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ABSTRACT  1 

Endothelial cells (ECs) constitute the inner lining of vascular beds in mammals and are crucial 2 

for homeostatic regulation of blood vessel physiology, but also play a key role in pathogenesis 3 

of many diseases, thereby representing realistic therapeutic targets. However, it has become 4 

evident that ECs are heterogeneous, encompassing several subtypes with distinct functions, 5 

which makes EC targeting and modulation in the disease-context challenging. The rise of the 6 

new single cell era has led to an emergence of studies aimed at interrogating transcriptome 7 

diversity along the vascular tree, and has revolutionized our understanding of EC 8 

heterogeneity from both a physiological and pathophysiological context. Here, we discuss 9 

recent landmark studies aimed at teasing apart the heterogeneous nature of ECs. We cover 10 

driving (epi)genetic, transcriptomic and metabolic forces underlying EC heterogeneity in 11 

health and disease, as well as current strategies used to combat disease-enriched EC 12 

phenotypes, and propose strategies to transcend largely descriptive heterogeneity towards 13 

prioritization and functional validation of therapeutically targetable drivers of EC diversity. 14 

Lastly, we provide an overview of the most recent advances and hurdles in single EC OMICs. 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 
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INTRODUCTION  23 

Endothelial cells (ECs) line the interior surface of blood and lymph vessels. The endothelium 24 

plays a crucial role in maintaining tissue homeostasis in normal health1, but also contributes 25 

to the progression of many diseases2.  ECs respond to various physical and chemical stimuli 26 

and interact with other cells in the vessel wall, such as smooth muscle cells or pericytes, to 27 

regulate vascular tone, blood flow, inflammation, permeability of solutes, and cellular 28 

adhesion1. Blood vessel overgrowth promotes diseases like cancer3, while EC dysfunction 29 

contributes to vascular complications in diabetes, cardiovascular disease, and ageing-30 

associated pathologies (including neurological diseases with a vascular component, such as 31 

Alzheimer’s disease4). Hence, understanding the basic function and dysfunction of the 32 

endothelium in health and disease has broad reaching implications.  33 

Despite their common characteristics5, ECs are heterogeneous under physiological 34 

and disease conditions6-8 (see Box 1 for definition of heterogeneity). Whilst they are present 35 

throughout the whole body, ECs are highly specialised to meet the distinct needs of the 36 

organs and sites they reside in. Within each organ, this heterogeneity is evident between 37 

different vascular beds (arteries, veins, capillaries, lymphatics), between different segments 38 

of the same vessel type, and even between neighbouring ECs8. EC phenotypes in disease are 39 

equally diverse, exemplified by their ability to activate or inhibit angiogenesis, metabolic 40 

switching or the release of vasodilators, reflecting varying responses to different stimuli and 41 

changes in the pathological microenvironment3. While EC heterogeneity was highlighted in 42 

other reviews6-8, recent advances in single cell technologies brought new resolution and new 43 

insights into this heterogeneity. Characterising the different heterogeneity levels and their 44 

functional relevance is crucial5, albeit dependent on the technologies used to measure and 45 

quantify heterogeneity9.  46 
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In this review, after a brief historical perspective on the methods used to study EC 47 

heterogeneity, we will focus on novel discoveries regarding EC heterogeneity in health, 48 

disease and under therapeutic intervention, made based on single-cell OMICs, and discuss 49 

the current challenges and perspectives in the field. Rather than providing an all-50 

encompassing overview, we discuss key principles and examples. 51 

 52 

HISTORICAL PERSPECTIVE ON METHODS TO UNRAVEL EC HETEROGENEITY  53 

Prior to the advent of single-cell technologies, various in situ and in vivo methods were 54 

developed to identify organ- and vessel type-specific endothelial markers whilst 55 

circumventing difficulties faced in isolating pure populations of ECs from tissues and the loss 56 

of in vivo phenotype of ECs cultured in vitro (reviewed in10-12). The concept that ECs from 57 

different organs and vascular beds express different molecular markers was fueled by early 58 

evidence of cancer and immune cells, preferentially migrating to specific organs – likewise, 59 

peptides with a particular sequence homed to specific vascular beds13-16. For instance, the 60 

Stamper-Woodruff assay was designed to study lymphocyte-endothelial binding in lymph 61 

nodes13, later modified for use in other tissues14,15, and alongside an emerging monoclonal 62 

antibody technology, led to the identification of L-selectin as the receptor responsible for 63 

selective homing of lymphocytes to high endothelial venules (HEVs) in lymph nodes16.  64 

Phage display peptide libraries were used to unbiasedly screen peptide sequences 65 

that home to particular organs17 or vascular beds in vivo18. These approaches, as well as SAGE 66 

analysis19,20 and microarrays21-23, contributed to the mapping of endothelial markers across 67 

different organs and vascular beds within organs24-30, the development of tissue-targeted 68 

pharmacodelivery18,31,32, and to increasing our understanding of baseline EC phenotypes in 69 

different organs33. However, these methods suffer from relatively low throughput and 70 
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parallel processing capabilities, and some of these strategies also require prior knowledge of 71 

the cellular states and markers of the subpopulations of interest, limiting their use in 72 

identifying novel EC subtypes. In addition, these techniques allow us to study EC 73 

heterogeneity only at the bulk, not at the single cell, level. Hence, the advance in single cell 74 

technologies has had unparalleled influence on the study of ECs. 75 

 76 

SINGLE-CELL STUDIES IN ENDOTHELIAL CELLS  77 

Our characterisation and understanding of EC heterogeneity has advanced considerably in 78 

the past years, due to the development of single-cell OMICs approaches (Figure 1A). These 79 

techniques offer simultaneous analysis of hundreds to thousands of cells from complex 80 

samples, such as tissues and heterogeneous cell populations, often without any prior 81 

knowledge of cell markers34. In particular, single-cell transcriptomics have been used to 82 

identify and study EC populations in health and disease, across virtually all stages of life (e.g. 83 

development, adulthood, aging), as detailed hereafter. While initial studies often described a 84 

single organ in healthy condition35-40, recent studies now provide multi-organ analysis41-44 or 85 

focus on a specific disease, allowing to study ECs in physiological and pathological conditions. 86 

Most single-cell RNA-sequencing (scRNA-seq) experiments relied on a droplet-based 87 

approach, with the majority using the 3’ end sequencing Chromium 10X technology. The main 88 

characteristics and advantages of the two major scRNA-seq platforms (10X Genomics and 89 

Smart-Seq) are described in Figure 1B, and more details on these technologies and 90 

applications can be found in several reviews45,46. Some scRNA-seq studies were also 91 

accompanied by single-cell ATAC-seq (Assay for Transposase-Accessible Chromatin 92 

sequencing), revealing the (epigenetic) chromatin accessibility landscape in ECs47-50.  scRNA-93 

seq studies of ECs using mouse tissues/models took advantage of tissue availability, allowing 94 
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a more in-depth study of development and/or early disease stages, for which only late-stage 95 

human disease samples are available, such as pulmonary arterial hypertension51. scRNA-seq 96 

was also performed in healthy and diseased human tissues, such as  types of lung52-58,  liver59, 97 

heart60-63 or brain64 diseases. Only a few studies combined both human and mouse 98 

analysis53,65,66, allowing a cross-species comparison. Of note, the interpretation and findings 99 

of the EC scRNA-seq studies described below are also limited by the study design and chosen 100 

data analysis pipelines. Some of these limitations, as well as the general caveats of scRNA-seq 101 

analyses, have been highlighted in Box 2. 102 

 103 

ENDOTHELIAL HETEROGENEITY IN HEALTH  104 

In the healthy adult, phenotypic and structural diversity of ECs are a reflection of the breadth 105 

of functions they perform to maintain tissue homeostasis, and are highly dependent on the 106 

organs and microenvironment in which they reside. Given that different organs have different 107 

needs8, dissecting the functional specialisation of ECs in healthy organs is key to 108 

understanding EC health and behaviour, and essential for identifying how and why they 109 

become dysfunctional in disease.  110 

 111 

Organotypic heterogeneity 112 

Initial single-cell transcriptomic studies characterising EC heterogeneity focused largely on 113 

single tissues35,36,39,67. Although these studies highlighted organotypic diversity in EC 114 

populations, and increased our understanding of the EC subtypes in individual organs, a 115 

robust comparison across different tissues requires multi-organ studies. A recent study 116 

performed scRNA-seq on 32,567 ECs from 11 different murine organs to create a 117 
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comprehensive single-EC transcriptome atlas (EC atlas)41. Across different organs, inter-tissue 118 

heterogeneity in EC transcriptional states was detected. ECs from different organs expressed 119 

distinct transcriptional signatures, although ECs from certain organs had overlapping gene 120 

signatures, suggesting shared biological processes41. Higher expression of gene sets involved 121 

in immune modulation and scavenging were for example shared by liver and spleen ECs, while 122 

an enrichment of genes involved in membrane transport was detected in heart and skeletal 123 

muscle ECs41 (Figure 2). Different transcription factor networks were moreover up-regulated 124 

in ECs from different tissues, which may drive organotypic diversity of ECs. Regulons of the 125 

Gata family were for example enriched in liver and spleen ECs, while spleen ECs additionally 126 

showed up-regulation of Nr5a1 (Figure 2). Skeletal muscle ECs displayed enriched expression 127 

of the Pparg network, while pulmonary ECs showed higher expression of the Foxf1 network. 128 

Another multi-organ study extracted mouse EC transcriptomes across 12 different organs 129 

from the single-cell dataset generated by the Tabula Muris consortium42. Largely similar 130 

overall findings were reported in both studies regarding unique EC molecular profiles across 131 

different organs and overlapping gene expression between certain organs, as well as 132 

enrichment of similar gene sets in the same organs (e.g. up-regulation of transporter-related 133 

genes in brain ECs).  134 

 135 

Vascular bed heterogeneity 136 

Apart from organotypic heterogeneity of ECs, endothelial diversity also exists within the 137 

vascular bed (artery, vein, capillary, lymphatic). In the aforementioned multi-organ study41, 138 

conservation of EC vascular diversity across different organs was reported, as arterial, venous, 139 

capillary and lymphatic ECs clustered together, regardless of the organ they originated from. 140 

