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S U M M A R Y
The Gutenberg–Richter (GR) b-value describes the relative proportion of small to large earth-
quakes in a scale-free population and is a critical parameter for probabilistic estimation of
seismic hazard. At low magnitudes, the scale-free behaviour breaks down below the magnitude
of completeness mc due to censoring of the data, when the instrumentation used to construct
the catalogue is incapable of completely recording all earthquakes in the study region above
the background noise. At high magnitudes, it must also break down because natural tectonic
and volcanic processes are incapable of an infinite release of energy. This breakdown at large
magnitudes is commonly modelled as an exponential roll-off to either the incremental or cumu-
lative GR distribution. This introduces an extra parameter and hence requires relatively more
data to justify the additional model complexity. For tectonic seismicity, the estimated b-value
is commonly close to unity. In contrast, studies of volcanic and induced seismicity often report
significantly higher estimates of the b-value, albeit using relatively small data sets—both in
sample size and dynamic (magnitude) range for data above mc. Here, using synthetic data, we
show that when we have low dynamic range, it is statistically challenging to test whether the
sample is representative of the scale-free GR behaviour or whether it is controlled primarily
by the finite size roll-off. We then explore the potential biases that arise when the data quality
does not allow this distinction to be made and what the implications are for interpreting studies
that have high estimated b-values. We find that systematically higher b-values than those used
to generate the synthetic data are regularly obtained when assuming the wrong model and
when having a too high mc, resulting in too small catalogues. This is important because it
changes our understanding of the accuracy of elevated or variable b-values in catalogues of
different dynamic ranges, and quantifies the likely bias in the inferred b-value compared to
the underlying true distribution and its associated uncertainty. Finally, we recommend steps to
minimize this bias.

Key words: Statistical methods; Induced seismicity; Statistical seismology; Volcano seis-
mology.

1 I N T RO D U C T I O N

Earthquake hazard depends fundamentally on an estimate of the
probability that an earthquake will occur within a given time win-
dow and geographic area and above a certain magnitude. Estimating
this earthquake recurrence rate in space, time and magnitude, com-
bined with attenuation rules translating the properties of the source
population to strong ground motion remote from the source, allows
assessment of seismic hazard for the specific region, expressed as
maps of the likely levels of strong ground motion a building may be
susceptible to (Reiter 1991). Such maps are the basis for risk mit-
igation through informed development of regulations and actions
in land use and infrastructure planning. While the seismic risk has
been increasing due to increased exposure, the seismic hazard has

remained fairly constant (averaged over long time periods) because
of the relative stability of global dynamics (Main 1996).

The maximum earthquake magnitude is an important factor in
seismic hazard analysis because it constrains the properties of rare,
extreme events (Main 1995) and their effects and consequences on
societies. Reiter (1991) defines the maximum possible earthquake
magnitude as the upper bound determined by earthquake processes,
however unlikely, associated with a specific earthquake source. Es-
timates of earthquake recurrence rates are generally obtained from
data in the form of seismic catalogues and historical seismicity, of-
ten assuming a Gutenberg-Richter (GR) frequency–magnitude dis-
tribution (FMD) defined in eq. (1). This implies the frequency–size
distribution of source rupture areas scales as a power law, indicat-
ing self-similarity on all scales (Kanamori & Anderson 1975). In
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a review of the then state of the art, Main (1996) found that the
GR law applies only within a finite scale range both in model and
natural seismicity due to natural fractal sets being constrained to
lower and upper scale-lengths, challenging the assumption of the
GR law operating at all scales. Currently, the form which the FMD
takes at larger scales is still extremely uncertain (Kagan 1999; Bell
et al. 2013). Physically, an upper bound can be expected as this is
limited by factors such as tectonic deformation rate (Main 1996),
regional stress regimes, seismic moment finiteness (Kagan 1997)
and fault zone geometry.

Kagan (1999) showed that identifying all parameters within the
GR distribution allows the assessment of key attributes of earth-
quake recurrence rates (e.g. return period for events at all sizes
and the maximum expected magnitude). However, the finite de-
formation rate means it is not possible to extrapolate the GR law,
without limits, to determine the recurrence rate of the rare, large
events. This is a fundamental problem with the open-ended GR
distribution in the common case of its slope, b, being less than 3/2
(Main 1995). Nonetheless, the GR law is the standard underlying
assumption for the majority of methods used on earthquake data
today. It provides crucial information such as the seismicity rate of
a region at all event sizes, quantified by the exponent of the FMD,
known as the b-value, which is generally ∼1.0 for shallow tectonic
events (Frohlich & Davis 1993). However, Bell et al. (2013) used
the global Harvard Centroid Moment Tensor (CMT) catalogue to
show that its FMD is inconsistent with an unbounded GR relation in
time, further adding to the uncertainty in form of the GR relation for
rare, large events. They have shown that between record-breaking
events, the preferred model gradually converges to the modified GR
(MGR) relation, which combines a power-law distribution of seis-
mic moment for smaller earthquakes, with an exponential roll-off
or taper at high magnitudes characterized by a ‘corner moment’
Mθ (Main & Burton 1984; Kagan 1991). Frohlich & Davis (1993)
also investigated the b-value in teleseismic data for tectonic events
and found that it may vary by 30 percent when calculated using
different methods or catalogues and hence cannot always be con-
strained to a single optimum value. The MGR gives a much better
fit to the global catalogue before the 2004 Sumatra event according
to the Bayesian Information Criterion (BIC) but the occurrence of
this large magnitude earthquake changed the balance of the BIC
statistics, making the unbounded GR power law more suitable. This
suggests that standard statistical tests may be unstable in the face
of undersampled data. For example, Zöller (2013) argues that the
findings of Bell et al. (2013) are a result from biased maximum like-
lihood estimates (MLE) of Mθ in strongly undersampled models,
and that convergence to a specific distribution for the global earth-
quake catalogue is not possible with less than at least 200 years of
homogeneous recording of global seismicity.

Several studies on both volcanic and induced seismicity have
shown that the b-value appears to be elevated above 1.0 in these
cases (Wiemer et al. 1998; Jolly & McNutt 1999; Murru et al.
1999, 2005; Novelo-Casanova et al. 2006; Jacobs & McNutt 2010;
Ibáñez et al. 2012). Specifically, Ibáñez et al. (2012) and Jolly &
McNutt (1999) both used the least-squares method to fit the data,
which is known to introduce significant bias (Aki 1965; Naylor
et al. 2010). Table 1 summarizes some of the b-values obtained in
previous studies, also showing that often the sample size and/or the
magnitude dynamic range (here defined as the range between the
magnitude of completeness, mc (Rydelek & Sacks 1989), and the
maximum magnitude observed, thus strictly a logarithmic dynamic
range) used are very small. Roberts et al. (2015) specifically in-
vestigated b-values obtained from volcanic seismicity. They show

that—predominantly due to small sample size and lack of data, and
the associated narrow dynamic range of magnitudes, as well as the
major variability in the methods used to assess the cut-off mag-
nitude for complete reporting—the b-value estimates can be both
highly variable and biased. They found that volcanic earthquakes
can have high b-values in some cases, but are also often indistin-
guishable from those of tectonic earthquakes, within error. Using
random temporal sampling, Roberts et al. (2016) established that
during eruptive phases at El Hierro, b-values can ‘jump’ between
meta-stable values rather than evolving gradually with time. This
was suggested to be due to switching between different parts of the
volcanic system as opposed to spatially uniform sampling of a more
gradually varying underlying process. Furthermore, Roberts et al.
(2016) suggested that errors in b-values are often large, underesti-
mated or biased due to the usage of a single value of mc.

