is no z.335

D2b. Correlated Random Year Effect Model The second model extends the independent336

temporal random effects model (model I2). Generalizing these hierarchical models by allowing de-337

pendencies in the random effect distributions induces dependencies between vital rates (Hindle et al.,338

2018; Metcalf et al., 2015) such that,339

rj,t+1 | mj,t, ub,t ∼ Bernoulli
(

logit−1(βb,0 + βb,mmj,t + ub,t)
)

mj,t+1 | mj,t, ug,t ∼ N(βg,0 + βg,mmj,t + ug,t, σ
2
g)ub,t

ug,t

 ∼ N

0

0

 ,

 ν2
b ρνbνg

ρνbνg ν2
g


 .

(19)340
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The vital rate models are re-arranged for the projection kernel such that,341

b(m,ub,t) = logit−1(βb,0 + βb,mm+ ub,t)

g(m′ | m,ug,t) ≡ φ(m′;βg,0 + βg,mm+ ug,t, σ
2
g).

(20)342

Here x = m, dt = (ub,t, ug,t) and there is no z.343

2.3.3 Persistent Individual Heterogeneity (D3)344

Similar to the temporal heterogeneity, the model in this category extends model I3 to induce depen-345

dence between vital rates for the persistent individual heterogeneity case.346

D3. Correlated Random Individual Effect Model We consider a hierarchical model with347

dependent random effects distribution, similar to model D2b. In particular we specify,348

rj,t+1 | mj,t, vb,j ∼ Bernoulli
(

logit−1(βb,0 + βb,mmj,t + vb,j)
)

mj,t+1 | mj,t, vg,j ∼ N(βg,0 + βg,mmj,t + vg,j , σ
2
g)vb,j

vg,j

 ∼ N

0

0

 ,

 θ2
b ψθbθg

ψθbθg θ2
g


 .

(21)349

The vital rate models are re-arranged for the projection kernel such that,350

b(m, vb) = logit−1(βb,0 + βb,mm+ vb)

g(m′, v′g | m, vg) ≡ φ(m′;βg,0 + βg,mm+ vg, σ
2
g)I(v′g = vg)

h(m′, vob , v
o
g | m) ≡ φ(m′;βh,0 + βh,mm,σ

2
h)φind(v

o
b , v

o
g),

(22)351

where φind(·) is the density function of the random individual effects distribution, and specified in the352

last part of Equation (21). Here x = m, z = (vb, vg) and there is no dt.353

2.3.4 Comparison of the Models354

In Figure 1, we present a graphical representation of the differences between the proposed heterogeneity355

models. In each of the four scenarios, the individual growth model, g(·), depends on exactly one factor.356

357
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(b): Varying breeding status
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(c): Varying temporal factors
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(d): Varying q−states

Figure 1: Growth Rate, g(·), of individuals. (a): g(·) depend on the i-states only, hence are constant within a group of
individuals sharing the same i-states (model I1); (b): g(·) depend on the breeding status only, hence are constant within the
breeding group and the non-breeding group (model D1a,D1b); (c): g(·) depend on the temporal factor only, hence are constant
across individual but varying across time (model I2, D2a,D2b); (d): g(·) depend on the q-states only, hence are varying across
individual but constant across time (model I3, D3).

2.3.5 Hybrid Models358

The proposed models can occur individually or be combined within and/or between the categories359

(labile individual, temporal, and persistent individual). For instance, combining models within the360

temporal category uses the correlated random year effects to explain the unaccounted correlation by361

the observed drivers. Alternatively, combining models between the labile individual and persistent362

individual heterogeneity accounts for two axes of correlations in one model. These different forms of363

combination of models expand the possibility of IPMs with non-independent vital rates.364

2.4 Numerical Implementation365

2.4.1 Parameter Estimation of Vital Rate Models366

In this paper, the vital rate models are fitted using the Markov chain Monte Carlo (MCMC) algorithms367

(Brooks et al., 2011) in NIMBLE (de Valpine et al., 2017, 2020a,b) given individual-level demographic368
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data. Different from the usual approach in IPMs that each vital rate model is fitted separately, the369

proposed dependent models may require a joint estimation with multiple vital rate models. This may370

hence increase the computational cost and change the mixing behaviour of the MCMC algorithm.371

