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protein levels (Figure 3, A–C). In isolated TAL segments,
the expression of KRT40 was at least two orders of magni-
tude lower than that of UMOD and NKCC2 (Slc12a1) (Fig-
ure 3B). In situ hybridization evidenced a weak, selective
expression of Krt40 in Umod-positive segments of the

mouse kidney, with no signal for Krt39 (Supplemental
Figure 10). Immunostaining confirmed a signal for KRT40
in UMOD-positive tubules, particularly at the apical pole of
cells lining the TAL, whereas no colocalization between
UMOD and WDR72 was observed (Figure 3C). Both
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Figure 3. Segmental distribution of UMOD, KRT40, and WDR72 in the mouse kidney. (A) The mRNA levels of Umod, Krt40, and
Wdr72 in isolated mouse nephron segments were analyzed by SYBR green quantitative PCR. Quantification of targeted genes was
done in comparison with Gapdh, which was used as housekeeping gene (n54 pools for each segment). The nephron segments were
validated by enrichment in specific markers.6,18 (B) Relative expression of Krt40, Wdr72, Slc12a1, and Umod transcript levels in iso-
lated TALs from C57BL/6J mice as assessed by SYBR green quantitative PCR. Values are expressed as 2^(CtGapdh- CtGene of inter-
est) 3 10^2. Bars indicate average6SEM n54 TAL fractions. Asterisk (*), not detected (A and B). (C) Representative immunofluores-
cence staining for UMOD (UMOD, green) and KRT40 or WDR72 (red) on paraffin-embedded kidney sections from wild-type mice,
showing colocalization of the UMOD and KRT40 signals in the TAL. No staining for WDR72 is detected in UMOD-positive segments.
Nuclei are counterstained with DAPI (blue). Scale bar: 25 mm. (D) Representative immunofluorescence staining for UMOD (UMOD,
green) and KRT40 or KRT39 (red) on paraffin-embedded kidney sections from a normal human kidney. KRT40 is localized in both
UMOD-positive and negative tubules, whereas no signal for KRT39 is detected. Nuclei are counterstained with DAPI (blue). Scale
bar: 25 mm.
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KRT40 and WDR72 were detected in AQP2-positive seg-
ments of the mouse kidney (Supplemental Figure 11). In
the human kidney, KRT40 was detected in both UMOD-
positive and negative tubules, whereas KRT39 did not show
any signal (Figure 3D).

Modulation of KRT40 Expression Influences UMOD
Excretion by mTAL Cells
The codistribution of KRT40 and UMOD led us to test
whether the level of KRT40 expression may modulate the proc-
essing and excretion of UMOD by TAL cells. This hypothesis
was supported by the existence of at least two exonic variants
in high LD with the index KRT40 variant rs8067385, predicted
to be damaging/deleterious by SIFT and PolyPhen2
(Supplemental Table 8). Furthermore, in the GTEx portal, the
minor, C allele of rs8067385 is associated with a significant,

dose-dependent decrease in the expression of KRT40 in a vari-
ety of epithelial tissues including the testis, pancreas, esophagus,
and colon (no eQTL data for kidney medulla tissue available)
(Supplemental Figure 12).

Characterization of mTAL cells verified that KRT40 and
UMOD were both endogenously expressed (Figure 4, A
and B). Transduction of mTAL cells with an adenovirus
expressing a short hairpin RNA against mouse Krt40 (Ad-
shKrt40) induced a specific silencing of KRT40, compared
with cells treated with a scramble adenovirus (Ad-Scrmbl)
(Figure 4C). In these conditions, the downregulation of
KRT40 was reflected by a significant accumulation of
UMOD and a sharp decrease in the amount of excreted
UMOD in the apical medium of mTAL cells (Figure 4C).
Confocal microscopy indicated the silencing of KRT40 in
mTAL cells resulted in perinuclear accumulation of
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Figure 4. Effect of KRT40 modulation on UMOD processing in mTAL cells. (A) Schematic diagram illustrating the protocol to gen-
erate differentiated primary cell cultures (mTAL cells) from mouse kidney.38 (B) Representative immunofluorescence staining for
UMOD (UMOD, green) and KRT40 (red) on mTAL cells. Nuclei are counterstained with DAPI (blue). Scale bar: 25 mm. (C) Representa-
tive Western blot of secreted (apical medium) and cellular UMOD in mTAL cells. The apical medium and whole cell lysates were col-
lected 5 days after treatment with Ad-shKrt40 or Ad-Scrmbl. Krt40 downregulation resulted in an increase of intracellular UMOD,
and a reduced release in the apical medium. b-actin was used as a loading control. Densitometry analysis for KRT40, secreted and
cellular UMOD signals are shown relative to Ad-Scrmbl. Bars indicate mean6SEM. Unpaired two-tailed t test (KRT40) or
Mann–Whitney test (cellular and secreted UMOD), *P,0.05; ***P,0.001, n54. (D) Representative immunofluorescence staining for
UMOD (UMOD, green) and KRT40 (red) on mTAL cells after transduction with Ad-shKrt40. Accumulation of UMOD is observed in
the perinuclear compartment of Krt40 silenced cells. Nuclei are counterstained with DAPI (blue). Both adenoviral vectors express
GFP (gray). Scale bar: 25 mm. (E) Model showing the potential link between variants in KRT40 and the excretion of UMOD. Specific
KRT40 variants (e.g., the minor, C allele of rs8067385) may affect the expression of KRT40 in TAL cells, affecting the cytoskeleton,
and altering the processing and apical excretion of UMOD in the urine.