In the case of induced seismicity, Table 2 shows b-values obtained
in previous studies, again showing that both the sample size and
magnitude dynamic range used are often small, not stated or vague.
Grünthal (2014) showed that inferred b-values regularly depended
on the type of induced seismicity. Further studies have suggested
that b-values in hydraulic fracturing are often �1.0 and even closer
to 2.0 (Maxwell et al. 2009; Eaton et al. 2014). However, several
induced seismic catalogues have also shown b-values similar to
those of tectonic seismicity (especially in natural gas exploitation
and salt mining) as well as in some geothermal systems (Henderson
et al. 1999; Bachmann et al. 2011; Grünthal 2014; Schoenball et al.
2015).

Several of the studies described above have investigated b-
values during or around volcanic eruptions and ongoing induced
sequences, using limited, short-term data and assuming an underly-
ing GR distribution only. Many b-value studies have been focused
on global (tectonic) catalogues, but we know that these same, global
rules may not apply to seismicity on smaller magnitude scales often
found on local and regional scales. Here we estimate the reliabil-
ity, accuracy and precision of the FMD parameters for tectonic,
volcanic and induced seismicity. We use synthetic data sets with
known underlying parameters to create a method to identify any
systematically high b-values obtained due to the use of GR infer-
ence methods on underlying GR or MGR data, including the extent
to which artificially high b-values can result from the exponential
roll-off of the MGR, and when we can distinguish this artefact from
truly high b-values. We then apply the understanding generated to
real tectonic, volcanic and induced earthquake catalogues. We show
that the incorrect assumption of the underlying distribution and lack
of data can lead to artificially high b-values, but also in some cases
to particularly low b-values, for example due to incompleteness of
data. Finally, we demonstrate that a robust estimate of the optimal
underlying b-value requires a thorough understanding of the sen-
sitivity of the trade-off between catalogue sample size, magnitude
dynamic range, the choice of the underlying distribution and the
desired accuracy of the b-value.

2 T H E O RY

2.1 Frequency–magnitude distributions

The FMD describes either the incremental number of events within
a magnitude window or the cumulative number of events above a
series of magnitude thresholds (Fig. 1). As such, real catalogues are
commonly presented in a histogram. This distribution of frequency
is most often represented as an exponential in magnitude (Gutenberg
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Table 1. Summary of selected studies on volcanic b-values. N is the number of events in a catalogue. dyn. r indicates the dynamic range of
the catalogue and btyp is the typical value (after Roberts et al. (2015) who selected these by eye). MLE is the maximum likelihood estimation,
LS is the least-squares method and WLS is the weighted least-squares fit (adapted from Roberts et al. 2015).

Reference Volcano Observation Period N dyn. r mc Method b btyp

Jacobs & McNutt (2010) Augustine 2000–2006 100 – 0.1 MLE 1.4
Ibáñez et al. (2012) El Hierro 19.07.11–16.09.11 7000+ 1.3–2.7 1.3 LS 1.57
Murru et al. (1999) Etna 1990–1997 50 (450) 2.5– ∼2.5 MLE/WLS 1.5 ± 0.3
Murru et al. (2005) Etna Jul–Aug 2001 50 (173) 1.5–? 2.6 MLE 1.5 ± 0.28
Jolly & McNutt (1999) Mageik Sep 1996–Apr 1997 ∼300 – 0.7 WLS 1.56
Wiemer et al. (1998) Long Valley 1989–1998 150 1.3– 1.3 MLE 1.4
Novelo-Casanova et al. (2006) Popocatepetl Dec 2000–Jan 2001 20 (225) 1.9–3.3 1.9 MLE 1.7

Table 2. Summary of selected studies giving elevated b-values for different types of induced seismicity. EGS, enhanced geothermal systems; F,
hydraulic fracturing; G, geothermal; M, mining; WD, wastewater disposal. Methods are maximum likelihood estimate (MLE) and least-squares
(LS) (adapted from Mousavi et al. 2017).

Reference Type Location N dyn. r mc Method b btyp

Bachmann et al. (2012) EGS Basel, Switzerland 150 0.1–3.2 0.7–1.0 MLE 1.1–1.6
Vermylen & Zoback (2011) F Fort Worth, TX, USA 4485 – −2.5 LS 1.5–1.9
Henderson et al. (1999) G Geysers, CA, USA 200 0.5–? 0.5 – < 1.0
Grünthal (2014) G Tripoint GER-SUI-FRA – 2.0–3.2 2.0 MLE 1.94 ± 0.21
Grünthal (2014) M (Cu) Legnica, Poland – −4.5 – MLE 2.13 ± 0.22
Mousavi et al. (2017) WD Guy, AR, USA >17309 −0.67 to 4.4 0.5 MLE 1.06 ± 0.05
Langenbruch & Zoback (2016) WD Central OK, USA – 3.0–? – MLE 1.41

Figure 1. Synthetic incremental (blue circles) and cumulative (blue line) frequency–magnitude distributions for a catalogue of 50 000 events, assuming a
complete catalogue (to the right of the leftmost vertical line) for both (a) the GR (eq. 2) and (b) the MGR (eq. 3) distributions, including 95 percent confidence
intervals (CI).

& Richter 1944) in the form

log10 F = a − bm, (1)

where F is the cumulative number of events at a magnitude greater
than or equal to m in a given population, and a and b are constants
describing the seismicity rate and the proportion of small to large
earthquakes, respectively. The b-value is not just used in earthquake
hazard analysis—it is often used to interpret material properties,
such as heterogeneity, or to infer the state of stress from earthquake
populations (Mogi 1962; Scholz 1968), or in non-destructive testing
of the integrity of building and infrastructure components (Colombo
et al. 2003). Event magnitudes are often rounded to one decimal
place, leading to issues with precision and if not accounted for, are
a source of bias (Tinti & Mulargia 1985). It is therefore simpler to

work with the seismic moment, M0, which is the product of source
rupture area, average slip and the shear modulus of the surrounding
medium. The magnitude of an event is related to the logarithm
of the seismic moment. With this change of variables, the seismic
moment-frequency relation has the form

F(M0) ∼ M−β

0 , (2)

where β = (2/3)b (Turcotte 1997; Kagan 2002); β being the equiv-
alent of the b-value in the magnitude–frequency relation, where
the factor 2/3 results from a log-linear model relating the moment-
magnitude to the moment log (M0) = A + Bm. Hanks & Kanamori
(1979) have taken this as a definition of moment magnitude with
A = 9.1 and B = 1.5. The β-value in eq. (2) has a theoretical ba-
sis in the scale-free geometry of fault ruptures of different sizes
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and the filtering effect of the seismometer at different frequencies
(Kanamori & Anderson 1975). The form of eq. (2) is a power law,
and is diagnostic of scale-free behaviour because it has no char-
acteristic size. In this work we will use the capitalized M to refer
to values on the moment scale and m when they are quoted on
the magnitude scale—they are equivalent and we can always con-
vert between them using the log-linear relation. We will generally
discuss parameters on the magnitude scale as the values are more
intuitive, but all calculations on the synthetic data are done on the
moment scale.