Random effects in the models (I2, I3, D2b, I3) are treated as unobserved parameters, or auxiliary372

variables, and sampled within each iteration of the MCMC algorithm. Similarly, the auxiliary variables373

in the copula model (D2a) are sampled as unobserved parameters in the MCMC algorithm. We note374

that the random effects for the temporal and individual random effects induce very different mixing375

properties.376

Prior distributions for all parameters are set to be non-informative and are presented in Appendix377

S2. We use the trace plot and Brooks-Gelman-Rubin statistic to assess convergence (Gelman and378

Shirley, 2011). Chains with a value of Brooks-Gelman-Rubin statistic being less than 1.05 are treated379

as converged.380

2.4.2 Approximation of log λs381

We use the asymptotic log population growth rate, log λ, as one metric to compare models. Mathe-382

matically, λ is defined as limt→∞(Nt+1/Nt), where Nt is the population abundance and can be approx-383

imated by solving the integral in Equation (2). It has been shown that log λ converges asymptotically,384

even in the temporally stochastic case (Ellner and Rees, 2007).385

The log population growth rate of IPMs without temporal heterogeneity can be approximated via the386

midpoint rule (Easterling et al., 2000). To briefly illustrate the mid-point rule, the projection kernel is387

discretized into a projection matrix by a sufficient number of mesh points that are of uniform length to388

discretize (x, z) (Ellner and Rees, 2006). The population growth rate is then obtained as the leading389

eigenvalue of the projection matrix (Caswell, 2001). Alternatively, we can consider using mesh points390

that are uniform quantiles of z as the distribution of z is known.391

However, when the IPMs include temporal heterogeneity, the midpoint rule becomes inapplicable. In392

this case, we use the simulation technique of “element-selection” to approximate the log population393

growth rate (Ellner and Rees, 2007; Rees and Ellner, 2009). This approach creates a series of projection394

matrices, Kt with the population abundance Nt obtained by repeatedly multiplying the projection395

matrices with a discrete approximation of n(x, z, t). The (stochastic) log population growth rate is396
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approximated using the empirical mean given by,397

l̂ogλs(L,L0) =
1

(L− L0)

L−1∑
t=L0

log

(
Nt+1

Nt

)
=

1

(L− L0)
log

(
NL

NL0

)
, (23)398

where data in the first L0 < L years are excluded as transient dynamic to reduce the influence399

of random initialization. We note that this estimator carries an extra variability caused by finite400

simulation. Ellner and Rees (2007) showed that the estimator converges to a normal distribution such401

that,402

l̂ogλs(L,L0) ∼ N

[
logλs,

1

(L− L0)
Var

{
log

(
Nt+1

Nt

)} ∣∣∣∣
t=L0,...,L−1

]
. (24)403

In addition to the log λs itself, we are also interested in the variability on log λs caused by parameter404

uncertainty. This parameter uncertainty can be easily propagated within the Bayesian framework405

since we are able to obtain samples from the posterior distribution of the parameters, which in turn406

can be used to calculate the value of log λ, and hence obtain summary statistics of the posterior407

distribution.408

2.4.3 Sensitivity and Elasticity Analysis409

We also estimate the sensitivity and elasticity of the asymptotic log growth rate, log λs, with respect410

to selected vital rate parameters (Tuljapurkar, 1990; Rees and Ellner, 2009; Vindenes et al., 2014).411

In particular, we note that Coulson et al. (2005) suggests that models incorporating between-process412

correlations may alter the sensitivity estimate which in turn has implication for management decisions.413

Here we apply a central-differencing approach to approximate the sensitivity such that,414

∂λs
∂β

=
λs(β + ε)− λs(β − ε)

2ε
, (25)415

where λs(β+ε) is the estimate of λs when the target parameter equals to β+ε. By running preliminary416

tests, we found that ε = 0.005β is small enough to give precise estimate for all sensitivities of interest.417

Given the estimate of sensitivity, elasticity of β is obtained as,418

∂λs
∂β

β

λs
. (26)419

We note that the sensitivities/elasticities of the copula model (D1b) are the same as for the vanilla420

model (I1), similar to λ. To see this, we derive the analytical equations of sensitivity (see chapter 4421
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of Ellner et al., 2016) such that,422

∂λs
∂β

=

∫ ∫
∂λs

∂k(x′ | x)

∂k(x′ | x)