The vasculature in all organs displayed an arteriovenous hierarchy and the topography of 141 
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various endothelial subclusters along the vascular tree paralleled differences in blood flow, 142 

pressure, and chemical composition in the circulation41.  143 

scRNA-seq allowed finetuning of the traditional blood vascular EC classification 144 

(artery, capillary, vein). For instance, twenty-four renal endothelial populations were 145 

identified across the glomerular, cortical and medullary compartments37, whilst studies on 146 

pulmonary ECs highlighted extensive heterogeneity within the capillary endothelium68,69. The 147 

murine alveolar microvasculature was reported to consist of two cellular subtypes, aerocytes 148 

and general capillary ECs (gCap), both of which were morphologically distinct from other 149 

capillary cells in the bronchial circulation and other organs68. Aerocytes with large, thin and 150 

expansive morphology, are anatomically localised with alveolar type I (AT1) cells and enriched 151 

with adhesion and leukocyte-sequestration genes, suggesting that these capillary ECs are 152 

unique to the lungs and are specialised for optimal gas exchange and leukocyte trafficking 153 

(Figure 2). In contrast, gCap cells are positioned in thick regions of the pulmonary stroma, 154 

regulate vasomotor tone, and function as specialised stem/progenitor cells in alveolar 155 

capillary homeostasis and repair. Both these alveolar capillary EC subtypes and their subtype-156 

specific functions are conserved in humans, although human aerocytes express MHC class II 157 

genes whilst in mice, these genes are preferentially expressed by gCap cells68. scRNA-seq of 158 

human pulmonary cells also identified nine subpopulations of ECs, including two bronchial 159 

endothelial groups that were distinctly enriched in matrix, fenestration and cell cycle-related 160 

genes, compared to ECs that make up the pulmonary circulation69 (Figure 2). In addition, 161 

there were also two rare capillary subpopulations with features of both aerocytes and gCap 162 

cells. 163 

One of the first studies to use scRNA-seq to systematically investigate the molecular 164 

profiles of vascular cells in the adult mouse brain identified gradual changes in endothelial 165 
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transcriptional profiles along the arteriovenous axis, known as zonation70. While clusters of 166 

cells corresponding to arterial, microvascular and vein ECs could be identified, these cells 167 

could be ordered into a single one-dimensional range with markers of the different clusters 168 

displaying a gradual change across this axis. Arterial ECs were enriched in transcription 169 

factors, whilst transporter transcripts were dominantly expressed in capillary and vein ECs, 170 

suggesting that trans-endothelial transport of molecules across the blood-brain barrier (BBB) 171 

are concentrated in the latter regions. Similar zonation was observed in liver sinusoids, with 172 

67% of liver sinusoidal ECs asymmetrically distributed along the portal vein-central vein axis, 173 

though there was limited conservation of zonation profiles between human and mouse 174 

scRNA-seq data38-40. These studies provided insights into how zonation influences endothelial 175 

function and have implications for improving central nervous system (CNS) drug delivery in 176 

treating brain diseases, as the BBB remains a significant physiological hurdle for drug design 177 

and development71, and for understanding the relevance of EC zonation in disease 178 

pathogenesis.  179 

 180 

Non-organotypic/vascular bed heterogeneity 181 

Apart from organotypic and vascular heterogeneity, endothelial phenotypes were also found 182 

to differ between gender and ages in normal health.  183 

Gender: Since the Tabula Muris consortium used both male and female mice, their single cell 184 

studies allow for the assessment of gender as a potential factor contributing to transcriptome 185 

diversity among ECs from the same organ. Indeed, adult male and female mice showcase 186 

different endothelial gene expression signatures and subpopulations in the brain, heart and 187 

lung42. For instance, the gene encoding mitochondrial leucyl-tRNA synthetase (Lars2) is 188 

enriched in male versus female ECs (Figure 2). Another study using the endothelial 189 
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compartment from the same Tabula Muris dataset did not find any differences in EC subtype 190 

abundance between male and female mice, though this particular study had used another EC 191 

annotation method (scmap and top 10 marker genes of each EC phenotype) to map the 192 

Tabula Muris-derived ECs onto the subpopulations identified in their EC Atlas41. However, this 193 

study did not further examine EC sex differences beyond the comparison of subtype 194 

proportion. A third study, using an independent Tabula Muris dataset generated from young 195 

and aged mice (3 months and 18 months)43,44, found similar upregulation of Lars2 in the young 196 

male mice in addition to the upregulation of S100a8 and S100a9 in the older male mice, when 197 

compared to the female. However, they concluded that EC gene expression was largely 198 

similar between the sexes when taking age into consideration. Further investigation is 199 

warranted to reveal how gender influences EC heterogeneity, and may explain gender 200 

differences in cardiovascular risks.  201 

Aging: Natural aging influences changes in endothelial phenotypes and may explain age-202 

related susceptibility to diseases72. In an attempt to uncover the impact of aging on the 203 

mammalian heart, one study compared the single-cell transcriptomes of cardiac cells from 204 

12-week-old and 18-month-old mice73. Findings from this study suggest that the paracrine 205 

crosstalk between cardiac fibroblasts and cardiac ECs is impaired during aging. Blunted 206 

angiogenesis and autophagy, as well as proinflammatory activation in aged cardiac ECs were 207 

attributed to aged fibroblasts, which had the most significant differential gene expression. 208 

Increased expression of serpins in aged fibroblasts was found to mediate the anti-angiogenic 209 

effects on cardiac ECs. A separate study investigating how aging affects neurovascular 210 

dysfunction compared single-endothelial transcriptomes from young (2-3 months old) and 211 

aged (18-20 months old) mouse brains74. The age-associated transcriptional changes were 212 

involved in immune/cytokine signalling (Arhgap5, Pak2, Rdx, Gng5, Cdkn1a, Hnrnpk), blood 213 
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brain barrier (BBB) integrity (Afdn, Ctnna1, Iqgap1, Cgnl1, Nedd4, Ocln), and energy 214 

metabolism (Cox6c, Cox7b, Ucp2, Hmgcs2, Pea15a), most prominently in capillary ECs. 215 

Another study observed up-regulation of von Willebrand factor, a marker of endothelial 216 

dysfunction, in gCap cells but not aerocytes, in the lungs of aged mice68. ECs across five 217 

different organs in aged mice (18 months) have higher expression of immune and 218 

inflammation-related genes, compared to their younger counterparts43. Taken together, 219 

these findings suggest heterogeneous regulation of the different EC populations during aging 220 

that may contribute to the development of chronic diseases such as atherosclerosis, 221 

hypertension and Alzheimer’s disease (Figure 2). 222 

  223 

Endothelial heterogeneity in development 224 

EC functional heterogeneity during development is evident in the developing heart75, where 225 

the endocardium, a specialised endothelium lining the inner heart walls, acts not only as a 226 

physical barrier protecting the cardiac tissue from the chamber circulation but also as an 227 

essential source of different cardiac cell types76. Heart valve formation begins with the 228 

development of endocardial cushions at the atrioventricular canal and outflow tract, and at 229 

E8.5 to 9.0, a subset of these cushion endocardial cells undergoes endothelial-to-230 

mesenchymal transition (EndMT) to give rise to the precursor cells that will eventually go on 231 

to form the mature heart valves77. Previously, it was unknown if this endocardial subset was 232 

predetermined to undergo EndMT or if the surrounding myocardium and haemodynamic 233 

circulation push this subset towards such a fate, since the trabeculae endocardium does not 234 

undergo EndMT. Endocardial heterogeneity was confirmed by a recent scRNA-seq study, 235 

which sequenced 36,000 cardiac cells from three distinct developmental stages at E7.75 when 236 

cardiac progenitor cells begin to differentiate, during heart tube formation at E8.25 and at 237 
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E9.25 when the heart tube loops75. This study identified three endocardial subpopulations: 238 

haematoendothelial progenitors, ECs and endocardial cells initiating EndMT. However, this 239 

study did not further examine these subpopulations beyond their identification and 240 

assignment in the single cell dataset. As such, important questions remain about the origin(s) 241 

of endocardial subpopulations and the wider endothelial heterogeneity in vascular 242 

development: (i) Are all ECs different from the initial point of their formation; and (ii) If not, 243 

when do they start becoming different and what drives this differentiation during 244 

development?  245 

Since a functioning circulatory system is vital for embryonic growth, formation of the 246 

vascular network precedes the formation of all other organ systems. ECs originate de novo by 247 

vasculogenesis from mesodermal precursors in at least three sites: the yolk sac, allantois and 248 

embryo proper. Primitive ECs at this stage are highly plastic and were presumed to be non-249 

specialised as they undergo rapid expansion and coalesce to form the primary vascular plexus, 250 

before acquiring arterial, venous and lymphatic identities. A scRNA-seq of whole mouse 251 

embryos at E8.25 reported that subsets of these primitive ECs show unique identities that 252 

could be demarcated by their maturity and anatomical origins78. Allantoic ECs express distinct 253 

transcriptional signatures, characterised by Tbx4, Hoxa10 and Hoxa11 expression, while non-254 

allantoic ECs could be subdivided by their maturity based on their expression levels of Etv2, 255 

Cdh5 and Pecam1. These findings, alongside scRNA-seq profiling of early Xenopus embryos79, 256 

suggest that EC diversity begins much earlier in development than previously thought. It 257 

remains to be seen if and how this early diversification of EC identity influences their 258 

heterogeneous function and phenotypes later in life, and in the pathophysiology of diseases.  259 