The scale-free form of the GR distribution (eqs 1 and 2) is
unbounded at the upper end which implies the potential for an
unphysically infinite energy release. However, the finite size of the
seismogenic lithosphere and/or the finite tectonic deformation rate
necessitates a finite yet uncertain upper bound. Within models,
this can be achieved by applying an exponential taper to eq. (2)
at large seismic moments, thus modifying the GR law as derived
by Main & Burton (1984), from imposing a constraint of finite
moment release rate, resulting in a modified gamma distribution for
the probability density function p(M). In many applications the fit
is to the probability density function for the tapered or modified
Gutenberg-Richter (MGR) law, defined instead by a cumulative
frequency distribution of the form

F(M0) ∼ M−β

0 exp(−M0/Mθ ), (3)

where Mθ is a ‘corner moment’ where the cumulative frequency
F(M) has dropped to a value 1/e less than that expected by linear
extrapolation from the power law term (Kagan 1991). When we
convert this ‘corner moment’ to the magnitude scale we will refer
to it as mθ . Examples of model fits to synthetic data for both incre-
mental and cumulative frequency for eqs (2) and (3) are shown in
Fig. 1. The best fit lines are shown for the incremental frequency
because the data points are independent and provide a more realistic
visual assessment of the scale of the confidence intervals shown.
There are other common distributions (Kagan 2002) such as the
‘characteristic distribution’ (where there are more large events than
expected by linear extrapolation than the GR law), the gamma dis-
tribution (where the exponential taper is applied to the probability
density, not to the cumulative function as in MGR) or even a mix-
ture of distributions, resulting in bilinear FMDs (Igonin et al. 2018;
Staudenmaier et al. 2018) but for the purpose of the work here we
focus on the GR and MGR distributions only.

In a previous study, Kagan (1991) stated that the dynamic range
between mc, and the largest magnitude within a catalogue needs to
be ‘widely separated’ or else the standard estimate of the b-value
in the GR relation will return a biased value. The amount of data
and dynamic range needed to obtain a b-value estimate is linked
to the desired accuracy and precision of the b-value. For example,
Nava et al. (2017) show that when magnitudes are reported to a
precision of 0.1 (as is often the case), an accurate estimate of b
cannot be attained for a sample size less than 1000 events. Roberts
et al. (2015) suggest from analysis of synthetic data that at least
200 events above mc are required to statistically assess the b-value.
This agrees with the results shown on the right hand side of Fig. 2,
which shows that at N = 200, the b-value error is around 0.1.
Fig. 2 uses synthetic data sampled randomly from an underlying
GR distribution to show how substantial the spread in b-values can
be when insufficient data is used for catalogue analysis, as well as
the improvement in the accuracy (the peak is nearer the red dashed
line) and precision (the spread on the left, or the error at one standard
deviation on the right is lower) for larger data sets.

Kagan & Jackson (1991) previously suggested that the reported
regional variation of b-values could be an artefact of systematic er-
rors in magnitude determination as opposed to non-universality of
the earthquake scaling relationships. Using a consistent approach,
Kagan (1997, 1999) further found the distribution of earthquake
scaling to be universal, with β assuming a constant value of 0.63
± 0.02 (equivalent b-value of ∼0.95 ± 0.02 globally, with the ex-
ception of mid-ocean ridges). In some cases, frequency–magnitude
data appear at least superficially to have a break in slope at a char-
acteristic magnitude. For example, Kettlety et al. (2021) suggest a
break in scaling between smaller events associated with hydraulic
fracturing propagation (high b-value) and events linked to tectonic
activation or re-activation of the fault (lower b-value more similar
to tectonic events). Further, Herrmann & Marzocchi (2020) found
that in high-resolution catalogues, the exponential GR distribution
does not hold in the low-magnitude ranges and should be used with
caution for estimating any FMD properties such as mc and b. Previ-
ously, Marzocchi & Sandri (2003) showed that Aki’s (1965) MLE
requires that, in practice, the GR law holds for a range of magni-
tudes mmax − mmin ≥ 3. Eaton et al. (2014) have also shown that
induced (micro)seismicity data do not always follow the GR dis-
tribution at large magnitudes, but instead exhibit a roll-off, which
they attribute to an upper scaling limit arising from stratabound
fracture networks where hydraulic fracturing takes place. We have
already cited examples of elevated b-values in shallow earthquakes
in induced and volcanic seismicity, but why are such reports so
common? Godano & Pingue (2000) suggest that statistical inabili-
ties due to the trade-off between having sufficient numbers of events
and a reliable estimate of mc can result in biased estimates of β.

2.2 Estimating the parameters of the
frequency–magnitude distribution

In this section, we summarize how to estimate the parameters in the
FMDs introduced above, and also highlight some of the recognized
pitfalls and problems of current practice in much of the published
work in this area.

2.2.1 Estimating the b-value for a GR sample

One pitfall when estimating the frequency–magnitude parameters
is to use least-squares regression to fit a straight line through raw
frequency–magnitude data. The application of the least-squares
method makes the b-value estimate overly sensitive to fluctuations
in the tail of the distribution as not all of the data carry the same
weight—it is much more likely for the tail of the distribution to con-
tain only a few events in a single point whereas the points at lower
magnitudes include hundreds of events. Furthermore, the residuals
are asymmetrically distributed at high magnitudes and hence are not
Gaussian-distributed (Naylor et al. 2010), as assumed in the least-
squares method. This can lead to a systematic bias in the b-value
estimation, which can be avoided by use of the maximum likelihood
method (MLE, Aki 1965). However, the misuse of least-squares for
b-value estimation is not uncommon (see Tables 1 and 2), as is the
omittance of information regarding the method applied to calculate
the b-value.

In this paper, we use a maximum likelihood method and hence
will not consider the biases derived from least-squares inference
any further.
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1844 G.-M. Geffers, I.G. Main and M. Naylor

Figure 2. Left: distribution of inferred b-values from randomly sampled data taken from a GR distribution, showing the convergence of the b-value with
increased sample size. The true b-value of 1.0 is indicated by the vertical dashed red line. Right: the random error in b-value [using the maximum likelihood
estimator described by Aki (1965), shown here to one standard deviation] when sampled from a GR distribution, with respect to increasing sample size.

2.2.2 Estimating the parameters for the GR and MGR distribution

Here, we work with continuous moment data, which does not require
corrections for magnitude binning (Tinti & Mulargia 1985). Such
continuous data is the basis for the maximum likelihood estimate
for the b-value introduced by Aki (1965), but transferred here to the
moment domain (we convert back to magnitudes for the discussion
as these numbers are more physically intuitive). The implicit as-
sumptions in using Aki’s MLE method to estimate the GR b-value
are (i) that the data genuinely are power-law distributed in seismic
moment, (ii) that the maximum moment (equivalent to maximum
magnitude) is at infinity and (iii) that the mc is well-defined. When
data quality is poor, it is common practice to uncritically fall back
on the parsimoniously simple GR model despite many of these as-
sumptions breaking—the utility of b-values obtained under such
conditions needs to be questioned.