∂β
dx′dx, (27)423

where both terms in the integral remain unchanged because the copula model does not distort the424

marginal vital rate models.425

2.5 Simulation study426

We conducted a simulation study to investigate how sensitive the summary statistics (log λ and elas-427

ticities) are to the different kinds of vital rate heterogeneity for parameters relevant to the Soay sheep428

example below. For target parameters of interest that toggle among models, we considered 2-3 values429

of interest, including a 0 value to compare to a simpler model. For example, model I2 (independent430

temporal heterogeneity) can be compared to model D2b (correlated temporal heterogeneity) by set-431

ting ρ to 0 (I2) or non-zero (D2b). Other parameters were either randomly generated from chosen432

distributions with 100 replications (Table 1) or fixed (Table 2). Randomly generated parameters al-433

lowed us to look at how summary statistics change over small ranges of variation in a coarse way,434

without looking at changes in relation to each parameter one by one. The distributions and values435

are motivated from the data in the case study, but slightly adjusted to show the difference between436

models with and without correlations.437

The simulation study looks at theoretical behavior of the IPM models, not at statistical properties438

of parameter estimation. It reveals how model summary statistics shift with particular parameters439

but not how parameter estimation performs if the wrong model is fitted to the data. Within the440

simulation study, we compare the independent models (I1 − I3) and three of the dependent models441

(D2a,D2b,D3). We do not include the models with labile individual heterogeneity as: (i) the impacts442

on log λ by the reproduction conditional models (D1a) are always negative when β′ < 0, and (ii)443

the copula model (D1b) and vanilla model (I1) are theoretically equivalent due to the unchanged444

marginal property (given the same parameter values). For models with temporal heterogeneity, we445

set L0 = 1000 and L = 10, 000.446

2.6 Soay sheep case study447

We apply the different models to data on Soay sheep. The individual-level demographic data consist of448

information from marked female sheep in the Village Bay area on the island of Hirta in the St. Kilda449
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Distributions

βs,0 N(−4.25, 0.052)

βs,m N(1.92, 0.012)

βb,0 N(−1.47, 0.052)

βb,m N(0.50, 0.012)

βg,0 N(1.20, 0.052)

βg,m N(0.63, 0.012)

βh,0 N(0.46, 0.052)

βh,m N(0.57, 0.012)

Table 1: Random Parameters

Values

βg,q 0.01

σ2
g 0.092

σ2
h 0.22

ν2g 0.032

ν2b 0.452

θ2g 0.032

θ2b 0.452

Table 2: Fixed Parameters

archipelago, Scotland, from 1986 to 1996. Details of the Soay sheep and data collection protocol can450

be found in Clutton-Brock and Pemberton (2004), and the data are available from Coulson (2012).451

Using preliminary runs for the estimation of parameters of the vital rate models, we set the burn-in452

and total iteration numbers for the MCMC algorithm to be 20, 000 and 100, 000 for the majority453

of the models; for the random individual effects models we used 40, 000 and 200, 000 (uncorrelated454

case, I3) and 200, 000 and 1, 000, 000 (correlated case, D3). For the shared drivers model (D2a),455

we consider the winter North Atlantic Oscillation index (NAO) as the additional covariate (Clutton-456

Brock and Pemberton, 2004). We follow Simmonds and Coulson (2015) and apply the average NAO457

for December, January, February, and March as the covariate, which are obtained from the Climate458

Research Unit at the University of East Anglia. For the distributions of NAO, we apply a normal459

distribution with mean −0.019 and standard deviation 1.09. For the copula model (D1b), parameter α460

denotes the off-diagonal element of the covariance matrix D in the multivariate Gaussian distribution.461

For the reproduction conditional model (D1a), exploratory data analysis using a grid-search approach462

suggested that newborns are likely to suffer from reduced growth in relation to reproduction. Thus,463

we refine the reproduction conditional model such that βg|r only accounts for the reduced growth of464

newborns in the growth model.465

In addition, individual-level demographic data of the case study contain missing data. For instance,466

we lack reproduction records of some marked individuals in the survey. This poses challenge on the467

proposed models that intend to capture the correlation between reproduction and growth. In this468

article, we analytically marginalise out the missing data to estimate parameters of interest.469
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3 Results470

3.1 Simulation study471

In Figure 2, we present the pairwise results of the vanilla model (I1) and the proposed (in)dependent472

models (I2, I3, D2a,D2b,D3). The models are compared with respect to log λs (top row) and elastic-473

ities of growth intercept (bottom row) with known vital rate parameters.
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Figure 2: Comparison across models in simulation with 100 replications. (a): log λs(D2a) − log λs(I1); (b): log λs(I2, D2b)
− log λs(I1); (c): log λs(I3, D3) − log λs(I1); (d): %change of elasticity of βg,0 of model D2a over model I1; (e): % change of
elasticity of βg,0 of model I2, D2b over model I1; (f): % change of elasticity of βg,0 of model I3, D3 over model I1. The dashed
line is the reference line for I1.