As the vascular plexus continues to remodel into distinct vasculatures, developing ECs 260 

continue to differentiate into the different vessel types and subsequently specialise to meet 261 
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the needs of their resident organs during organ vascularisation. Bipotentiality has been 262 

reported in pulmonary plexus cells, as they give rise to both subsets of alveolar capillary ECs 263 

(aerocytes and gCap cells) during development68. Aerocyte development has also been 264 

reported to depend on AT1-derived VEGFA, as this population of ECs is specifically and 265 

completely lost in AT1-specific Vegfa mutant lungs80. These findings again suggest early 266 

specification of EC phenotype during development that continues to persist in the adult. 267 

Lineage-tracing and time-lapse imaging studies provided evidence that a subset of 268 

primitive ECs, termed hemogenic ECs, give rise to haematopoietic stem and progenitor cells 269 

(HSPCs) and intra-aortic haematopoietic clusters (IAHCs) in the later (definitive) wave of 270 

haematopoiesis81,82. It is less well-defined if hemogenic ECs are responsible for the primitive 271 

wave, where blood cell production occurs in blood islands in the yolk sac, prior to initial 272 

vascular formation. This is largely due to the overlap in their cell surface marker expression 273 

with haematopoietic cells, though previous studies have shown that the primitive wave can 274 

arise from cells expressing endothelial markers Tie2, VE-cadherin and Pecam183.  275 

A pseudotemporal dataset of the developing mouse embryo was generated through 276 

scRNA-seq from nine sequential timepoints, E6.0 to E8.550. This study identified two discrete 277 

subsets of hemogenic ECs, expressing both endothelial and haematopoietic markers. One of 278 

the subpopulations showed a more mature EC phenotype, with a high expression of classical 279 

markers of mature ECs such as Cdh5 and Pecam1. By incorporating temporal information of 280 

each individual cell, this group was identified as the hemogenic ECs involved in the definitive 281 

wave, suggesting that EC maturity is essential to give rise to HSPCs. In addition, they also 282 

observed that these second wave ECs were transcriptionally heterogeneous, and through 283 

clustering analysis, this heterogeneity was associated with their anatomical origins. This study 284 

also reported TAL1 as a transcriptional regulator of the two haematopoietic waves, and 285 
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documented that Tal1-/- ECs deviate into an aberrant mesodermal phenotype. An additional 286 

study using ATAC-seq on single nuclei from 10 mouse embryos at E8.25 identified EC-specific 287 

regions of open chromatin84. Integrative analysis with TAL1 ChIP-seq data from past studies 288 

and validation in transgenic mouse assays revealed that TAL1 binds to both known (Fli -15 kb 289 

and Erg +86 kb) and novel (Flt1 +67 kb and Malm3 +360 kb) endothelial enhancers. 290 

Altogether, important transcriptomic and epigenetic mechanisms direct ECs towards a 291 

hemogenic fate during development.  292 

 293 

ENDOTHELIAL HETEROGENEITY IN DISEASE  294 

Endothelial cell population shifts in disease  295 

Dimensionality reduction and clustering analysis allowed the comparison of EC populations 296 

in disease samples. First, a change of the relative proportion of ECs compared to other cell 297 

types has been noted in some diseases (Figure 3), with for example fewer ECs detected in 298 

metastasis compared to primary tumours85, while more ECs have been observed in 299 

Alzheimer’s disease versus control samples64 . 300 

Within the EC population, a change in the proportion of EC subtypes corresponds to a 301 

second level of heterogeneity observed in disease (Figure 3). Expansion of one of the three 302 

EC subtypes, probably corresponding to postcapillary venular cells, was observed in human 303 

skin samples from patients with atopic dermatitis or psoriasis86. In idiopathic pulmonary 304 

fibrosis (IPF), the peribronchial EC population was increased compared to control or 305 

obstructive pulmonary disease conditions and associated to areas of bronchiolization and 306 

fibrosis, showing the distinct response of this population between two diseases52. In mouse 307 

lungs exposed to hyperoxic conditions, an increase of the aerocytes/Car4+ ECs population was 308 

observed87.  309 
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An increase in EC proliferation was previously associated with several diseases88 and 310 

scRNA-seq showed evidence of such an increase after myocardial infarction (MI)89 or H1N1 311 

influenza lung injury90 in mice. In the lungs, most vessel-type ECs contribute to the 312 

proliferating response90, while, in the myocardial infarction (MI) study, the use of a PDGFB-313 

driven multispectral (Confetti reporter) EC tracing mouse model confirmed that proliferating 314 

ECs originated from resident cells via clonal expansion89. This Confetti reporter mouse line 315 

system was previously used to show EC clonal expansion after ischemia-induced 316 

neovascularization, and clonally expanded ECs selected by laser capture microscopy were 317 

analysed by bulk transcriptomics  without single-cell resolution91. scRNA-seq was also used to 318 

study EC populations contributing to liver92 and aorta93 regeneration after injury in mice. In 319 

liver injury, a tissue-resident Cd157+ population contributes to the regeneration of large 320 

vessels expressing only EC-specific genes92. In the aorta, regeneration originates from local 321 

adjacent ECs; both bulk and scRNA-seq studies revealed transcriptomic changes, including an 322 

increase of the progenitor marker Ly6a/Sca1 and the transcription factor Aft393. 323 

Disease can lead to a third level of heterogeneity in the endothelium, with the 324 

presence of EC subpopulations being almost exclusively restricted to control or disease 325 

conditions (Figure 3). After MI in mice, several clusters were predominantly composed of cells 326 

from disease samples and were characterised by a higher expression of the plasmalemma 327 

vesicle-associated protein gene Plvap89, shown to regulate EC proliferation in vitro89 and 328 

previously involved in EC permeability and angiogenesis94. In human liver cirrhosis, two 329 

disease-specific EC populations restricted to the fibrotic niche were identified and annotated 330 

as scar-associated ECs, in which marker gene analysis revealed the expression of pre-fibrotic 331 

and immune response genes59. Furthermore, pro-inflammatory and pro-atherogenic genes 332 

characterised EC clusters from the mouse aorta exposed to disturbed flow48. Similar pathways 333 
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seem to be identified in ECs from human atherosclerotic plaques, in which atherosclerosis-334 

specific EC populations were described as activated ECs49. The term “activated ECs” was also 335 

used to describe EC populations identified in prostate cancer, which express cancer-336 

associated fibroblast markers and extracellular matrix (ECM) genes but show a down-337 

regulation of genes related to immunoregulatory pathways95. 338 

Tip ECs are critical for vessel sprouting, by leading the sprout at the forefront96. In both 339 

human and mouse lung tumours, tip EC populations have been detected in scRNA-seq studies, 340 

in agreement with the role of angiogenesis in tumour growth and proliferation53,65. 341 

Proliferating cells were detected, at substantial rates in mouse tumours, but at negligible 342 

rates in human (lung) tumours53. Tip cells were also found in scRNA-seq studies of mouse 343 

choroidal neovascularization65. Common/congruent tip cell markers, conserved across 344 

species (mouse /human), diseases and tissues (cancer/choroidal neovascularization), and 345 

experimental conditions (freshly isolated/cultured) were identified, allowing a better 346 

understanding of angiogenesis across disease conditions53,65. Congruent tip cell markers 347 

included genes previously detected in tip cells, such as APLN, but also novel tip cell 348 

transcription factors TCF4, SOX4 and SMAD1, and novel genes relevant to the migratory tip 349 

EC phenotype53. Silencing of two novel markers, LXN (latexin) and FSCN1 (Fascin), in human 350 

umbilical vein ECs furthermore affected tip cell competitivity in a mosaic spheroid assay, 351 

confirming the tip cell role of these markers53. In addition to tip cells, another population of 352 

so-called “breach” cells has recently been identified in murine lung tumors by scRNA-seq. 353 

Based on their transcriptional profile breach cells are hypothesized to assist tip cells to lead 354 

the vessel sprout53. 355 

In addition, transitioning populations and pseudotime trajectories leading to these tip 356 

cells were characterised, revealing a change in the expression of genes related to metabolic 357 
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pathways65. Such metabolic changes in ECs, key to angiogenesis, were previously reported in 358 

scRNA-seq of all cells from lung cancer55. Moreover, in mouse cerebral cavernous 359 

malformations, based on a Pcd10 deletion model, ECs with tip cell traits have been reported97 360 

but further characterisation is required to confirm if they indeed represent genuine tip cells. 361 

EndMT occurs in many cardiovascular diseases98, yet with some controversies due to 362 

the lack of standard in diagnosing the transition, and difficulties comparing different time 363 

points and/or models99. Using scRNA-seq of EC reporter mice, no evidence of EndMT was 364 

found in liver cirrhosis100. In contrast, EndMT was reported in human calcific aortic valve 365 

disease101, in human atherosclerosis49 and in mouse atherosclerosis induced by disturbed 366 

flow48 or the high-cholesterol high fat diet in Apoe-/- mouse102. However, these scRNA-seq 367 

studies reporting EndMT did not use an EC tracing system, not allowing the full confirmation 368 

of the transition, and relied essentially on trajectory analysis. Additional analysis, such as RNA 369 

velocity might help to define the directionality of the observed trajectories and the cell 370 

population origins. Recently, activation of ECM genes was observed 7 days after MI in the 371 

mouse, and confirmed in scRNA-seq analysis of an EC lineage tracing model103. This study, 372 

based on a time course experiment, showed that EndMT is transient and reversible in MI103, 373 

in contrast to the sustained EndMT observed in atherosclerosis and likely due to the chronic 374 

nature of the stimuli48,49,102. The potential transient nature of EndMT might explain why 375 

EndMT was not detected in another MI mouse study89 and highlights the need to study 376 

different stages of disease development in association with a better EndMT diagnosis98.  377 