Assuming a constant number of events N above mc, the GR model
(eq. 2) only has one free parameter, β, which describes the slope of
the frequency–moment distribution and can readily be converted to
the b-value on the magnitude scale. The activity parameter, a is not
free in this case as it is set by the total number of events (although
it can be free if the number of events is expressed as an annual
rate). For reasons described above, all synthetic calculations are
performed in the moment domain. In the case of the GR distribution,
the upper bound seismic moment is a ‘hard’ cut-off (Kagan 2002).
To estimate the seismic moment distribution parameters (β for GR
and β and Mθ for MGR), we apply an MLE by Kagan (2002). For
GR, the log-likelihood function for N observations of the seismic
moment is

lGR = log(LGR) = Nβ log(Mc)

− β

N∑
i=1

log Mi +
N∑

i=1

log

(
β

Mi

)
. (4)

For the MGR distribution, the upper bound seismic moment is a
more ‘soft’ taper than in the case of GR (Kagan & Jackson 2000;
Kagan 2002). In this case, where both parameters (β, Mθ ) require

estimation, the log-likelihood is given by

lMGR = log(LMGR) = Nβ log(Mc) + 1

Mθ

(
N Mc −

N∑
i=1

Mi

)

−β

N∑
i=1

log Mi +
N∑

i=1

log

(
β

Mi
+ 1

Mθ

)
, (5)

where Mc is the completeness moment and Mi are the catalogue mo-
ments on the real number (R) line. Maximizing these log-likelihoods
returns estimates of the β (and Mθ ) values.

To calculate the uncertainties of the estimated b-value based on
seismic moment data, we use the standard estimate of error to one
standard deviation without modifications (Aki 1965; Kagan 2002),
which is approximated to

σβ = β√
N

, (6)

where N is the number of events included to calculate b̃. For the
MGR distribution, we use eq. (25) in Kagan (2002) to estimate the
standard error on β:

σβ̃ = D√
n[D2β̃−2 − (Mc/Mx)β (log Mx/Mc)2]

(7)

where D = 1 − (Mc/Mx)β and Mx � Mθ

Mmax
.

3 M E T H O D S A N D DATA

We first analyse the biases introduced when frequency–magnitude
parameters are estimated for relatively small earthquake catalogues
and when the form of the underlying distribution is known. This is
done by drawing synthetic data from either a GR or MGR distribu-
tion whilst varying the dynamic (magnitude) range. These results
are then generalized by using Monte Carlo (MC) simulations before
applying the methods to real catalogues from a variety of tectonic,
volcanic and induced seismicity settings to understand the implica-
tions of our analysis.
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3.1 Model comparison using the �BIC

The criterion we use to distinguish between the GR and MGR mod-
els is a modified version of the Bayesian Information Criterion (BIC)
by Leonard & Hsu (1999). This is preferred over other commonly
used criteria such as the Akaike Information Criterion (AIC) or the
Likelihood Ratio alone because the BIC penalizes model complex-
ity more heavily. Additionally, in synthetic trials the BIC proves to
be more accurate a discriminant for the larger data samples used
here (N > 46; Main et al. 1999). It is defined by

BIC = 1

log10(e)
(−2 log(L) + k log(N )) , (8)

where L is the likelihood function, N is the total number of events
and k is the number of model parameters (two for the GR law and
three for the MGR, including variance). We compare the difference
in BIC for the two models (�BICMGR − �BICGR) with a resultant
�BIC > 0 preferring the GR distribution and �BIC < 0 preferring
the MGR distribution (Bell et al. 2013).

3.2 Synthetic earthquake catalogues

We first create two synthetic event catalogues of 10 000 events, one
randomly sampled from a parent GR distribution and one from a
parent MGR distribution. The parameters used were b-value = 1.0,
mc = 1.0 and the MGR data used the extra parameter mθ = 3.5. These
parameters were chosen to mimic common magnitude ranges (and
for commonly openly accessible data) found in volcanic and induced
seismicity catalogues, which often have smaller magnitude events.
We fit both the GR and MGR models to the continuous moment
data. These two catalogues are then ‘thinned’ by increasing mc in
increments of 0.1. This creates a set of subcatalogues of decreased
sample size and dynamic range. Doing this enables the modelling
of biases that may be introduced when effectively sampling only
the tail-end of the FMD, which is often the only accessible data in
local volcanic and induced seismicity populations. Maximizing the
parameters in the likelihood functions for the GR and MGR models
(eqs 4 and 5) result in estimates of the b-value for each subcatalogue
for both GR and MGR distributions, as well as estimates for Mθ for
the MGR distribution.

Additionally, we then use randomly generated MC sampling to
simulate multiple catalogues with the same parameters, and look
at the variability between individual realizations. Using the same
parameters as above, for the single catalogues, we create 50 cata-
logues each for both GR and MGR and increase mc in increments of
0.1, using the same process and analysis as for the single catalogue
above. This allows us to explore the effect of random sampling on
the precision and accuracy of the inferred b-values.

3.3 Real earthquake catalogues and determination of mc

In the synthetic catalogues we can be sure we have complete data,
but for the real catalogues we need to estimate mc. If the estimated
mc is not accurate, bias is immediately introduced. Commonly used
methods for the determination of mc are: the maximum curvature
method (MaxC; Wiemer & Wyss 2000), the goodness-of-fit test
(GFT; Wiemer & Wyss 2000) and the b-value stability method
(BVS; Cao & Gao 2002; Woessner & Wiemer 2005). All of these
methods assume self-similarity of the earthquake process, implying
a power-law distribution (Woessner & Wiemer 2005), but none of
these methods is necessarily the ‘correct’ one. Mignan & Woessner
(2012) give detailed explanations of how these methods work. The

BVS method evaluates the estimated b-value for the data above
a variable minimum magnitude. It selects mc as the magnitude
above which the b-value stabilizes within error of the b-value. This
method regularly tends to return the highest mc of the three methods
mentioned above, and is therefore also the most conservative (likely
to be at or above the ‘true’ mc). Due to its accuracy compared to the
other methods (Roberts et al. 2015), it is the preferred method of mc

determination used here. We then again increase mc in increments
of 0.1 units, just as in the synthetic analysis, to determine the effect
on the b-value and preferred model for a given catalogue.

For this study, we have chosen the following real catalogues as
open-access examples covering a suitable range of possibilities—
the Central Italy region (tectonic), Mount Etna (volcanic), El Hierro
(volcanic) and The Geysers (induced by fluid injection). In line with
the suggestion by Mizrahi et al. (2021) that observed decreases in
the b-value could be an artefact of declustering algorithms on earth-
quake catalogues, no declustering has been performed on any of
these catalogues. It is not clear in all catalogues which magnitude
scales have been supplied, another potential source of magnitude
uncertainties and bias, as extensively discussed in Herrmann &
Marzocchi (2020). A summary of the sample size and magnitude
ranges for each of these catalogues is given in Table 3. These cata-
logues have also been chosen due to their abundance in data (large
numbers of events in the raw catalogue). However, Table 3 shows a
large reduction in catalogue sample size and dynamic range for the
complete data above mc, especially for the Mount Etna, El Hierro
and 1990 INGV catalogues.