474

Our simulations show that the variability of the given estimated quantities generally increases with475

increasing correlation in almost all scenarios; the exception is Figure 2(f) where the correlation appears476

to have little impact on the variability. The increase in variability is more substantial for models with477

temporal heterogeneity, especially the shared driver model (D2a). Further, we observe that correlation478

in both forms of heterogeneity can lead to both increased or decreased values log λs (Figures 2(a)-(c)).479

This is in line with the result that although uncorrelated temporal heterogeneity is generally predicted480

to decrease log λs, correlated temporal heterogeneity can increase log λs (Doak et al., 2005; Fieberg and481

Ellner, 2001). Also, the temporal heterogeneity models and persistent individual heterogeneity model482

cause different impacts on log λs. For example, temporal heterogeneity appears to lead to reduced483
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log λs; similarly increasing the correlation in temporal heterogeneity models leads to a decrease in484

log λs (Figure 2(a) & 2(b)). However, persistent individual heterogeneity models have the reverse485

effects (Figure 2(c)). Finally, we note that the trend on log λs against correlation does not translate486

into that of elasticities. The decreasing trend of the temporal heterogeneity disappears (Figure 2(a)487

& 2(b) vs 2(d) & 2(e)) while the trend of the persistent individual heterogeneity is reversed (Figure488

2(c) vs 2(f)).489

3.2 Case study on Soay sheep490

In Appendix S3, we present the posterior summary estimates of the model parameters for different491

models. Three dependent models (D1a,D2b,D3) indicate a significant correlation between growth492

and reproduction (the symmetric 95% credible intervals of α, βb,q in model D1b,D2a contain 0).493

The reproduction conditional model (D1a) and the correlated random individual effects model (D3)494

indicate a negative association between growth and reproduction (β̂g|r < 0, ψ̂ < 0); while the correlated495

random year effects model (D2b) estimates a positive correlation (ρ̂ > 0). Note that these results in496

different sign of correlation do not contradict with each other because these models are driven by497

different biological mechanisms.498

Comparison of log λs We use 500 parameter values sampled from the posterior distribution to499

approximate the (stochastic) log population growth rate. The uncertainty from parameter estimation500

are hence propagated into the posterior distribution of log λs. In the temporally stochastic models, we501

set L0 = 1, 000 and L = 10, 000 to approximate log λs. Table 3 provides the corresponding summary502

statistics of log λs for each model.

Mean 95% Credible Interval
I1 0.0301 ( 0.0005, 0.0565)
I2 0.0380 (-0.0062, 0.0846)
I3 0.0312 ( 0.0022, 0.0562)
D1a 0.0330 ( 0.0048, 0.0598)
D1b 0.0394 (-0.0003, 0.0706)
D2a 0.0368 ( 0.0074, 0.0648)
D2b 0.0358 (-0.0054, 0.0790)
D3 0.0292 ( 0.0017, 0.0554)

Table 3: Summary statistics of the (stochastic) log population growth rate with parameter uncertainty on Soay sheep.

503

We first observe that the mean of log λs ranges approximately from 0.03 to 0.04, which translates504

into a 3 to 4% annual population growth rate. There is considerably more variability, however, in the505
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uncertainty about log λs. In particular, the width of the credible intervals of log λs by models with506

random year effects (I2, D2b) are around 35% larger than that of the rest of the models. Secondly, we507

observe that the uncertainty on log λs caused by parameter uncertainty is larger than the bias caused508

by ignoring the correlation structure. This is similar to the empirical result of Compagnoni et al. (2016)509

that parameter uncertainty outweighs the bias caused by ignoring the correlation structure. Further,510

we note that log λ of the vanilla model (I1) and the copula models (D1b) are slightly different despite511

the theoretical equivalence between the IPMs. This is because the parameter estimates between the512

models are different.513

Finally, we note that the predictions of the shared drivers IPM (D2a) depend on the distribution of514