www.jasn.org META-ANALYSIS

JASN 33: 511–529, 2022 Novel Loci Associated with Uromodulin Excretion 523

http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2021040491/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2021040491/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2021040491/-/DCSupplemental
https://www.jasn.org


UMOD, contrasting with the control signal in cells trans-
duced with Ad-Scrmbl (Figure 4D). The trafficking defect
induced by KRT40 downregulation was confirmed by
Z-stack image analysis, with a perinuclear staining for
UMOD contrasting with the diffuse signal observed in con-
trol conditions (Supplemental Figure 13A). The silencing of
KRT40 had also an effect on the trafficking of ROMK
(Supplemental Figure 13B), but did not modify the expres-
sion of TAL genes including Slc12a1, Kcnj1, Hnf1b, and
Muc1 in mTAL cells (data not shown). Taken together,
these data suggest the expression of the cytokeratin KRT40
regulates the processing and excretion of UMOD in TAL
cells (Figure 4E).

DISCUSSION

To gain novel insights into the mechanisms regulating UMOD
excretion, we performed a meta-GWAS on urinary UMOD
levels in 29,315 individuals of European ancestry, three times
more than in our previous analysis.19 We identified two novel,
genome-wide significant loci, KRT40 and WDR72, in addition
to the previously known UMOD-PDILT locus to be associated
with uUCR and uUMOD. Mechanistic studies in primary
mTAL cells demonstrated that modulating the expression of
KRT40 affects the processing and apical excretion of UMOD.
These studies provide insights into the biology of UMOD and
keratins, and into the links between the UMOD-PDILT locus
and kidney function.

The UMOD-PDILT locus has been consistently among
the strongest associated loci with eGFR and CKD.14,40 The
relevance of the UMOD variants, which are associated with
the levels of UMOD in the kidney and urine, is immediate
because the gene is kidney specific and involved in a spec-
trum of kidney diseases.1,7,40 In our meta-analysis, the vari-
ant showing the strongest association with uUCR is
rs13335818 (P value 3.86E–118), a synonymous variant
within UMOD, in high LD (r2 5 0.98) with the top SNP in
our previous study, rs12917707, and with UMOD promoter
variants associated with eGFR and CKD and with expres-
sion of UMOD.7,40 In a previous study of genetic associa-
tions with urinary UMOD levels,14 two independently
associated variants in the UMOD-PDILT locus were identi-
fied in conditional analyses: rs77924615, mapping into an
intron of the upstream gene PDILT, and rs34262842, map-
ping to an intron of UMOD. Similarly, our conditional
analysis in a large cohort with individual-level genotype
data identified two independent loci in that region, one in
UMOD (SNP rs13335818 in high LD with rs34262842,
r250.94) and one in PDILT (rs11864909, in almost com-
plete LD with rs77924615, r250.98).

The lead SNP in PDILT from our meta-analysis,
rs77924615, had the strongest association with CKD and
eGFR in the GWAS performed by the CKDGen Consor-
tium.14 Of interest, the intronic PDILT rs77924615 maps to

open chromatin regions identified from various kidney cell
types. Because PDILT is not expressed in the human kidney
and rs77924615 was significantly associated with both dif-
ferential expression of UMOD in kidney tissue and urine
UMOD levels (obtained in the GCKD cohort), it was con-
sidered a regulatory SNP.14 Collectively, these results sub-
stantiate the independent association between UMOD and
PDILT variants and the levels of UMOD in urine. A recent
Mendelian randomization study clarified the causality
between uUMOD levels and kidney function in individuals
of European descent: genetically driven levels of UMOD
have a direct, causal, and adverse effect on kidney function
outcome in the general population.44

The KRT40 locus on chromosome 17 is a novel,
genome-wide significant locus associated with UMOD lev-
els in the urine. The association at the KRT40 locus is on
the basis of multiple genome-wide significantly associated
SNPs in high LD with the index SNP, rs8067385. Individu-
als homozygous for the minor, C allele of rs8067385 had
lower levels of uUMOD compared with individuals homo-
zygous for the G allele. Of note, the effect sizes of
rs8067385 for uUMOD and uUCR are only marginally dif-
ferent, as indicated by Spearman’s rank correlation analysis.
The KRT40 signal remained above the suggestive threshold
(P,5.17E–07) in the meta-analysis on urinary UMOD cor-
rected for eGFR, and in the VEGAS analysis. In contrast,
the rs8067385 SNP in KRT40 was not significantly associ-
ated with eGFR and plasma or urinary creatinine levels in
the UK Biobank. Together, these results support the value
of the KRT40 signal in relation to urinary UMOD levels.