3.3.1 Central Italy: tectonic

The Central Italy region experiences a substantial number of earth-
quakes annually, including devastating ones such as the sequences
in the summer of 2016. We use a tectonic catalogue managed by
the Istituto Nazionale di Geofisica e Vulcanologia (INGV), starting
in 1990 and ending just before the onset of the Central Italy Earth-
quake Sequence in August 2016. This project was started around
this time and a detailed, relocated catalogue including the Central
Italy sequences was under review at this point, so the work currently
includes data only up to August 2016. However, in future work it
would be a good idea to include data from the last five years now
to see if, and if so how, the outcomes discussed here may have
changed with more data. Sensitivity of seismometer equipment was
improved in 2005, resulting in the detection of many more small
earthquakes and in the overall enhancement of recording. There-
fore, this catalogue was split into two catalogues with different start
dates: ‘INGV 1990’ and ‘INGV 2005’. The evaluation of mc using
BVS returned values of 2.7 and 1.7 and magnitude ranges above mc

of 3.1 and 4.4, respectively.

3.3.2 Mount Etna, Sicily: volcanic

Mount Etna is an active stratovolcano in Sicily, Italy. It is one of the
world’s most active volcanoes, whose activity is accompanied by
many seismic events both during and outwith eruptive phases. The
catalogue chosen from this location contains mainly events recorded
between 1999 and 2016. Most are associated with volcanic activity,
although the possibility of some tectonic activity included in the
catalogue remains. The BVS method indicated mc = 2.5, resulting
in a dynamic range of 3.2 above mc. No efforts have been made
at trying to discriminate between tectonic and volcanic seismicity
here.
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Table 3. Summary of parameters for the real catalogues including type of seismicity, the period during which the catalogue events
were observed, the total number of events in this observed period (N), the number of events above mc, the observed maximum
magnitude within the catalogue, the value of the b-value stability mc, the magnitude dynamic range (dyn. r) as well as an estimated
value of mθ for when the MGR MLE is applied to all catalogues. These values are also indicated on the FMDs in Fig. 7.

Catalogue Seismicity Type Observation Period N N > mc obs. mmax mc (bvs) dyn. r est. mθ

Mount Etna Volcanic 19/08/1999–29/08/2016 15688 1928 5.7 2.5 3.2 ∼5.7
El Hierro Volcanic 30/11/2001–22/01/2017 22494 1782 5.1 2.6 2.5 ∼5.0
The Geysers Geothermal 18/03/1972–31/07/2018 281572 61134 5.01 1.25 3.76 ∼4.6
INGV 1990 Tectonic 01/01/1990–15/04/2005 17166 2917 5.8 2.7 3.1 ∼6.0
INGV 2005 Tectonic 16/04/2005–24/08/2016 114847 16 629 6.1 1.7 4.4 ∼6.5

3.3.3 El Hierro, Canary Islands: volcanic

This is another catalogue chosen primarily for its volcanic seis-
micity within the volcanic island chain of the Canary Islands. This
catalogue was previously used by Roberts et al. (2016) to discover
mode switching during the 2011–2013 El Hierro eruption. We have
extended this catalogue in time (2001–2017) and to include several
more events within the entirety of the island of El Hierro, however
more than 95 percent of events are from the eruptive period and
therefore the same as those used in Roberts et al. (2016). This ex-
tended catalogue returns mc = 2.6 and a dynamic range of 2.5 above
mc.

3.3.4 The Geysers, California: geothermal

This naturally occurring steam field reservoir provides an energy
source for the largest existing complex of geothermal power plants
(Leptokaropoulos et al. 2018). The vast majority of earthquakes
within this region are attributed to the extraction of steam and
the re-injection of condensate and wastewater into the reservoir
(Henderson et al. 1999). The monitoring of seismicity began in
1972 and according to the USGS, seismicity has remained stable
since the 1980s. The largest earthquake recorded in The Geysers
had a moment magnitude of mw = 5.01, on 2016 December 14.
Seismicity in The Geysers is due to fluid re-injection and hence
in principle, the rate of seismicity can be controlled by the rate of
fluid injection and withdrawal (Majer et al. 2007). There are no
large faults within the region and none of the mapped faults have
been active in the last 10 000 years (Oppenheimer 1986), making
it unlikely for any of the events to be solely tectonic. From the
Northern California Earthquake Data Center (NCEDC) we use a
catalogue for The Geysers geothermal region from April 1972 up
to July 2018 with a BVS mc of 1.25 and a dynamic range of 3.76
above mc. These choices minimize the possibility of including other
events that may not be induced by geothermal activities.

4 R E S U LT S

Here we present the results of the analysis on synthetic catalogue
data drawn from a GR and MGR distribution and generalized using
MC simulations (as described in Section 3.2) before demonstrating
the applications on the real data from the catalogues introduced
above.

4.1 Synthetic catalogues

Fig. 3 summarizes the results obtained from analysis of the syn-
thetic catalogues. In the first column, the FMDs are shown for two
examples of GR and MGR catalogues—the original, full catalogue
(N = 10 000 and mc = 1.0, GR in red and MGR in green) as well as

one specific subcatalogue (mc = 2.5, GR in black, MGR in blue).
The b-value is 1.0 for both and in the case of the MGR distribution,
mθ = 3.5. The smaller subcatalogue is used as an arbitrary example
of how parameters may change when sampling less data and con-
centrated on the tail-end of the distribution at larger magnitudes.
The number of events in each of these catalogues is indicated on
the respective FMD plots, in the respective colours. In the second
column, we model the following (top to bottom): GR MLE on GR
data, GR MLE on MGR data, MGR MLE on MGR data and MGR
MLE on GR data. The b-values of these best fit models are indi-
cated in the respective colour, on the plot. Both the models and the
b-values show that the GR MLE fits GR data well and the MGR
MLE fits MGR data well (rows 1 and 3), but the GR MLE does
not fit MGR data well (row 2), when mc = 2.5 (implying a lower
dynamic range and sample size). The MGR MLE fits GR data (row
4) well, as the roll-off is not sampled (the mθ estimate is given in
cyan). In real catalogues, the underlying distribution is unknown,
so the misidentification, for example based on an apparent good
fit of the MGR law to GR data or vice versa, presents a possible
source of bias. Columns 3 and 4 in Fig. 3 show confidence intervals
and the confidence intervals on the b-value from MC simulations
performed on two different catalogue sizes: N = 10 000 (column 3)
and N = 1000 (column 4). Column 4 has a lower N compared to the
subcatalogues in columns 1 and 2 because the sample sizes are very
small. Columns 3 and 4 reveal the b-value bias and loss of precision
that results when going from a catalogue of N = 10 000, down to
a catalogue of N = 1000. The 67, 95 and 99 percent confidence
intervals are shown, as well as the mean b-value (solid red/green
line) for all four scenarios. These mean b-values are always biased
at small sample sizes, even when the correct model is applied to
the data generated but the mean converges to the true b-value with
increased sample size in all cases except for the GR distribution
on MGR data (row 2) in the case N = 1000 (second row, fourth
column), in which the mean b-value is always biased to high values
(i.e. the red line is always above the black dashed line).