the winter NAO. Adjusting the distribution of the winter NAO may lead to different distributions of515

log λs hence interpretation. In appendix S4, we consider three other distributions obtained by using516

a non-parametric bootstrapping approach of the NAO in different years.517

Comparison of Elasticity We approximate the elasticities of four parameters, again using the518

sampled parameter values from the posterior distribution, presented in Table 4. We observe that519

models with random temporal effects lead to a larger variability in the elasticities, which is similar520

to the observation in log λs. Additionally, we note that the correlated random individual effects521

model (D3) consistently gives different results across all four elasticities of interest. This leads to522

the interesting result that different models of non-independence among demographic rates may yield523

different elasticities even when the log λs are quite similar (Table 3).524

4 Discussion525

Model Summary In this paper, we have presented a general framework and several specific ap-526

proaches to modelling between-process dependencies in IPMs. In particular, motivated by reproduc-527

tion cost, we propose three categories of models (labile individual, temporal, and persistent individual528

heterogeneity) that reflect different biological mechanisms for the correlation structure between growth529

and reproduction. Unlike independent IPMs, these modelling approaches explicitly characterise the530

dependency between vital rates, permitting the quantification of between-process correlation. As a531

data-driven method, this is better than assuming either no correlation, or perfect correlation across532

vital rates, i.e. assuming the correlation coefficient to be 1 or −1 (Benton and Grant, 1999; Coulson533

et al., 2011).534
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βg,0 βg,m βb,0 βb,m
I1 1.6312 1.7602 -0.5519 0.5083

(1.451,1.787) (1.516,1.990) (-0.675,-0.451) (0.402,0.630)

I2 1.5941 1.7253 -0.5213 0.4856
(1.384,1.823) (1.454,1.989) (-0.691,-0.359) (0.300,0.642)

I3 1.5888 1.5793 -0.5506 0.5058
(1.410,1.752) (1.325,1.863) (-0.673,-0.443) (0.391,0.632)

D1a 1.6381 1.7020 -0.5520 0.5097
(1.463,1.801) (1.487,1.916) (-0.675,-0.458) (0.413,0.629)

D1b 1.6142 1.7561 -0.5527 0.5121
(1.417,1.774) (1.504,2.021) (-0.658,-0.452) (0.410,0.608)

D2a 1.6606 1.7721 -0.5548 0.5175
(1.479,1.831) (1.553,2.008) (-0.673,-0.455) (0.417,0.631)

D2b 1.6212 1.7725 -0.5424 0.5047
(1.376,1.865) (1.483,2.067) (-0.754,-0.322) (0.290,0.698)

D3 1.6878 1.6604 -0.6238 0.5819
(1.523,1.856) (1.436,1.907) (-0.757,-0.507) (0.461,0.714)

Table 4: Summary statistics of elasticities of four selected parameters with parameter uncertainty on Soay sheep. Present are
posterior mean and 95% credible interval. Note that models with random year effects (I2, D2b) usually have larger variability (in
bold) and model D3 yields different elasticities (in italics).

Amongst the proposed methods, application of the copula method for modelling vital rates is novel to535

IPMs. However, given the same estimates for the common parameters, the dependence structure of an536

IPM using copula models may lead to theoretically equivalent projections as the independent (vanilla)537

IPM. This is because (i) correlations in the copula model do not modify the marginal distributions538

and (ii) the involved vital rate models (reproduction and growth in our analysis) have an additive539

structure. In practice, however, copula IPMs will still differ from the vanilla IPMs due to differences540

in parameter estimates. Further, such theoretical equivalence will not remain with alternative copula541

structures, for example, when we consider the previous breeding status (rj,t) as opposed to the current542

breeding status (rj,t+1) in the copula structure with the growth vital rate. It may be appropriate to543

condition on reproduction at time t for some species, particularly when multiple reproduction-related544

activities can cause energy loss in the parents including mating, gestation, parturition, lactation, etc545

(Gittleman and Thompson, 1988). Also, copula models can be applied to other aspects of IPMs.546

For instance, the multi-dimensional random effect distribution can be constructed by copula models,547

which bring extra flexibility to the models. The use of copula models within this general context is548

an area of current research.549

Simulation and Case Study In the case study of Soay sheep, the different IPM structures550

yielded relatively similar population estimates. This is most likely because the parameter uncertainty551