 378 

Transcriptomics changes leading to EC heterogeneity 379 
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In addition to a change of the population landscape, scRNA-seq also revealed EC global and 380 

subtype-specific transcriptomics changes in disease, highlighting a heterogeneity of 381 

phenotypes (Figure 3).   382 

Changes in genes related to inflammation have been observed in ECs in several 383 

contexts. In adult mouse peripheral lymph nodes, antigenic stimulation by oxazolone led to 384 

an up-regulation of inflammatory genes such as Sele and Cxcl9 in HEVs104. In mouse hyperoxic 385 

lung, genes known to be regulated by inflammation (Ctgf, Fxyd5) were up-regulated in the 386 

aerocyte EC populations87. In Alzheimer’s diseases, up-regulation of genes from the major 387 

histocompatibility complex (MHC) class I were observed in ECs64, while the expression of the 388 

MHC class II genes, part of the capillary gene signature, are up-regulated in pulmonary arterial 389 

hypertension (PAH)105 and down-regulated in ECs from murine and human lung tumours53. 390 

Changes in inflammation-related genes were also reported in atherosclerotic Apoe-/- mice102, 391 

and a recent study of the mouse aorta during disturbed flow suggested a potential transition 392 

of ECs towards an immune-like phenotype as an additional type of EC reprogramming48. All 393 

these studies confirm that the endothelium is a target of the inflammatory process, but likely 394 

also acts as an immuno-regulator, in part by working as semi-professional antigen-presenting 395 

cells. Indeed, the term “immunomodulatory ECs” (IMECs) was recently coined to describe the 396 

immunoregulatory EC phenotype106.  397 

Vessel growth dysregulation contributes to the pathogenesis of many diseases such 398 

as cancer and pulmonary arterial hypertension (PAH). In addition to the identification of 399 

angiogenic tip cells, angiogenesis pathway regulation has also been documented in several 400 

studies. Indeed, down-regulation of genes relevant to capillarization were observed in ECs in 401 

human systemic sclerosis107, while anti-angiogenic genes were up-regulated in ECs from 402 

hyperoxic lungs87. In contrast, pro-angiogenic/ capillarization genes were activated in ECs in 403 
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Alzheimer’s disease64 and cirrhotic mouse liver100 and in one capillary EC subtype in PAH105. 404 

Interestingly, in cirrhotic liver, the activation was zonation-dependent and restricted to a 405 

specific region of the liver sinusoidal ECs100. As most changes of angiogenesis pathway did not 406 

seem to be associated with the detection of a tip cell population, these regulations might not 407 

be linked to sprouting angiogenesis but might possibly reflect other vessel formation modes 408 

such as splitting angiogenesis, not characterised so far by any standard marker expression, or 409 

EC migration. Further studies are needed to understand the contribution of these different 410 

processes to vessel growth or regression.  411 

Several studies reported the up-regulation of the ECM genes in ECs in disease 412 

conditions, probably reflecting structural EC changes. In prostate cancer, activated ECs were 413 

characterised by an up-regulation of ECM genes95, while the transient mesenchymal gene 414 

activation in MI also included ECM gene changes. In addition, ECM gene up-regulation was 415 

observed in liver cirrhosis100, lung cancer53 and in systemic sclerosis107. Additional 416 

transcriptome regulations in ECs have also been described. Down-regulation of several 417 

members of the Notch signalling pathway occurs in ECs in pulmonary fibrosis57. In atopic 418 

dermatitis and psoriasis, ECs activate fetal genes86, while in oxygen-induced retinopathy, the 419 

peak of neovascularization was associated with expression of senescence genes108. Further 420 

investigation is required to define the functional effect of these changes and their relevance 421 

across diseases. 422 

To understand the regulation leading to these transcriptomics changes, scRNA-seq 423 

studies were performed together with single-cell ATAC-seq, confirming chromatin 424 

accessibility changes in correlation with the transcriptomics changes and reporting disease-425 

induced peaks such as in mouse MI47. As transcription factors (TFs) play a key role in shaping 426 

the transcriptome, motif enrichment analysis of scATAC-seq of mouse carotid artery in 427 
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different flow conditions identified KLF2/KLF4 motifs in stable flow, while motifs for RELA, 428 

AP1, STAT1 and TEAD1 were enriched in accessible regions from disturbed flow conditions48. 429 

Approaches developed for TF target and/or regulon-based analysis of scRNA-seq data109,110 430 

revealed the possible role of FLI1 and TEAD1 in tumour ECs55, and of SOX18 in human PAH51. 431 

 432 

Contribution of the microenvironment to EC heterogeneity in disease 433 

ECs plastically adapt to the physiological needs of different tissues. Unsurprisingly therefore, 434 

signals in the microenvironment shape the EC subtype landscape111. ECs acquire a specialized 435 

role depending on their location and status in physiological conditions that can make them 436 

more or less responsive to certain stimuli in disease. For instance, in cerebral cavernous 437 

malformation, venous capillary ECs are the main contributor of the lesion, as arterial ECs 438 

remain non-responsive to the transformation97. Furthermore, HEVs in lymph nodes possess 439 

an activated phenotype that is lost upon changes to the microenvironment such as inhibition 440 

of lymphotoxin-b receptor signalling104. 441 

Complex communicative circuits between ECs and other cell types play a key role in 442 

disease pathogenesis (Figure 3). For example, tumour aggressiveness is regulated through a 443 

crosstalk of ECs with cancer cells or tumour-associated macrophages in the 444 

microenvironment, regulating (among others) induction of metastasis and tumour 445 

angiogenesis112,113. Moreover, interactions between ECs and cardiomyocytes are key during 446 

development and cardiac homeostasis, and become dysregulated in cardiovascular 447 

disease114,115.  448 

Cell-cell communication and interaction can be assessed in scRNA-seq data by an 449 

unbiased analysis of receptor-ligand interaction (RLI) pairs using popular tools such as 450 

CellPhoneDB116 or more recent and comprehensive tools including CellChat117 and 451 
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NicheNet118, detailed hereafter in the “Recent Advances & Future Perspectives” section of 452 

this review. Increased interactions of ECs with other cells were detected in the heart of 453 

postnatal day 8 mice 3 days after MI47 but also in human atherosclerotic plaque49. In the 454 

murine regenerative heart, R-Spondin was identified as an EC ligand expressed by epithelial 455 

cells with pro-angiogenic effect to EC in vitro47. ECs appear to receive communication from 456 

fibroblasts in the murine hyperoxic lung, with the ligand and receptor Bmp5 and Bmpr2 457 

expressed by fibroblast and ECs respectively87. In atherosclerosis, the PDGF/PDGFRB 458 

interaction between myeloid cells and ECs led to the hypothesis of a myeloid-driven 459 

angiogenic contribution to plaque destabilization49. In the heart, evidence of communication 460 

between fibroblasts and ECs was detected in both healthy and injured conditions using 461 

scRNA-seq and the proximity between fibroblasts and ECs was confirmed by 462 

immunofluorescence119. As mentioned previously, a study of the murine aging heart revealed 463 

the deterioration of this paracrine crosstalk, with in-vitro experiments showing a reduced 464 

angiogenic property of the conditioned medium from heart-derived aged fibroblasts73. In 465 

contrast, ECs might communicate with mesenchymal cells in human cirrhotic liver, where the 466 

scar-associated ECs express the non-canonical Notch ligand JAG1, JAG2 and DLL4, whereas 467 

the NOTCH3 receptor is expressed by scar-associated mesenchymal cells59. Co-culture 468 

experiments, using primary human hepatic stellate cells (HPCs) and ECs from cirrhotic livers, 469 

validated that this interaction promotes fibrillar collagen production by HPCs, which could be 470 

inhibited by perturbation of NOTCH3 expression59, highlighting the translational potential of 471 

findings identified through scRNA-seq and interactome analyses. 472 

RLI analysis also highlighted cell-cell interactions in physiological conditions, with 473 

potential implication for development and disease. In the lung, the epithelium was identified 474 

as a key hub for spatially-restricted regulation of EC morphogenesis, by means of their 475 
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preferential expression of semaphorins and VEGF family members, a phenomenon that is 476 

conserved across multiple species66. Lastly, and in line with their well-appreciated 477 

immunoregulatory role, interactome analyses revealed novel interactions between 478 

pulmonary ECs and immune cells, including possible recruitment of CX3CR1+ non-classical 479 

monocytes to ECs (CX3CL1+), and attraction of CCR1+ dendritic cells to veins (CCL23+), 480 

bronchial vessels (CCL14+) and lymphocytes (CCL5+)69, highlighting interesting avenues for 481 

future research in light of lung cancer and/or inflammatory disease.  482 

Overall, a high level of EC heterogeneity has been observed across developmental, 483 

physiological and pathological conditions. Further investigation into this heterogeneity may 484 

help understand therapy resistance mechanisms, and should be factored into future EC-485 

focused therapeutic development. 486 

 487 

THERAPEUTIC IMPLICATIONS  488 

Anti-angiogenic therapies in cancer – targets and resistance 489 

As angiogenesis is critical for a variety of diseases, therapies have been devised to either 490 

promote or inhibit angiogenesis120. While pro-angiogenic efforts promise to offer novel 491 

therapeutic opportunities for cardiovascular disease and diabetes, here we focus on anti-492 

angiogenic therapies (AATs). Cancer presents one of the main pathologies for which AAT is 493 

used, due to the critical role of angiogenesis in cancer progression and metastasis121. 494 