The MC simulations are used to investigate how effective the BIC
(see Section 3.1) is at choosing the true model, with the key factor
being the extra complexity (due to the additional model parame-
ter Mθ ) and the associated BIC penalty when applying the MGR
model. Using mθ = 3.5, Fig. 4 shows the FMDs for 50 simulations
in the case of an underlying GR (top) and MGR (bottom) distri-
bution, along with the average probability that a certain model is
preferred by �BIC and the evolution of �BIC with respect to mc

for the individual simulations. The GR distributed data results in a
preference for the GR model at all times, with a strong preference
(> 0.5) when the dynamic range is 2 or larger. The �BIC equally
indicates that with increased number of events, the preferred model
is more likely to be GR, that is, the correct one. On the other hand,
in the bottom panel (MGR distributed data), the FMD for all sim-
ulations shows that most of them sample the given roll-off of mθ
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Figure 3. Summary of the synthetic results obtained using GR and MGR models. The first column represents the full and a smaller subcatalogue of the true
distribution—rows 1 and 4 show GR (red, subcatalogue in black) and rows 2 and 3 show MGR (green, subcatalogue in blue). The second column includes the
assumed distribution—MLEs are indicated by solid lines fitting to the underlying data. The top row represents GR MLE on GR data, the second row shows
GR MLE on MGR data, the third row represents MGR MLE on MGR data and the final row is MGR MLE on GR data. Respective b-values of the MLE are
indicated on the panels for all catalogues. The last two columns show confidence intervals (68, 95 and 99 percent) on simulated catalogues with two different
values of N. N = 10 000 in column 3 and N = 1000 in column 4, which mimics the tail-end of a subcatalogue. The solid red and green lines represent the
b-value mean.

= 3.5, although not all (seen by some points being to the left of
the vertical line indicating mθ ). The model acceptance in the centre
clearly shows that for the used parameters, at least one order of
dynamic range is needed to identify the correct model (MGR in this
case). Any dynamic range less than that, tends towards a preference
for an incorrect GR model. The �BIC shows that the GR model
is preferred for a small number of events (which coincides with
small dynamic range) but the correct, MGR model is preferred for

N > 100 in almost all the simulations. Corresponding to this, Fig. 5
plots the evolution of �BIC as a function of the inferred b-value for
both GR (top) and MGR (bottom) data, colour-coded by dynamic
range. We show that in the case of a true GR distribution (top, with
b = 1.0), small dynamic range (green triangles) leads to a larger
spread in estimated b-values (we know that b = 1.0 in this case)
as well as lack of confidence in the correct model selection (low
values of �BIC). Several data points on Fig. 5 have �BIC < 0,
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Figure 4. Left: FMDs for all GR (top) catalogue and MGR (bottom) catalogue simulations superposed. The solid red line in the MGR simulations indicates
the input value of mθ . Centre: the probability that a model will be preferred dependent on the dynamic range, defined as the maximum sampled magnitude
minus mc, with 1 preferring GR and 0 preferring MGR in the case that the true distribution is GR (top) and MGR (bottom). Right: �BIC for all 50 GR (top)
and MGR (bottom) simulations shown against number of events. GR is preferred when values are greater than 0, MGR is preferred when values are less than 0.

suggesting an incorrect preference of the MGR model, while esti-
mated b-values range between 0.5 and 1.8. With increased dynamic
range (blue triangles), the bias of the b-value reduces (i.e. more
points lie within the range b = 1.0 ± 0.2) and the preference for
the GR model becomes stronger (greater �BIC). In the case of an
underlying MGR distribution (Fig. 5, bottom), a smaller dynamic
range (green triangles) again results in increased misidentification
of the correct model—many points have �BIC > 0, showing they
incorrectly prefer a GR model. At the same time, the corresponding
b-values mainly lie between 2.0 and 3.5, which is abnormally high.
The correct distribution is recovered on increasing the dynamic
range (blue triangles), with estimated b-values nearer 1.0, close to
that assumed in generating the synthetic data.

In Fig. 6, we show the inferred GR b-value as a function of the
dynamic range on underlying MGR data. Using six different values
of mθ (with 50 MC simulations for each), N ranging from 50 to
5000 and the true b-value being either 1.0 (left column) or 1.5 (right
column). For a given value of mθ , the dynamic range is varied by
changing the value of mc between 1.0 and 2.5 in increments of 0.1.
This synthetic data illustrates how high b-values can arise when
assuming an incorrect GR model on underlying MGR data. In the
case of a true b-value of 1.0 and N = 50 (Fig. 6, top left), b-value
estimates range from ∼ 0.7 (at dynamic ranges > 1.5 and mθ >

3.4) to ∼3.5 (at a dynamic range of 0.5 and mθ = 2.5). Generally,

the estimate of the b-value converges to the correct value of 1.0
as dynamic range is increased for a given value of mθ , and for a
given dynamic range as mθ increases. The rest of column 1 shows
how much smaller the b-value bias becomes with larger sample
size. At N = 5000 (Fig. 6, bottom left), estimated b-values range
between 1.0 and 2.9 for all the catalogues compared to between 1.0
and 3.8 for N = 50, indicating a lower overall spread. However, the
estimated b-value is also much closer to the true value of 1.0 for
the larger mθ cases at large dynamic ranges [highlighted in orange
(mθ = 3.7) and purple (mθ = 4.0)]. Similar results can be seen
in Fig. 6, column 2, where the true b-value is 1.5, except that the
spread in estimated b-values is even larger for all values of mθ ,
especially in the cases of N = 50, 100 and 500. Lower dynamic
ranges occur because of the steeper slope on the FMD compared
to the case b = 1.0. Fig. 6 proves the case that when a) the wrong
model is assumed, b) the sample size is very small (i.e. N = 50)
and c) the dynamic range is also very small, then the b-value is
extremely biased to high values, and has a much bigger scatter,
that is it is neither accurate nor precise, respectively. Accuracy and
precision both improve with increased dynamic range and sample
size. Nevertheless, Fig. 6 suggests that an accurate estimate of the
b-value can be obtained within a precision of approximately ±0.2,
even when the incorrect model is assumed, if (i) the dynamic range
is at least 1.5 and (ii) there are at least N = 1000 events in the sample.
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Figure 5. Analysis for GR data (top) and MGR data (bottom) showing: �BIC against the inferred b-value for all 50 catalogues with 10 000 events generated
from a synthetic catalogue with b = 1.0, varying mc for each. Positive �BIC implies a preference for the GR model, negative �BIC is a preference for the
MGR model. Darker (blue) markers indicate larger dynamic ranges; lighter (green) markers indicate small dynamic ranges.

4.2 Real catalogues

We now investigate the real catalogue data from the areas of tec-
tonic, volcanic and induced seismicity introduced in Section 3.3.
Based on the results of our analysis of synthetic data, we now
test the hypothesis developed there that many studies (including
those cited in Tables 1 and 2) have found high b-values due to
lack of data and/or a narrow dynamic range used in the analysis.
The high b-values reported in the literature may be partly due to

the smaller maximum magnitudes for volcanic or induced seismic-
ity, but also because many b-value studies focus particularly on
short-term data obtained during periods of volcanic unrest or dur-
ing induced seismicity sequences. Hence we use more complete
data available for the longer time scales outlined in Section 3.3,
and exploit the larger data sets in the five catalogues examined
here. We begin by determining the mc using the FMDs and BVS
method (Figs 7 and 8), and then increasing the obtained mc to thin
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Figure 6. Estimated b-values assuming the GR model (applied on MGR data) as a function of dynamic range for Left column: a true b-value of 1.0; right
column: a true b-value of 1.5. Colours represent different values of mθ (see key immediately above).
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Figure 7. FMDs for all five catalogues. Solid vertical lines indicate the estimated mc using the BVS method, dotted vertical lines show the calculated value
of mθ . The top row shows results from volcanic and induced seismicity, and the bottom row indicates a single tectonic setting, analysed for two catalogues of
varying temporal and spatial resolution.