(which was ignored in the simulation studies) outweighed the impact of between-process correlation552
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(Compagnoni et al., 2016). In contrast, the results for both the simulation and the case study show553

that (i) different models for dependence between vital rates can yield similar (nearly identical) log λs554

but different elasticities and (ii) variability of the population statistics is moderately affected by the555

correlation between vital rates.556

Random effect models are commonly used to model dependence structures (Dingemanse and Dochter-557

mann, 2013; Vindenes et al., 2014). Based on the simulation study, it appears that temporal and558

persistent heterogeneity can lead to differences in the estimated target statistics and their associated559

variability. Results suggest that the variability increases as the correlation increases. This aligns with560

the general understanding that extreme values are more likely to be generated and hence the vari-561

ability of the target statistics increases when the correlation is large and positive (Doak et al., 2005;562

Fieberg and Ellner, 2001). Empirical results about the correlation in temporal variation have been563

discussed previously (Hindle et al., 2018; Metcalf et al., 2015). Additional random effects models can564

also be investigated, given available data, for example, allowing for nested spatial heterogeneity (Olsen565

et al., 2016), or independent/crossed structure of spatial and temporal heterogeneity (Jacquemyn et566

al., 2010). Such heterogeneity structures can provide additional flexibility and more complicated567

correlations in vital rates and hence IPMs.568

Recommendation In practice, model selection procedures are often carried out to determine569

whether one model is preferable to all others. However, we note that some of the proposed methods570

(D1a,D1b) do not allow unbalanced data whereas other proposed methods (D2a,D2b,D3) are flexible571

for unbalanced/balanced data (Verbeke et al., 2014). Such differences complicate model selection,572

which usually assumes the competing models use the exact same data. This is an area for future573

research.574

In general, incorporating these five (biologically/statistically) distinct methods (in hybrid/separately)575

in IPMs may be beneficial. Although the correlations have little impacts on some statistics of in-576

terest (e.g. log λs), our empirical results show that elasticities of the unknown parameters and the577

associated variability are moderately affected by these correlations. These results may provide in-578

sights on the relationship between the possible dependencies on individual-level vital rates and target579

population statistics. In general, incorporating these five (biologically/statistically) distinct methods580

(in hybrid/separately) in IPMs may provide insights into the effects of possible dependencies between581

individual-level vital rates influences the target population statistics (e.g. log λs, elasticities). There-582

fore, we conclude that including such dependent structures is generally advisable when fitting IPMs to583
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ascertain whether or not such between vital rate dependencies exist, which in turn can have subsequent584

impact on population management or life-history evolution.585
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S1 Derivation of the identical projection kernel with cop-781

ula models782

The projection kernel of the vanilla model (I1) is identical to the copula models (D1b). This can be783

seen as follows,784

k(m′ | m) =

∫
s(m)

[
b(m)

{
h(m′ | m) + f(m′, x | r = 1,m)

}
+
{

1− b(m)
}
f(m′, x | r = 0,m)

]
dx

= s(m)

∫ [
b(m)h(m′ | m) + f(m′, x, r = 1 | m) + f(m′, x, r = 0 | m)

]
dx

= s(m)
[
b(m)h(m′ | m) +

∫
f(m′, x | m)dx

]
= s(m)

[
b(m)h(m′ | m) + f(m′ | m)

]
= s(m)

[
b(m)h(m′ | m) + g(m′ | m)

]
,

(S1.1)785

where the last equality holds because the copula structure does not distort the marginal model of786

m′, i.e., f(m′|m) = g(m′|m). In contrast, for example, model D1a changes the marginal of m′ into a787

bimodal distribution hence the last equality does not hold.788
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S2 Prior distributions of parameters789

We set the prior distributions for all parameters to be uninformative. Prior distribution on the inverse

of the variance covariance matrix of the random effects is set to be Wishart distribution. For example,

the prior distribution on random year effects model is

 ν2
g ρνgνb

ρνgνb ν2
b


−1

∼W


0.001 0

0 0.001

 , df = 3

 ,

where W (Ω, df) is the Wishart distribution with scale matrix Ω, degree of freedom df . For the790

remaining parameters, a single dimensional prior is given in Table S2.1.