Currently approved AATs center around blocking the key pro-angiogenic target VEGF, though 495 

other targets are emerging (Figure 4). While initially designed to prune the tumour 496 

vasculature122-124, current clinical trials explore whether VEGF-blockade can improve 497 

immunotherapy by normalizing the tumour vasculature125. The success of VEGF-blockade 498 

therapy is however tampered by insufficient efficacy and resistance126,127. Several resistance 499 
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mechanisms have been proposed, ranging from alternative growth factor signalling to other 500 

modes of tumour vascularization, such as vessel co-option128,129, but only recent studies 501 

explored additional mechanisms at the single EC level53,130.  502 

In a mouse lung cancer model, tip cells and breach cells (putatively assisting tip cells 503 

to lead the vessel sprout53) represent the EC subtypes most sensitive to VEGF blockade53, 504 

whereas other EC subtypes were less or differentially sensitive. In fact, postcapillary vein ECs 505 

increased in abundance upon anti-VEGF treatment53. Whether the increases in capillary and 506 

postcapillary vein ECs is a consequence of switching from sprouting angiogenesis (SA) to 507 

vessel co-option (a known escape mechanism to AAT therapy131), remains to be determined.  508 

This may explain – at least in part – the limited success and therapeutic immunity towards 509 

AAT.  510 

In addition, the various distinct EC types identified by single-cell transcriptomic studies 511 

might also contribute to a better understanding of AAT resistance53,132. Tip cells, which are 512 

the presumed key targets of AAT, amount to fewer than 10% of all ECs within lung tumours53, 513 

thus the majority of ECs is in fact not targeted by AAT (Figure 4). Differences in the 514 

composition of different EC subtypes in tumours from distinct patients53 might furthermore 515 

explain why some patients respond better than others to AAT. Moreover, venous ECs in 516 

tumours contain a subset of so-called resident endothelial stem cells (rESCs)53. rESCs were 517 

also identified in large vessels of multiple murine organs and showed self-renewal capacity as 518 

well as contributed to vessel regeneration in different models of vessel injury65,92,93. As venous 519 

ECs expand upon AAT53, it raises the question whether these rESCs might reconstitute vessels 520 

upon AAT, thereby contributing to therapy resistance. Endothelial progenitor cells were 521 

identified in human metastatic lung adenocarcinoma133. Moreover, aldehyde dehydrogenase 522 

(ALDH)-positive ECs with stem-like properties were found in melanoma (xenograft models) 523 
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and human renal cell carcinomas. These ALDH-positive stem-like ECs display pro-angiogenic 524 

properties, and resisted to chemotherapy treatment134,135. How such progenitor-like ECs are 525 

impacted by AAT remains to be determined. Future studies will determine whether such cells 526 

are present in other tumour types, and contribute to AAT resistance by induction of 527 

neoangiogenesis upon treatment. Interestingly, “Myc targets” was amongst the top up-528 

regulated pathways in tumour ECs in a single-cell analysis of human NSCLC55. Myc has been 529 

identified as a driver of the endothelial regeneration process93, thereby raising the question 530 

whether progenitor-like ECs might arise in tumours, and if so, whether they harbour 531 

additional heterogeneity in terms of their transcriptome or their response to anti-cancer 532 

therapy/AAT. Of note, while several scRNA-seq studies identified EC populations with stem- 533 

or progenitor-like potential, future studies are needed to carefully assess potentially distinct 534 

vascular progenitors, that might be tissue and/or disease specific. Thus far, there is not yet a 535 

consensus definition of EC stem- and/or progenitor cells available based on scRNA-seq. 536 

Alternative mechanisms of blood vessel growth, in addition to sprouting angiogenesis 537 

(SA), which is the most studied form of angiogenesis, also need to be considered in the 538 

context of EC heterogeneity and its impact on cancer progression and therapy response. In 539 

fact, VEGF inhibition can induce substitute mechanisms of vessel growth, such as 540 

intussusceptive angiogenesis (IA)136 and vessel co-option131. Also, vascular mimicry and 541 

vasculogenesis were identified as potential alternate processes that promote AAT 542 

resistance137,138. However, single-cell studies investigating phenotypical and functional EC 543 

heterogeneity in these processes remain elusive. Such studies would be critical to identify 544 

novel targets to enable the control of pathologic angiogenesis by simultaneously attacking 545 

several aspects of vessel growth.  546 
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Importantly, combination of AAT with other anti-cancer therapies, such as 547 

chemotherapy or immunotherapy has shown promising results not only in pre-clinical 548 

models, but also in the clinic. In fact, several AAT agents (e.g. bevacizumab, aflibercept, 549 

sorafenib, sunitinib), apart from being approved as single-agent therapy, have reached 550 

approval in combination with chemotherapy, or as second-line therapy after patients 551 

progressed on chemotherapy139. Moreover, the combination of IFN-α treatment with anti-552 

VEGF therapy has been approved by the FDA for treatment of metastatic renal cell 553 

carcinoma140. With the advent of novel immunotherapies, such as immune checkpoint 554 

blockade, there are many new promising anti-cancer therapeutic opportunities139. New 555 

insights into distinct EC phenotypes could help to develop more precise treatments tailored 556 

to target specific EC populations, which might create a favourable environment, in particular 557 

for immunotherapy to work. IMECs or other specialized EC phenotypes might offer such 558 

opportunities. For instance, HEVs are involved in the recruitment of different immune cells141, 559 

thus promoting HEV growth is expected to be beneficial for enhancing the anti-cancer effect 560 

of immunotherapy. This concept to “tune rather than only prune” is a novel strategy for 561 

future AAT. 562 

 563 

EC metabolism as alternative target to modulate angiogenesis 564 

More than a decade ago, ECs were shown to undergo metabolic changes to execute their 565 

various functions. This metabolic reprogramming is driven in part by different signalling 566 

cascades, for instance growth factor signalling (e.g. VEGF can induce glycolysis) or Notch 567 

signalling (Notch suppresses glycolysis in stalk cells)142. However, it is now clear that EC 568 

metabolism is not only necessary, but also sufficient (independent of growth factors or other 569 

stimuli) to control EC function143. Several metabolic pathways have been implicated in distinct 570 
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functions. Single-cell studies alongside metabolomic investigations have uncovered several 571 

metabolically distinct EC subtypes. For instance, during sprouting angiogenesis, tip cells up-572 

regulate glycolysis and amino acid (AA) metabolism to support migration142-144. These 573 

metabolic pathways are also used by stalk cells (however, at lower levels), where they support 574 

proliferation and biomass production143. Stalk cells as well as phalanx cells also rely on fatty 575 

acid oxidation (FAO)145. In quiescent phalanx ECs, FAO contributes to maintainence of their 576 

quiescent phenotype146 (Figure 4). It has also been recognized that different EC subsets 577 

display distinct metabolic signatures, in a tissue-specific manner41. For instance, different 578 

metabolic transporters are most highly expressed in brain ECs, spleen ECs are enriched in 579 

cholesterol metabolism, while cardiac and muscle ECs show elevated fatty acid metabolism41. 580 

For a detailed review of EC metabolism, and metabolic heterogeneity in different EC types, 581 

we refer to recent excellent reviews143,147,148.  582 

When comparing ECs from healthy tissues to those in disease, different metabolic 583 

gene signatures were observed as well. For instance, compared to their respective controls, 584 

ECs from choroidal neovascularization or murine lung tumour models displayed an increase 585 

in gene expression related to several metabolic pathways, such as glycolysis, tricarboxylic acid 586 

(TCA) cycle, oxidative phosphorylation (OXPHOS), one-carbon metabolism and nucleotide 587 

synthesis65. In line with these findings, single-cell analysis of colorectal, lung and ovarian 588 

cancer revealed that tip ECs in all three cancer types up-regulate glycolysis and OXPHOS gene 589 

signatures56. Moreover, EC subtypes in human lung cancer also presented with metabolic  590 

gene adaptations compared to their healthy counterparts, with an up-regulation of genes 591 

involved in lipid metabolism in capillary tumour ECs, and increased prostaglandin metabolism 592 

in venous tumour ECs53. Compared to ECs from early stage ground glass nodules 593 

adenocarcinoma, ECs from late stage solid lung adenocarcinoma were also enriched in 594 
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metabolic gene processes149, and circulating ECs from metastatic prostate cancer patients 595 

showed enriched metabolic gene expression compared to circulating ECs from healthy 596 

controls150. 597 

The findings of EC metabolism as critical propeller to EC function, along with the 598 

observed metabolic changes in tumour ECs, led to the hypothesis that metabolic targeting of 599 

ECs might offer new therapeutic opportunities to keep tumour angiogenesis at bay (Figure 4). 600 

The glycolytic enzyme PFKFB3 regulates tip and stalk cell phenotypes, and associates with 601 

actin remodelling142. Genetic silencing of PFKFB3 inhibited tip cell function and resulted in 602 

acquisition of a quiescent phenotype142. Pharmacological inhibition of PFKFB3 with the 603 

inhibitor 3PO (3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one) impeded vessel sprouting in 604 

models of retinal angiogenesis and vascular development in zebrafish144. Notably, 605 

pathological angiogenesis in different disease models (age-related macular 606 

degeneration, retinopathy of prematurity, skin psoriasis, inflammatory bowel disease and 607 

cancer) was also suppressed by 3PO treatment144,151 (Figure 4). Importantly, while 608 

pharmacological PFKFB3 inhibition impedes angiogenesis in pre-clinical models, the efficacy 609 

of the treatment in clinical settings remains to be tested (Figure 4). Moreover, blocking of 610 

FAO hampers pathological angiogenesis. Etomoxir, which inhibits the FAO enzyme Carnitine 611 

Palmitoyltransferase 1A (CPT1A) reduces pathological angiogenesis in a model of retinopathy 612 

of prematurity145. Tip and stalk cells also rely on fatty acid synthesis143. In fact, 613 

pharmacological inhibition of the fatty acid synthase (FASN) using Orlistat, reduces EC 614 

proliferation and angiogenesis in pathological ocular neovascularization and melanoma 615 

animal models152,153. Thus far, no apparent off-target effects were discovered in preclinical 616 

models, however it is critical to note that targeting metabolic pathways affects not specifically 617 