KRT40 encodes KRT40, a type I keratin that belongs to the
family of intermediate filament-forming keratins that form the
cytoskeleton in epithelial cells. Types I and II keratins form
obligate heterodimers and are regulated in a pairwise fashion in
epithelia, depending on the tissue, the differentiation state, and
the biologic context.45 KRT40 belongs to a cluster of type I
KRT genes located on chromosome 17q21.2, close to KRT39.
As cytoskeletal proteins, keratins are involved in maintaining
the physical integrity, mechanical stability, and shape of epithe-
lial cells. They are also important for intracellular organization
and transport within cells, for example, trafficking of proteins
to the plasma membrane.46 Keratins are considered as cytopro-
tective, undergoing dynamic upregulation in disease states, and
potentially affecting migration, growth, proliferation, and pro-
tein synthesis.47 Several inherited keratinopathies (e.g., skin dis-
orders) have been reported, but none involving KRT40.

Little is known about the role of keratins in the kidney.
Recent studies evidenced robust changes in the expression
and subcellular localization of KRT7–8 and KRT18–19 in
response to kidney stress, with KRT18 in urine being a
potential biomarker for tubular cell injury.48 Our studies in
mouse and human kidney reveal that KRT40 is weakly
expressed in the TAL, where it colocalizes with UMOD.
The prediction of missense variants in KRT40 in LD with
rs8067385 and the association in GTEx of the minor allele
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of rs8067385 with a decreased expression of KRT40 in epi-
thelial tissues suggest a possible loss of function of the
KRT40 variant. We tested this hypothesis in the mTAL
cells, which endogenously express both KRT40 and
UMOD. Specific silencing of KRT40 in mTAL cells was
reflected by a sharp decrease in the apical excretion of
UMOD, causing the intracellular accumulation of the pro-
tein. The silencing was also reflected by altered apical tar-
geting of ROMK in these cells. That altered expression of
KRT40 affects UMOD and ROMK processing in TAL cells
may suggest a role of KRT40 on the polarized sorting of
proteins to the apical membrane, affecting the release of
UMOD in urine (Figure 4E).

We detected a genome-wide significant association
between variants in WDR72 and the urinary UMOD level
indexed to creatinine (uUCR). WDR72 encodes a protein
with eight WD40 (or b-transducin) repeats, which fold to
form two circular, b-propeller structures, and an a-sole-
noid tail at the C-terminus. This combination of domains
is conserved among membrane-coating proteins, which
serve as a docking site for protein–protein interactions and
stabilize membrane curvature.49 WDR72 is highly
expressed in the kidney, although we found it clustered in
the collecting ducts. Recessive mutations in WDR72 have
been associated with amelogenesis imperfecta,50 and distal
renal tubular acidosis.51,52 By GWAS, variants in WDR72
have been associated with kidney function and CKD,14,41,53

urine pH,42 and risk of kidney stones.42,43 In CKDGen, the
index SNP at WDR72 was associated with blood urea nitro-
gen.14 Variants in WDR72 are strongly associated with
eGFR on the basis of serum creatinine or cystatin C and
with BUN.41 The fact that rs9672398 is significantly associ-
ated with eGFR and plasma creatinine levels in UK Bio-
bank, that the WDR72 locus does not reach any suggestive
threshold in the meta-analysis using UMOD normalized
for eGFR, and that WDR72 does not colocalize with
UMOD suggest the WDR72 signal, only detected for
uUCR, is most likely related to its effect on eGFR.

Although limited by power, our candidate gene analysis
revealed that a few common variants in genes causing rare
Mendelian disorders targeting the TAL are weakly associ-
ated with UMOD levels. These results support the func-
tional interactions operating in TAL cells, including the
transcription factor HNF1-b, known to be an essential
transcriptional regulator of UMOD,1,9 and ROMK, which
directly regulates processing and release of UMOD by TAL
cells.17 Analysis of the candidate genes from the loci associ-
ated with uUMOD and uUCR with a suggestive P value
(,1.0E–05) revealed a number of genes expressed in the
TAL/DCT, with encoded proteins playing roles in cell
homeostasis, mitochondrial function and transport. Future
studies will address the relevance and biologic mechanisms
that underlie these genetic associations.

Our study combines the advantages of the largest to date
meta-GWAS on urinary UMOD, measured with a robust

assay in various types of cohorts, and complemented with
detailed expression studies in mouse and human kidneys,
and functional investigations in TAL cells. Limitations of
this study include the availability of data only for individu-
als of European descent and the lack of replication due to
limited availability of additional cohorts with available
uUMOD measurements. We noted some variability of
UMOD levels that were measured in different cohorts, even
when using the same assay and apparently unrelated to
sample processing and/or storage conditions.19,24 Varia-
tions in the physiology excretion of UMOD have been
reported, potentially linked to dietary habits, tubular trans-
port activities, or level of residual kidney function.1,16

Common, independent variants in KRT40, UMOD, and
PDILT influence the levels of UMOD in urine. The expres-
sion of the type I keratin KRT40 affects UMOD processing
in TAL cells. These results advance our understanding of
the biology of UMOD, the role of keratins in the kidney
and substantiate the association of UMOD-PDILT variants
with kidney function.
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