Figure 8. b-value stability plot using GR (solid colours) and MGR (lighter colours) for (a) the volcanic and induced catalogues and (b) the tectonic catalogues.
Vertical dashed lines indicate the estimated mc for each catalogue, based on successive b-values falling within error of the b-value. (Based on Roberts et al.
(2015)).

the catalogue in the same way as we did for the synthetic data
(Section 3.2).

Fig. 7 shows the FMDs for all catalogues, including the estimates
of the BVS mc (see Fig. 8) in solid lines as well as the calculated
value of mθ as dotted lines. The Geysers data (black) has the lowest
mc of 1.25 and the INGV 1990 catalogue (green) the highest at 2.7.
The higher-resolution INGV 2005 catalogue results in a significant
improvement in complete reporting, with mc lowered to 1.7 due to
increased station density. The BVS curve is shown in more detail
for the real catalogues in Fig. 8, with errors shown at one standard
deviation. An estimate of mc is made where successive b-values for
two trial values of mc are the same within error. Estimates assuming
an underlying GR model are shown in solid colours and estimates
of the equivalent for an underlying MGR distribution are shown in

lighter colours. With the exception of The Geysers case, the esti-
mated b-values for the MGR distribution are systematically higher
than those for the GR distribution, but the estimated values of mc

remain the same. The trend in the b-value shows a general increase
in b and its error with respect to mc, with a more pronounced hiatus
in the tectonic data due to its greater dynamic range. Conditional
on the respective GR BVS mc estimates, the estimated b-value is
∼1.05 for The Geysers, ∼1.0 for Etna and ∼1.2 for El Hierro, re-
markably close to b = 1.0 expected for tectonic seismicity. The two
INGV catalogues show opposing trends. For the INGV 1990 cat-
alogue, the estimated b-values rapidly increase with respect to mc

up to the best estimate of mc (at which b ∼ 1.35) and then sharply
decreases between 3.7 ≥ mc ≥ 4.8 with b-values dropping as low
as ∼ 0.6 before another steep increase. Thus, the b-value estimate
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is not stable, and there may be systematic deviations from the GR
law for this catalogue. The MGR and GR BVS b-value estimates
tend to agree with each other during this ‘descending’ part between
3.7 ≥ mc ≥ 4.8, albeit with larger errors for the MGR model. When
mc > 4.6, b-value errors for both are very large and biased towards
very high b-values. The INGV 2005 catalogue shows fairly steady
b-value estimates between 1.7 ≥ mc ≥ 4.0, with an inferred b-value
of ∼ 1.15 at the GR BVS mc estimate. Thereafter, the b-value tends
to systematically increase with increasing mc, confirming that data
with small dynamic range may have inferred b-values that are biased
to higher values, irrespective of the assumed model.

In Fig. 9, we show the estimated b-value as a function of the dy-
namic range for each of the real catalogues, obtained by varying mc.
The Geysers is the only catalogue which has a very large estimated
b-value (> 2.5) at a very low dynamic range (∼0.5) but then ex-
hibits a continuous decreases until it reaches a b-value of ∼1.0 at a
dynamic range of ∼3.7, again similar to that of tectonic seismicity.
The two volcanic catalogues generally have a decreasing or stable b-
value between dynamic ranges of 1.0 and 2.3 (for El Hierro) and 2.9
(for Etna), before they increase again just before their maximum dy-
namic range. This may be a statistical artefact of sampling for rare,
large events. The INGV 1990 catalogue has a very low estimated
b-value at low dynamic range (b ≈ 0.55 at a dynamic range of 1.0).
It continuously increases until it reaches a dynamic range of ∼3.0.
The INGV 2005 catalogue shows convergence to a b-value of 1.0
between dynamic ranges of 2.5 and 3.8, before it exhibits ‘jumps’
to larger b-values, again likely to be statistical artefacts. These sys-
tematic changes in estimated b-value with respect to dynamic range
are also reflected in the trends for �BIC shown in Fig. 10, where
only The Geysers field shows a trend towards preferring an MGR
model. Our results for the real data confirm the inference from the
synthetic data shown in Fig. 6 that increased dynamic range will
result in a better chance of returning a consistent b-value, irrespec-
tive of the ultimate model preference. Logically, this implies that
this consistent b-value is more likely to be nearer the true one for
the scale-invariant part of the process, but in the case of real data
this cannot be proven. In other respects, the real data do not show
the relatively smooth variation in the sensitivity analysis with re-
spect to dynamic range seen in the ideal case of Fig. 6. Notably, the
INGV catalogues behave different from the induced and volcanic
seismicity catalogues, and are also distinct from one another.

Fig. 10 shows how both �BIC and the inferred b-value change
as a function of mc (degree of shading) for the different catalogues
(coloured symbols). For the INGV catalogues (green diamonds and
orange crosses), all �BIC values remain above zero and hence
within the GR preferred region. The Geysers data show that at
full data availability, the optimal model chosen by the �BIC is
MGR distributed, but when cut to a narrower dynamic range, the
GR model is increasingly preferred and b-values are high. This is
a typical example of how imposing a narrow dynamic range can
result in a false preference for a GR model with an artificially high
b-value. From the value of mθ in Table 3 and Fig. 7, The Geysers
is the only catalogue here which samples a roll-off with sufficient
data to prefer an MGR model (i.e. mθ is within the FMD range and
not outwith, as is the case with all other catalogues). The evolution
of �BIC with respect to the dynamic range for The Geysers data
shown in Fig. 10 confirms this inference, that is the MGR model
is preferred more strongly with more data. These results clearly
illustrate the high potential for simultaneously a) misidentifying
the underlying FMD distribution and b) returning too high a value
for b in cases where the underlying distribution is more likely to
have an MGR form, as demonstrated earlier on in our synthetic

results. Both volcanic catalogues prefer the GR distribution at large
dynamic range and their b-values cluster around ∼0.9 to 1.2, that
is not too different from that expected for tectonic earthquakes,
but substantially smaller than the values of btyp given in previous
studies (see Table 3). For both volcanic and the INGV catalogues,
GR is increasingly preferred with more data, which is the opposite
to what we see for The Geysers. The vertical lines on Fig. 10 indicate
inferred b-values from previous studies (see Tables 1 and 2) for the
two volcanic and induced catalogues. These are particularly high
for the volcanic catalogues, and particularly low for The Geysers
(where the Table 3 suggests a typical b-value of < 1.0), compared
to our results.