ECs, but all cell types. Therefore, the suitability of metabolic targets to specifically inhibit EC 618 
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functions in patients remains to be investigated. However, as discussed in the following 619 

paragraph, recent developments in precision medicine might allow targeting of EC-specific 620 

metabolic pathways. In summary, these promising results demonstrate the need for future 621 

studies on the metabolic heterogeneity of ECs to identify additional metabolic targets.  622 

 623 

Novel targets from single cell studies - prioritization & targeting 624 

Whilst the unravelling of EC heterogeneity at single cell resolution has led to the discovery of 625 

exciting novel and specialized EC subtypes with a presumable key role in disease, the 626 

prioritization of functionally important candidate (metabolic) genes that are most reflective 627 

of these EC subtypes remains a formidable challenge. It demands the development of efficient 628 

means to transcend the atlas-like descriptive listing of EC-subtype specific marker genes into 629 

the most promising functionally relevant and therapeutically targetable candidates, and 630 

various in silico methods have been developed and reported in the recent years to aid in this 631 

challenge. For instance, use of an integrated (meta-)analysis of candidate gene expression 632 

across species, diseases and models identified PLOD1 and PLOD2 as novel angiogenic 633 

candidates53. Silencing or inhibition of both genes furthermore impaired in vitro and in vivo 634 

vessel sprouting, validating the therapeutic potential of these genes53. Moreover, a similar 635 

meta-analysis approach, yet combined with scRNA-seq data-tailored genome-scale metabolic 636 

models (GEMs), proved an efficient method for prioritization of SQLE and ALDH18 as 637 

promising new metabolic targets for AAT65 (Figure 5). Again, in vitro and in vivo perturbation 638 

experiments confirmed the functional relevance of both genes for angiogenesis, stressing 639 

their translational potential65.   640 

Querying of cell types enriched for trait-relevant genes based on genome-wide 641 

association studies (GWAS)154,155 represents another intriguing strategy for the identification 642 
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of EC-specific genes associated with a particular disease or condition. For instance, a GWAS-643 

based analysis of genes associated with cardiovascular disease was performed in a scRNA-seq 644 

study of human atherosclerotic plaques49. Eight of such genes (SHE, KCNN3, VAMP5, SEMA3F, 645 

HDAC9, GIMAP1, NOS3, and DOCK6) showed an EC-enriched expression pattern, supporting 646 

EC contribution to the disease and providing crucial information for future functional 647 

characterisations49. Furthermore, in scRNA-seq data of two rat models of pulmonary arterial 648 

hypertension (PAH), relevance to the human disease was investigated by analysing the 649 

expression of genes implicated in PAH based on DisGeNET and the Comparative 650 

Toxicogenomics Database156, and in a human PAH scRNA-seq study, differential expression of 651 

genes associated with hereditary PAH (e.g. BMPR2, ENG, SMAD9) was confirmed in several 652 

cell types, including ECs51. Interestingly, the rat PAH scRNA-seq study also assessed the 653 

therapeutic potential of existing drugs in PAH, by means of in silico drug screening156. This 654 

screening relied on the “Connectivity Map” resource, that allows the comparison of scRNA-655 

seq transcriptional signatures with a reference collection of drug-induced gene expression 656 

profiles from cultured human cells157 (Figure 5). Another recent method, Augur, allows 657 

prioritization of cellular subtypes most responsive to a biological perturbation158, in lieu of 658 

the traditional prioritization based on differential gene expression. This enables the 659 

identification of the individual contributions of distinct cell types to a condition or their 660 

discrete responses to different treatments, thereby deciphering the roles of distinct cell 661 

subtypes on a broader scale158. The in silico construction of multicellular disease models 662 

(MCDMs)159 is yet an additional method for target prioritization. This systems-level approach 663 

uses scRNA-seq data to construct models of disease-associated cell types, their expression 664 

profiles, and predicted cell-cell interactions. By integrating this method with disease context-665 

specific genetic and epigenetic data, the possibility of identifying the most (therapeutically) 666 
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relevant cell types was showcased in single cell datasets of human and mouse rheumatoid 667 

arthritis159. These novel approaches all showcased the ability of cell type and target 668 

prioritization from complex scRNA-seq datasets, and their application to EC-specific OMICs 669 

data promises to unveil important insights into vascular subtypes and marker genes most 670 

relevant for follow-up in a disease or condition-specific context (Figure 5).  671 

While identifying the EC subtype and associated marker(s) most likely to be of 672 

therapeutic interest already poses a challenge, subsequent specific targeting of the prioritized 673 

vascular subset may present an even bigger hurdle. Developments in the selective targeting 674 

of an EC subtype, recently coined “precision angioscience”160, will therefore be instrumental 675 

in translating EC-derived scRNA-seq data into clinically interesting and feasible follow-up 676 

studies. Selective delivery of small interfering RNAs (siRNAs), single-guide RNAs (sgRNAs), 677 

messenger RNAs (mRNAs), small molecules, and therapeutic proteins represents another 678 

strategy for specific targeting of the endothelium, and has thus far been experimentally 679 

achieved through the use of targeting ligands (for instance monoclonal antibodies), directed 680 

against EC-specific adhesion molecules or other surface markers. Vascular cell adhesion 681 

molecule-1 (VCAM1)-targeted nanoparticles have shown promising results in light of imaging 682 

inflamed or ischemic tissues in the mouse161-164. Further, enzyme-antibody conjugates and 683 

nanoparticle formulation aimed at specific targeting of the pulmonary165,166 or splenic167 684 

murine  vasculature have been reported so far, often with negligible alterations in non-685 

vascular cell types or other tissues.  686 

Although promising, in vivo gene delivery to a particular EC subtype identified by 687 

scRNA-seq has thus far not been achieved but may harbour benefits over pan-EC targeted 688 

strategies in terms of toxicity to other parts of the vascular bed within and outside of the 689 

tissue of interest. One major reason why targeting of specific EC subtypes identified by scRNA-690 
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seq studies has not yet been achieved, is the lack of consensus marker genes for distinct EC 691 

subpopulations. Future scRNA-seq analyses might provide further insights into construction 692 

of specific promoters for inclusion into gene therapy vectors in order to selectively target 693 

specific EC populations. This strategy however depends on the mutual exclusivity of EC 694 

subtype specific marker genes, and may be more challenging in case of tissues, where EC 695 

expression signatures exhibit spatial zonation, as for instance shown in the hepatic 696 

vasculature168.  697 

 698 

RECENT ADVANCES & FUTURE PERSPECTIVES  699 

A compendium of all publicly available single ECs 700 

Despite the vast amount of scRNA-seq studies published to date, the abundance of the 701 

vascular compartment within individual studies is often relatively low, precluding a detailed 702 

and all-encompassing interrogation of its heterogeneity. Increasing the magnitude of EC-703 

derived single cell datasets, by performing a joint analysis across all publicly available studies, 704 

could offer a solution to this problem. Although seemingly straightforward, this strategy 705 

nevertheless faces multiple challenges, including the need for effective batch effect 706 

correction, lack of standardization in EC isolation protocols, and variation in single cell data 707 

analysis, subclustering and annotation strategies (see Box 3).  708 

The latter issue is expected to improve in the coming years with the advancement of 709 

automated cell type annotation tools, which are rising in number and user-friendliness169-172, 710 

but even more so with the development of tools like Azimuth173, providing rapid and 711 

automated mapping, visualization and annotation of single cell datasets through an online 712 

web application. Yet, these tools often provide reference datasets representing major cellular 713 

lineages in various tissues/organs but preclude annotation of different EC subtypes within a 714 
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particular tissue or vascular bed. There is thus a need for the generation of tissue-specific 715 

“gold standard” vascular atlases, to both improve and progress standardization of EC OMICs 716 

annotations.  A recent integration of six lung scRNA-seq datasets resulted in joint profiling of 717 

over 15,000 ECs from 73 individuals174, and although not covering the full spectrum of 718 

published (healthy/normal) lung single EC RNA-seq data, this study provided one of the first 719 

in-depth reference atlases of healthy/normal lung ECs and is likely to aid annotation of future 720 

pulmonary EC studies in health and disease. When such efforts will be combined with 721 

automated cell type mapping tools and standardized whole tissue/EC isolation protocols, 722 

harmonized EC annotation across laboratories, tissues and experimental setups should be 723 

feasible in the foreseeable future.  724 

 Another obstacle in integrated analysis of EC OMICs data is represented by the 725 

inconsistent formats in which raw data is deposited, and the (sometimes) severe lack of detail 726 

regarding sample origin information and data processing parameters. The availability of 727 

processed counts and annotated metadata is furthermore limited, yet inevitable to ensure 728 

reproducibility of the data across labs of different expertise. Data-sharing methods also 729 

become increasingly variable, complicating uniform methods of dataset curation. While lab-730 

hosted servers, offering virtual exploration and downloading of data, are rising in popularity 731 

and enable non-bioinformatics focused labs an affordable and reliable method of data 732 

exploration, a more centralized storage platform would greatly enhance our ability to study 733 

vascular OMICs in a streamlined and comprehensive manner. Various recent efforts aimed at 734 

offering solace, either by generation of free-of-charge portals harbouring curated and 735 

harmonized processed datasets, or frequently updated overviews of published scRNA-seq 736 

datasets175-178. Specialized databases, like JingleBells179 for immune cells, cancerSEA180 for 737 

cancer cell states, The Human Cell Atlas portal for all tissues and cell types of the human 738 
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body181, or the NIH Human Biomolecular Atlas Program (HuBMAP)182, furthermore provide 739 

tempting field-specific opportunities in terms of scRNA-seq data exploration and analysis. Yet, 740 

none of these portals/efforts capture the complete spectrum of published datasets, and their 741 

usefulness relies on continuous data curation and updates.  742 

If we are to make progress in deciphering vascular heterogeneity across species, 743 

tissues and conditions, a dedicated portal housing all publicly available vascular-centered 744 

single OMICs data appears to become a key milestone waiting to be accomplished. However, 745 

as the ever-increasing number of single cell datasets published is becoming difficult to curate, 746 

a demand for artificial intelligence (AI)-based data-mining approaches is likely to arise in 747 

parallel to realize such an effort in an all-encompassing manner. Implementation of natural 748 

language processing (NLP) strategies and recent developments in their specific moulding 749 

towards biomedical sciences appear promising183,184. Amidst the current single cell OMICs 750 