Prior Distribution

βb,0, βb,m, βg,0, βg,m
βs,0, βs,m, βh,0, βh,m N(0, 1002)
βb,q, βg,q, βg|r
σ2
g , σ

2
h Γ−1(0.001, 0.001)

Table S2.1: Prior distributions for the remaining parameters

791
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S3 Posterior summary of parameters for the fitted Soay792

sheep models793

Posterior means and 95% symmetric credible intervals for parameters for the different models fit to the794

Soay sheep data are shown in Table S3.1. Table S3.2 provides the same information for the parameters795

related to survival and inheritances, which are the same across all models.

Models

I1 I2 I3 D1a D1b D2a D2b D3

βg,0 1.4935 1.4959 1.5589 1.5174 1.4965 1.4963 1.4853 1.5657

[1.4155, 1.5697] [1.4235, 1.5699] [1.4684, 1.6458] [1.4371, 1.5981] [1.4206, 1.5734] [1.4175, 1.5733] [1.4085, 1.5682] [1.4799, 1.6544]

βg,m 0.5298 0.5305 0.5073 0.5225 0.5325 0.5277 0.5334 0.5061

[0.5044, 0.5559] [0.5068, 0.5543] [0.4780, 0.5378] [0.4957, 0.5491] [0.5061, 0.5565] [0.5020, 0.5540] [0.5066, 0.5584] [0.4762, 0.5348]

βg,q 0.0055

[0.0009, 0.0101]

βg|r -0.0348

[-0.0667, -0.0027]

σg 0.0882 0.0862 0.0814 0.0885 0.0890 0.0878 0.0862 0.0811

[0.0836, 0.0932] [0.0816, 0.0912] [0.0755, 0.0879] [0.0835, 0.0932] [0.0841, 0.0946] [0.0833, 0.0928] [0.0815, 0.0910] [0.0754, 0.0869]

νg 0.0285 0.0278

[0.0123, 0.0547] [0.0151, 0.0480]

θg 0.0346 0.0357

[0.0185, 0.0479] [0.0238, 0.0476]

βb,0 -7.4546 -7.3736 -8.3763 -7.4620 -7.5832 -7.3742 -7.5424 -8.8491

[-8.763, -6.001] [-8.924, -5.731] [-10.215, -6.645] [-8.739, -6.068] [-8.865, -6.114] [-8.841, -5.986] [-8.888, -6.333] [-10.766, -7.074]

βb,m 2.2081 2.1899 2.4704 2.2107 2.2521 2.2221 2.2507 2.6481

[1.7278, 2.6389] [1.6460, 2.6780] [1.9005, 3.0730] [1.7503, 2.6290] [1.7644, 2.6744] [1.7589, 2.7047] [1.7997, 2.7329] [2.0686, 3.2738]

βb,q -0.1385

[-0.219, 0.057]

νb 0.5289 0.3975

[0.2799, 0.9625] [0.1863, 0.6949]

θb 0.7201 0.6013

[0.4169, 0.9891] [0.2848, 0.8992]

α -0.1652

[-0.389, 0.1919]

ρ 0.6937

[0.0731, 0.9502]

ψ -0.8297

[-0.965, -0.505]

Table S3.1: Mean estimate and 95% credible interval of parameters in different models.
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βs,0 βs,m βh,0 βh,m σh

-7.1113 2.8931 1.0124 0.4902 0.2270

[-8.3652, -5.9479] [2.4812, 3.3335] [0.5551, 1.4703] [0.3419, 0.6386] [0.2073, 0.2490]

Table S3.2: Mean estimate and 95% credible interval of parameters in survival and inheritance functions. α denotes the
off-diagonal element of the covariance matrix D in the multivariate Gaussian distribution in the copula model (D1b).

3



S4 Growth rate of shared drivers models with various797

distributions of winter NAO798

To investigate the impact on different distributions, Table S4.1 considers four distributions of the799

winter NAO, obtained by a normal distribution (Simmonds and Coulson, 2015), and using a non-800

parametric bootstrapping approach of the NAO in the survey years (1986-1996), the last 30 years801

(1990-2019), and 50 years (1970-2019).

Mean 95% Credible Interval
N 0.0368 (0.0074, 0.0648)
SY 0.0317 (0.0014, 0.0575)
30 0.0329 (0.0031, 0.0587)
50 0.0334 (0.0040, 0.0592)

Table S4.1: Summary statistics of the (stochastic) log population growth rate with parameter uncertainty of shared drivers
models on Soay sheep. The distributions are N: normal distribution; SY: bootstrapping the survey years; 30: bootstrapping 30
years; 50: bootstrapping 50 years
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