5 D I S C U S S I O N

The synthetic results have shown that in the case of sampling from
an underlying MGR distribution, the simpler, albeit incorrect model
(GR) is more likely to be selected as the catalogue is thinned.
This implies that, for low dynamic ranges, the GR model could
be erroneously selected and the b-value estimate would then be
biased to high values. When there is a lot of data, the GR model
does a reasonable job of recovering the true b-value irrespective of
the underlying distribution, though some bias can result from the
choice of mc. There is no obvious difference in the general pattern
of convergence between the b = 1.0 and b = 1.5 columns in Fig. 6.
That is, the bias in the b-value is largely controlled by the dynamic
range of the catalogue magnitudes rather than the b-value itself.

The analysis of The Geysers data confirms the hypothesis de-
veloped from the analysis of synthetic data, that high b-values and
a preference for the GR law are more likely to be seen in smaller
catalogues with an underlying MGR distribution. This occurs be-
cause the method cannot distinguish between a steep (GR) slope
and a (MGR) roll-off in the distribution for high mc, in agreement
with the results from Eaton et al. (2014), suggesting that an MGR
distribution may lead to incorrectly high b-values, when this is not
independently known to be the underlying distribution. Most sub-
catalogues for volcanic seismicity prefer the GR model and have
b-values near 1.0, though the b-value nearly always increases as
the sample size becomes very small, as also seen in the synthetic
data. However, the trends are not as monotonic in the real data. The
most likely reason for the bias to high b-values in small catalogues
following the GR law, is that the Aki (1965) formula assumes a
maximum magnitude of infinity, whereas the data examined here
have a finite upper bound to the sample maximum magnitude. For
the tectonic catalogues, all subcatalogues have a preference for the
GR law, but b-values fluctuate within a surprisingly large range
as the catalogues are thinned, associated with a strong variability
at larger magnitudes (i.e. in the tail of the distribution). In turn,
this may be due to random effects of statistical sampling, though
we cannot rule out the possibility of complexity in the underlying
distribution beyond that of the GR or MGR models.

In many volcanic and induced seismicity catalogues, the dynamic
range and the number of data points in the literature is very limited,
often N � 1000 above mc (Tables 1 and 2). This renders it near
impossible to test whether a true GR distribution is seen or whether
the MGR roll-off is mistaken for a steep (high b) GR distribution.
Both our synthetic and real catalogue results indicate that with
too little data, b-values can be biased by lack of knowledge of
the underlying distribution. This is an example of an epistemic
uncertainty in the b-value that cannot be captured by the statistical
or aleatory uncertainty expressed by eq. (6). Furthermore, many
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Figure 9. Equivalent of Fig. 6 for the real catalogues, showing the b-value as a function of dynamic range for each of the real catalogues. The ‘commonly’
accepted b-value of 1.0 is shown as a dashed black line for reference.

Figure 10. �BIC as a function of the inferred b-value for five different data sets: two volcanic (Etna and El Hierro), one induced (the Geysers) and one
tectonic (Central Italy). Positive �BIC implies a preference for the GR model. b-values are calculated based on which model is preferred (MGR only for The
Geysers). The minimum magnitude threshold is increased above the mc determined by the b-value stability method—darker markers indicate lower magnitude
thresholds and larger dynamic ranges; lighter markers indicated higher magnitude thresholds and lower dynamic ranges. The vertical lines indicate the values
of btyp (Tables 1 and 2) observed in previous studies of Etna (blue), El Hierro (red) and The Geysers (black). These are not shown for the INGV catalogues
because the decision to split this original catalogue has not been previously investigated for b-values and there is no reference value.

studies have focused exclusively on time spans around volcanic
unrest or induced sequences. This introduces another sampling bias,
because the time window results in a lower number for events, and
hence a preference for a higher inferred b-value. Accordingly, we
cannot assume such high b-values are representative in assessing
long-term hazard, and are in fact likely to underestimate the hazard
from larger events outside the range observed in the finite sample
window.

Finally, we note that our estimates of mc for the real data using the
b-value stability method may be suboptimal. Recently, Marzocchi
et al. (2020) and Herrmann & Marzocchi (2020) use a method that
explicitly tests the suitability of an exponential FMD for the data
above the candidate mc values, resulting in a more sharply-defined

optimal mc. In future work, it would be interesting to examine the
influence of using such alternate techniques.

6 C O N C LU S I O N

The main conclusions that can be drawn from the results presented
here are as follows:

(i) If you have too small a sample of magnitudes (typically
<1000) drawn from a GR distribution, then there is a substan-
tial bias to higher b-values when assuming the wrong model. From
Figs 4 and 5, the data suggest that two orders of dynamic range are
required to correctly estimate a GR model and its b-values within ±
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0.2 of b = 1.0 in the synthetic case, and one order of dynamic range
is required for the MGR model. This compares to Marzocchi et al.
(2020), who have shown that the bias on the b-value is > 20 percent
for a dynamic range of 1.0 and < 0.5 percent for a dynamic range
of ≥ 3.0, when using the GR model on MGR data. Many published
analyses of volcanic and time-dependent seismicity fail this initial
test of sufficient dynamic range.

(ii) If the GR model is erroneously applied to MGR distributed
data, then the b-values are erroneously high, especially when the
number of events is limited (Figs 3, 5 and 6). From Fig. 3, to obtain
a b-value to a precision of ± 0.05, a minimum sample size of 10
000 is required when assuming an incorrect GR model on MGR
data. This is not the case when assuming an MGR distribution on
GR data.

(iii) If there is genuinely a high b-value, we would need at least
N > 1000 events to make this conclusion with a reasonable degree
of certainty, although this is highly dependent on the underlying
distribution and the associated parameters. The interpretation of
such high b-values must be taken with caution because we know
this is the signal expected when we are sampling the finite size
exponential tail in the GR and the roll-off in the MGR.

In summary, our results show that it is extremely important to be
critical in assigning significance to high b-values from the analy-
sis of small data sets. This highlights the need to obtain a greater
dynamic range of event magnitudes, particularly for volcanic and in-
duced seismicity catalogues, through station deployment including
high-resolution networks, access to borehole data where possible,
adopting methods such as template matching to identify a greater
number of smaller events and employing machine learning tech-
niques on whole waveform data, hence improving the statistics.
However, as Herrmann & Marzocchi (2020) showed, this may not
be easy, as high-resolution catalogues have their own pitfalls due to
particular behaviour toward smaller magnitudes (e.g. over-/under-
representation, scaling break of local magnitude, etc.). In the long
run, current improvements in detecting greater numbers of events in
a catalogue can only improve the quantification of hazard, the under-
standing of underlying processes of volcanic and induced seismic-
ity, and better inform risk management and mitigation strategies.
Therefore, we recommend that any b-value studies should always
report—as a minimum—details on sample size, magnitude dynamic
range and the method and justification for mc determination used
for the assessment. Without these basic parameters, it is hard to
judge the significance of the reported results.

We have shown that with decreasing dynamic range and catalogue
sample size, it is inherently harder to resolve which model correctly
fits the available data. We have demonstrated that in one case (The
Geysers), assuming GR to be the preferred model, may not be
correct. This may be due to having sufficient data (N � 1000) only
for this particular case (see Table 3 for N above mc) of volcanic
or induced seismicity. This epistemic error in assuming the wrong
(or not proven) model, may then propagate into biased estimates
of b-values which could result in significant underestimation of the
hazard from events larger than the maximum recorded magnitude
obtained in the past.
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