“tsunami” of data, tailoring of text-mining tools toward identifying OMICs publications 751 

harbouring a particular cell type of interest (in this case, ECs) has the potential to greatly 752 

enhance their identification and prioritization, accelerating the generation of comprehensive 753 

single EC OMICs repositories and furthering data-driven research in the (vascular) biology 754 

field (Figure 6).   755 

 756 

ECs never work alone – interactomes and spatial resolution 757 

As described above, intricate cellular communication between ECs and their neighbouring 758 

cells are of vital importance for maintaining vascular homeostasis and remodelling, and 759 

recent advances in the development of interactome prediction tools for single cell data 760 

revealed intriguing findings regarding the interplay of ECs and other cell types47,49,59,87. 761 

Although fascinating, it must be noted that the findings and interactions resulting from RLI 762 
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analysis represent predictions, requiring functional validation. Recently developed tools 763 

provide more comprehensive solutions, including CellChat117, taking into account interactions 764 

between ligands, receptors and their co-factors, or NicheNet118, aimed at diving deeper into 765 

the intracellular response of cell types on the “receiving end” of these predicted interactions 766 

(Figure 7A). Ultimately, however, RLIs can be more accurately investigated when positional 767 

information is preserved. Advances in spatial transcriptomics, crowned as “Method of the 768 

year 2020” by Nature Methods185, presumably hold great promise for future enhancements 769 

in studying the interplay between ECs and their environment in a tissue architecture-770 

dependent context (Figure 7B). Interestingly, several computational tools have been recently 771 

developed with the aim to provide a more cost-effective alternative to spatial 772 

transcriptomics, either by integration of scRNA-seq data with reference in situ hybridization 773 

(ISH) data (Perler186), prediction of cellular coordinates in a three-dimensional pseudo-space 774 

based on input scRNA-seq data and known ligand-receptor interactions (CSOmap187), de novo 775 

spatial reconstruction of single-cell gene expression (novoSpaRc188), or prediction of whole-776 

transcriptome expressions in their spatial configuration by mapping of untargeted scRNA-seq 777 

data to smaller, targeted spatial transcriptomics datasets (SpaGE189, SpaOTsc190) (Figure 7B).   778 

Finally, translation of cellular cross-talk predictions to the protein level, for instance 779 

by applying established methods including cite-SEQ191, REAP-seq192, or cytometry by time of 780 

flight (CyTOF)193, or the more newly developed Nativeomics194 (allowing detection of intact 781 

ligand–receptor assemblies using mass spectrometry), INs-seq195 (allowing more accurate 782 

exploration of transcription factors, active signalling networks and metabolic activity by 783 

parallel transcriptome and intracellular proteomic profiling at single cell resolution), or single 784 

cell proteomics196 will be essential to complement and finetune EC-interactomes predicted 785 

from scRNA-seq data (Figure 7C). Lastly, as spatial juxtaposition of an EC and another cell type 786 
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does not automatically imply their active communication, the abovementioned tools will 787 

undoubtedly help prioritize the interactions that are most promising for further functional 788 

validation.  789 

 790 

CONCLUSION  791 

Collectively, EC OMICs studies have opened up a staggering amount of data readily available 792 

for analysis, of which we have currently only scratched the surface. Nevertheless, the single 793 

endothelial landscape uncovered thus far has revealed an intriguing degree of transcriptional 794 

heterogeneity, and has already propelled the vascular biology field at unprecedented speed. 795 

Further efforts aimed at unravelling the associated biological and functional relevance of this 796 

heterogeneity will undoubtedly help forward our understanding of the molecular drivers by 797 

leaps and bounds, and reveal the translational potential of exploiting EC heterogeneity for 798 

the development of novel AAT or endothelial-targeted therapies. 799 

 800 

BOXES 801 

BOX 1: WHAT IS HETEROGENEITY AND HOW CAN IT BE QUANTIFIED?  802 

Heterogeneity is an immanent trait of living systems that is omnipresent across all biological 803 

levels. It can manifest in different scale, ranging from different species arising from evolution 804 

to genetic differences within a population of seemingly identical cells. Although biological 805 

diversity is vital for the survival of organisms in a changing environment, it presents a 806 

formidable challenge for biologists to determine which of the observed heterogeneity have a 807 

biologically meaningful function. Heterogeneity can be summised as a statistical 808 

characteristic of a cell population. It is most commonly quantified through epigenomic, 809 
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genomic, transcriptomic and proteomic studies, though the extent of heterogeneity at one 810 

level of regulation is not indicative of the heterogeneity at another level of expression. 811 

Conceptually, heterogeneity within a cell population can be probed by first collecting single-812 

cell measurements from the population. Next, patterns of diversity can be identified by 813 

distilling distinct cellular behaviours into defined categories. Finally, functional significance of 814 

the patterns observed can be tested by measuring whether one subpopulation significantly 815 

differs from another or if the heterogeneity is informative as a predictor of responses to 816 

certain stimuli. We recommend the following commentaries for further conceptual 817 

exploration of heterogeneity in biology and single-cell5,9.  818 

 819 

BOX 2: STUDY DESIGN AND BIOINFORMATICS CONSIDERATION FOR SCRNA-SEQ STUDIES TO 820 

IDENTIFY AND CHARACTERISE EC POPULATIONS ON THE TRANSCRIPTOME LEVEL 821 

Whole tissues vs EC enrichment vs EC isolated from reporter mice: Whole tissue/organ 822 

analysis potentially lowers the power and resolution of EC analysis, yet allows their analysis 823 

amidst other cell types and querying of cell-cell interactions. To obtain a better resolution of 824 

the EC transcriptomic landscape, enrichment strategies based on CD31 expression can be 825 

performed prior to sequencing41,65,97,102. scRNA-seq of ECs isolated from reporter mice have 826 

also been implemented in liver cirrhosis100, after myocardial infarction89,103 and in 827 

atherosclerosis197. Such designs allow us to track the changes ECs undergo in diseases and 828 

reveal the presence and/or absence of cell transitions, such as endothelial-to-mesenchymal 829 

transition (EndMT)103. 830 

 831 

Cell number: Low number of sequenced cells could limit the identification of minor EC 832 

populations. 833 
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 834 

Inclusion of technical and biological replicates: As expected for novel technologies and in 835 

part due to their costs, study designs vary considerably in terms of biological/technical 836 

replicates. In some studies, lack of or low number of replicates prevent an analysis of 837 

variability and reproducibility and will require further studies and additional validations. 838 

 839 

Depth of EC downstream analysis: The depth of downstream EC analyses also varies across 840 

different studies, sometimes due to the study design (e.g. limited number of isolated ECs), or 841 

to incomplete characterization of EC clusters. Especially in cases of whole tissue scRNA-seq, 842 

EC analysis has often been performed alongside the analysis of other more abundant cell 843 

types, and lacks in-depth investigation and/or detailed subclustering of ECs. For instance, in 844 

studies of abdominal aortic aneurysm198, Alzheimer disease199, cancer56, cirrhosis/fibrosis52,59 845 

and atherosclerosis200, ECs were present but their EC subsets were not studied.  846 

 847 

scRNA-seq analysis: general caveats: Besides EC-specific considerations in terms of study 848 

design and analysis, hurdles in quality control (QC) of the data remain an ongoing challenge 849 

in the field of single-cell OMICs. For instance, during library preparation using droplet-based 850 

methods, multiple cells may have been captured together (doublets), non-viable cells may 851 

have been captured, or, droplets may have been sequenced that harbored no cells (empty 852 

droplets). Differences in library preparation might also stem from variability in cell recovery 853 

and quality, which results from different isolation protocols. After sequencing, it is thus 854 

imperative to implement a series of QC steps to ensure the analysis will be performed on 855 

high-quality cells only. Generally, QC of scRNA-seq data is based on three variables: (i) the 856 

number of counts per cell, (ii) the number of genes per cell, and (iii) the fraction of counts 857 
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from mitochondrial genes per cell. Filtering of outliers, based in examination of the 858 

distributions of these QC variables, can be applied to eliminate unwanted cells. For example, 859 

low-quality cells can be identified by a low number of detected genes, non-viable cells are 860 

characterized by a high fraction of mitochondrial counts, and cells with an unexpectedly large 861 

number of detected genes may represent doublets. Specifically for doublet removal, several 862 

computational tools can additionally be used to further optimize their detection beyond 863 

manual inspection of gene counts (DoubletDecon201, Solo202, scds203, Scrublet204, Doublet 864 

Finder205). Additionally, cell hashing strategies can be implemented to enhance the detection 865 

of doublets206.  866 

scRNA-seq results typically also suffer from sparsity, as the data often only captures a small 867 

fraction of the transcriptome, and genes can be detected at a low or moderate expression 868 

level in one cell, yet go undetected in another cell of the same cell type (zeros). Several 869 

computational approaches can be implemented to tackle this problem. Selecting only the 870 

most highly variable genes in the data, and applying several dimensionality reduction 871 

strategies represent common methods of handling data sparsity207. Moreover, various 872 

methods have been developed to “impute” values for observed zeros, including SAVER208 and 873 

MAGIC209.  874 

Furthermore, to accurately decipher findings from scRNA-seq data, normalization is an 875 

essential step to adjust for unwanted biases resulting from sequencing depth, sparsity, and 876 

other potential technical artefacts. Numerous normalization methods have been developed 877 

specifically for scRNA-seq data. One of the most general methods of normalization is the 878 

NormalizeData function, implemented within the Seurat R package. With this method, gene 879 

counts for each cell are normalized by the total expression, before multiplying by the scale 880 
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factor (10,000 by default) and natural log transforming the result. Various alternative 881 

normalization methods have been described and tested, but these appear highly comparable 882 

to the method built in to Seurat210.  883 

 884 

BOX 3: CHALLENGES OF INTEGRATING MULTIPLE SINGLE EC DATASETS 885 

An integrated analysis of ECs extracted from multiple, publicly available single cell datasets 886 

would provide a solution to the problem of overall low numbers of high-quality ECs in most 887 

individual (whole tissue) studies. However, this strategy faces multiple challenges: 888 

 Unavoidable “batches” across single cell datasets arise when they are generated in 889 

different labs, and/or comprise different experimental models, sample cohorts, 890 

library preparation methods or sequencing platforms. If not properly accounted for, 891 

these batch effects could severely bias conclusions drawn from comparative and/or 892 

integrated analyses. Despite the rapid development, optimization and benchmarking 893 

of user-friendly data integration or batch correction methods for single cell 894 

datasets211-214, their use is limited to only certain aspects of downstream data 895 

analyses, and finding a proper balance between aligning multiple datasets while 896 

preserving key biological variation remains challenging. Not surprisingly, batch 897 

correction is recognized as one of the major challenges in the single cell OMICs 898 

community215.  899 

 With the increasing number of published single cell studies, insufficient 900 

standardization of tissue isolation, as well as inconsistencies in annotation of EC 901 

subtypes are arising as a major hurdle in the vascular single cell field. Usage of 902 

different isolation protocols inevitably leads to variation in the overall yield of cellular 903 
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lineages, and the vascular compartment is no exception216. Standardized protocols 904 

for EC isolation from various mouse tissues are rising217-219, and optimized pipelines 905 

for pan-cell type isolation of single cells or nuclei from human tumour samples are 906 

also being developed216.  The continuation of such developments in additional tissues, 907 

conditions and species are expected to reduce discrepancies in overall EC/EC subtype 908 

yields across studies.  909 

 The categorization of ECs into transcriptomically distinct phenotypes or subgroups 910 

within the identified vascular compartments, which by itself is not a trivial pursuit, 911 

varies substantially across studies. Whereas this variability can likely be attributed to 912 

differences in the overall EC yield across these studies (indeed, studies analysing 913 

enriched EC populations generally report a higher number of transcriptomically 914 

distinct EC subtypes as compared to whole-tissue analyses41,53,55,65,133), differences in 915 

the applied subclustering parameters and annotation strategies may also play a role.  916 

 917 

FIGURE/TABLE LEGENDS 918 

FIGURE 1: OVERVIEW OF SINGLE CELL OMICS TECHONOLOGIES AND CHARACTERISTICS OF THE TWO 919 

MAIN SCRNA-SEQ APPROACHES.  920 

Single cell OMICs technologies are diverse, profiling different molecules at the single cell level. 921 

scATAc-seq analyses chromatin accessibility while scRNA-seq defines gene expression by 922 

measuring RNA steady state level. Other OMICs technologies such as proteomics and 923 

metabolomics are less commonly used at the single-cell level. B. Comparison of the two main 924 

scRNA-seq technologies in terms of cell isolation, recovered cell number, sequencing depth 925 

and sequencing type. 10X Genomics with its droplet based microfluidics technology allows 926 
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the sequenting of thousands of cells providing a high resolution of cell populations but 927 

without a full coverage of the transcriptome and no information on gene structure. In 928 

contrast, Smart-seq, with its higher sequencing depth and full length sequencing provides a 929 

better transcriptomics coverage but for a lower number of cells.  930 

  931 

FIGURE 2: ENDOTHELIAL HETEROGENEITY IN HEALTH 932 

EC phenotypes in health differ across organs, vascular beds and non-organotypic/vascular 933 

bed factors including sex and aging. Organotypic heterogeneity: ECs from different organs 934 

highly express genes involved in different biological processes. Liver and spleen ECs have a 935 

shared high expression of gene sets involved in immunoregulation, whilst heart and skeletal 936 

muscle ECs have upregulated expression of genes associated with membrane transporter and 937 

redox homeostasis. Vascular bed heterogeneity: Within each vascular bed, ECs from different 938 

segments of the same vessel type are diverse with several different EC subtypes. Two 939 

different subtypes of murine lung capillary ECs have been identified, aerocytes and general 940 

capillary ECs (gCap). Modified illustration from Gillich et al.68. Non-organotypic/vascular bed 941 

heterogeneity: EC phenotypes also vary across sex and age. Male ECs have enriched Lars2 942 

expression, compared to female ECs. Aged ECs are phenotypically different from younger ECs, 943 

such as brain capillary ECs expressing more pro-inflammatory and senescence-associated 944 

genes, resulting in dysregulated tight junctions in the blood-brain barrier. 945 

 946 

FIGURE 3: ENDOTHELIAL HETEROGENEITY IN DISEASE. 947 

ECs in a pathological context can differ from those in healthy organs on several levels. Each 948 

level of heterogeneity highlighted in this figure has been illustrated by a representative 949 

example. 1. The relative proportion of ECs (out of all cell types) can change in disease with, 950 
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for example, more ECs observed in Alzheimer brain compared to other cell types. 2. Disease 951 

can trigger a change in the relative proportion of EC subtypes such as an increased of 952 

peribronchial Ecs (pEC) but not arterial, vein and capillary Ecs (aEC, vEC and cEC) in idiopathic 953 

pulmonary fibrosis (IPF). 3. Specific EC subpopulation can be specifically observed in control 954 

or disease condition. For instance, “activated” ECs expressing pro-inflammatory and pro-955 

atherogenic genes were observed in human atherosclerotic plaque. 4. Disease-mediated 956 

transcriptional changes constitute an additional level of heterogeneity. Genes involved in the 957 

major histocompatibility complex of class II (MHC-II) are down-regulated in lung tumour Ecs. 958 

5. In diseases, ECs can change their interactions with neighbouring cell types. In 959 

atherosclerotic plaques, an increased interaction was observed between myeloid cells and 960 

Ecs mediated by PDGF/PDGFRB and leading to angiogenesis. 6. Ec can transition to another 961 

cell type by loosing their EC markers and gain other cell type identity markers. In mouse, the 962 

transient activation of mesenchymal genes has been observed 7 days after myocardial 963 

infarction (MI). 964 

 965 

FIGURE 4: ANTI-ANGIOGENIC THERAPIES IN TUMOURS 966 

Traditional AAT: Traditional AAT therapies target angiogenic growth factors, such as VEGF. 967 

VEGF-inhibition leads to inhibition of <10% of all ECs (including tip cells). Targeting EC 968 

metabolism: A potential alternative approach to inhibit angiogenesis in tumorigenesis 969 

presents targeting EC metabolism. Here inhibition of the glycolytic activator PFKFB3 has led 970 

to decreased tumor angiogenesis and impaired tumor growth in animal models. However, 971 

unlike traditional AAT, this approach has not yet been established in the clinical setting.  972 

 973 

FIGURE 5: EC-SPECIFIC TARGET DISCOVERY AND PRIORITISATION FOR THERAPY  974 
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Meta-analyses using different platforms (for instance scRNAseq, Cytof, Bulk 975 

proteomics/transcriptomics, epigenetic analyses etc.) and comparing data between different 976 

species (mouse, rat, human…) can narrow down candidate cell types and genes with 977 

important biological functions in a pathological setting. This approach focuses on 978 

genes/proteins repetitively up- or downregulated in the pathological setting independent of 979 

the method used and congruently changed between different species. Drug and toxicity 980 

databases can then be exploited to identify potential drugs/drug classes to reverse the 981 

determined genes/gene signatures. The availability of FDA/EMA-approved drugs potentially 982 

capable of targeting certain genes can also help in target prioritisation.  983 

 984 

FIGURE 6: A SINGLE CELL VASCULAR DATABASE 985 

Single cell OMICs studies generate vast amounts of data. The challenge is to identify 986 

biologically relevant EC phenotypes and disease-specific changes in ECs. Here, text-mining 987 

tools can be tailored to identify OMICs publications including ECs, to aid in the generation of 988 

an all-encompassing repository of EC OMICs data.  Such a database will facilitate automated 989 

and consistent EC annotation, as well as the comparison of ECs between different tissues, 990 

species and conditions, advancing and harmonizing data-driven research in vascular biology.  991 

 992 

FIGURE 7: EXTENSION AND VALIDATION OF RLIS PREDICTED FROM SINGLE CELL DATA.  993 

An overview of methods for further exploration and validation of predicted RLIs from scRNA-994 

seq data, either on the transcriptome level (upper panel) or protein level (lower panel). (A) 995 

Computational tools can be used to retrieve information regarding interactions between 996 

ligands, receptors and their co-factors (CellChat), or the intracellular response of cell types on 997 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvac018/6531964 by guest on 24 February 2022



 

 45 

the “receiving end” of predicted RLIs (NicheNet). (B) RLIs can also be placed in a spatial 998 

context by implementation of computational tools allowing the integration of (i) scRNA-seq 999 

data with reference in situ hybridization data (Perler), or (ii) scRNA-seq data and its predicted 1000 

RLI landscape (CSOmap). Spatial information can also be reconstructed de novo using scRNA-1001 

seq data (novoSpaRc), or by means of mapping untargeted scRNA-seq data to smaller, 1002 

targeted spatial transcriptomics datasets (SpaGE, SpaOTsc). (C) Protein level exploration of 1003 

RLIs can be achieved by applying established methods aimed at generating a dual 1004 

transcriptome and protein read-out in scRNA-seq experiments (cite-SEQ, REAP-seq, INs-seq), 1005 

or by using mass-spectometry based methods (cytometry by time of flight (CyTOF), 1006 

Nativeomics). 1007 
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